State-of-the-art neural machine translation systems typically have low accuracy in translating rare or unseen words due to the requirement of using a fixed-size word vocabulary during training. In addition to controlling the model complexity, this limitation is also related to the difficulty of learning accurate word representations under conditions of high data sparsity. This problem is an important bottleneck on performance, especially in morphologically-rich languages, where the word vocabulary tends to be huge and sparse. In this dissertation, we propose to solve the vocabulary limitation problem in neural machine translation by integrating morphology learning within the translation model, aiding to learn richer word representations in terms of phonological and morphological information. Our model improves the accuracy while translating into low-resource and morphologically-rich languages and shows better generalization capability over varieties of languages with different morphological characteristics.

Learning Morphology for Open-Vocabulary Neural Machine Translation / Ataman, Duygu. - (2019), pp. 1-164.

Learning Morphology for Open-Vocabulary Neural Machine Translation

Ataman, Duygu
2019-01-01

Abstract

State-of-the-art neural machine translation systems typically have low accuracy in translating rare or unseen words due to the requirement of using a fixed-size word vocabulary during training. In addition to controlling the model complexity, this limitation is also related to the difficulty of learning accurate word representations under conditions of high data sparsity. This problem is an important bottleneck on performance, especially in morphologically-rich languages, where the word vocabulary tends to be huge and sparse. In this dissertation, we propose to solve the vocabulary limitation problem in neural machine translation by integrating morphology learning within the translation model, aiding to learn richer word representations in terms of phonological and morphological information. Our model improves the accuracy while translating into low-resource and morphologically-rich languages and shows better generalization capability over varieties of languages with different morphological characteristics.
2019
XXXI
2019-2020
Ingegneria e scienza dell'Informaz (29/10/12-)
Information and Communication Technology
Federico, Marcello
no
Inglese
Settore INF/01 - Informatica
Settore ING-INF/05 - Sistemi di Elaborazione delle Informazioni
File in questo prodotto:
File Dimensione Formato  
Duygu_tesi_finale.pdf

accesso aperto

Tipologia: Tesi di dottorato (Doctoral Thesis)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 3.37 MB
Formato Adobe PDF
3.37 MB Adobe PDF Visualizza/Apri
Disclaimer_Ataman.pdf

Solo gestori archivio

Tipologia: Tesi di dottorato (Doctoral Thesis)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 245.07 kB
Formato Adobe PDF
245.07 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/368927
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact