ABSTRACT: Roughly speaking, the moduli space of higher spin curves parametrizes equivalence classes of pairs (C, L) where C is a smooth genus g algebraic curve and L is a line bundle on it whose r-th tensor power is isomorphic to the canonical bundle of the curve. The aim of the talk is to discuss important geometrical properties of these spaces under different points of view: one possible compactification together with the description of the rational Picard group, their birational geometry in some low genus cases and their relation with some special locus inside the classical moduli spaces of curves.

Geometry of moduli spaces of higher spin curves / Pernigotti, Letizia. - (2013), pp. 1-53.

Geometry of moduli spaces of higher spin curves

Pernigotti, Letizia
2013-01-01

Abstract

ABSTRACT: Roughly speaking, the moduli space of higher spin curves parametrizes equivalence classes of pairs (C, L) where C is a smooth genus g algebraic curve and L is a line bundle on it whose r-th tensor power is isomorphic to the canonical bundle of the curve. The aim of the talk is to discuss important geometrical properties of these spaces under different points of view: one possible compactification together with the description of the rational Picard group, their birational geometry in some low genus cases and their relation with some special locus inside the classical moduli spaces of curves.
2013
XXVI
2012-2013
Matematica (29/10/12-)
Mathematics
Fontanari, Claudio
no
Inglese
Settore MAT/03 - Geometria
File in questo prodotto:
File Dimensione Formato  
TesiDottoratoPernigotti.pdf

accesso aperto

Tipologia: Tesi di dottorato (Doctoral Thesis)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 637.72 kB
Formato Adobe PDF
637.72 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/369303
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact