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Abstract

State-of-the-art neural machine translation systems typically have low ac-

curacy in translating rare or unseen words due to the requirement of us-

ing a fixed-size word vocabulary during training. In addition to control-

ling the model complexity, this limitation is also related to the difficulty

of learning accurate word representations under conditions of high data

sparsity. This problem is an important bottleneck on performance, espe-

cially in morphologically-rich languages, where the word vocabulary tends

to be huge and sparse. In this dissertation, we propose to solve the vo-

cabulary limitation problem in neural machine translation by integrating

morphology learning within the translation model, aiding to learn richer

word representations in terms of phonological and morphological informa-

tion. Our model improves the accuracy while translating into low-resource

and morphologically-rich languages and shows better generalization capabil-

ity over varieties of languages with different morphological characteristics.

Keywords

neural machine translation, unsupervised machine learning,

computational morphology
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Chapter 1

Introduction

Machine translation is the task of automatizing the process of translating

text across different languages. From a cognitive perspective, this task

implies being able to understand a sentence in a given source language and

to generate a grammatically acceptable sentence with the same meaning

in a given target language. Both its scientific challenges and potential

applications, have made machine translation one of the most prominent

and fascinating problems studied in computational linguistics and artificial

intelligence, since the beginning of the 1950s.

Early approaches to developing machine translation systems included

rule-based models built by human language experts, later replaced by sta-

tistical models, which could instead learn word or phrase-level translation

patterns between two languages directly from a set of translation exam-

ples. The actual advancement of the field, however, owes itself to the very

recent development of neural architectures, which provided the means to

design models with advanced abstraction capacity, and allowed drastic im-

provements in the accuracy of machine translation in many languages. The

main characteristic of these architectures is that they provide a stand-alone

framework to directly learn a mapping between two languages, at the same

time, modeling the languages themselves. On the other hand, the levels of

1



2 CHAPTER 1. INTRODUCTION

linguistic abstraction constructed by these models, including the semantic,

syntactic or morphological structure of language, are not well-understood

aspects to date.

The conventional neural machine translation model which we consider in

this dissertation is a sequence-to-sequence model, which learns to map the

sequence of source words into a latent representation and, subsequently,

to generate from it the corresponding sequence of target words, one by

one. For a given set of training examples consisting of sentences in two

languages, thus, the model learns statistical representations of words ac-

cording to their sentence context, and makes use of these representations

to predict the translation probability between sentences in two languages.

For many aspects, this model is motivated by a comprehensive approach for

achieving a linguistically-coherent modeling of translation, as the context

of a word is known to serve as a mean to represent its semantic features. On

the other hand, the practical impossibility of learning representations for

the entire vocabulary of a language raises a constraint on the size of model

vocabularies, leading the model to suffer in computing accurate word rep-

resentations under conditions of data sparsity. For instance, this includes

the case when the amount of training examples is insufficient to observe

words in different context, or the case of morphologically-rich languages,

where the same word can have many different surface realizations due to

syntactic conditions, most of which are rarely if never observed in any set

of collected examples. In fact, the role of phonology, and consequently

morphology, is completely disregarded in the linguistic structure hypoth-

esized in this model, and this is one of the possible reasons why it still

cannot provide sufficient translation accuracy for many languages.

This dissertation investigates the ideal means for achieving an open-

vocabulary neural machine translation model, based on the simple idea

that if the model is given the ability to learn morphology, it should be able
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to encode and decode new surface forms of words, without the necessity to

learn or store their representations explicitly. For this purpose, we present

a study on methods that can be used to learn the morphological struc-

ture of words in any given language and integrate this information into

the distributed representations of sequence-to-sequence models, in prin-

ciple, allowing the models to generalize to previously unseen input and

outputs during machine translation. We start our study in Chapter 2 by

presenting the details on the design and functioning of the basic neural

machine translation model and its limitations in terms of learning repre-

sentations of rare or unseen words, as well as the conventional solution to

the problem of vocabulary limitation based on subword units. In Chapters

3 and 4, we present some introductory information on morphology and its

study in the field of computational linguistics, and the details of our ex-

perimental methodology, including an evaluation benchmark consisting of

languages with different morphological characteristics. Our research starts

with the development of a novel linguistically-motivated subword segmen-

tation method for neural machine translation in Chapter 5, which is es-

sentially an unsupervised morphology learning algorithm. The comparison

of our method to the prominent subword segmentation approach in neural

machine translation suggests the importance of preserving morphological

information while learning representations of translation units. In light of

the general limitations of the approach of subword segmentation, such as

generalizing to languages with different morphological characteristics, and

requiring tuning many arbitrary heuristics, in Chapter 6, we study a more

generic solution for open-vocabulary neural machine translation. Our ap-

proach performs translation based on word representations that are learned

by jointly modeling their phonological units as well as their sentence-level

context. Our experiments will show that this model allows to reach better

translation accuracy for all languages in our benchmark, whereas it also
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has better capacity in representing rare and unseen words. In Chapter

7, we investigate the benefit of modeling phonological and lexical context

through a hierarchical generative model, which translates words one char-

acter at a time, without the necessity to store their representations with

an embedding table. The hierarchical decoding model reaches a perfor-

mance on-par with the subword level neural machine translation models,

at the same time experiencing difficulties in modeling the lexical context in

languages with a high level of data sparsity. In order to improve the perfor-

mance of the model under low-resource settings, in Chapter 8, we explore

the idea of integrating stochasticity into the generative model, where each

word is generated based on a set of shared latent morphological features.

The stochastic hierarchical decoding model demonstrates better capability

in generating unseen morphological realizations, and improves the transla-

tion accuracy in many of the morphologically-rich languages.



Chapter 2

Neural Machine Translation

5
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2.1 Introduction

This chapter presents a brief description of the conventional neural machine

translation model, including different types of artificial neural networks

used in the architecture, its typical interpretation in practical cases and

the limitations of the existing approaches.

2.2 Artificial Neural Networks

Artificial neural networks were developed as computational models inspired

by the sensory processing system of the human brain. An artificial neural

network consists of computational units called neurons. Similar to the

stimulation of neurons in the brain during the transmission of electrical

information, each artificial neuron passes a received signal at its input to

its output depending on the value of an activation function.

Artificial neurons are connected to each other to form a network, or

a computational graph, which can be used to learn an unknown mapping

between inputs x and outputs y, by finding within a class of functions

ŷ “ fpx; θq (2.1)

the parameter values θ̂ which result in the best approximation with

respect to a set of observations D “ tpxi, yiq : i “ 1, .., nu.

There has been a vast amount of work on artificial neural networks which

has led to the development of many different types of architectures deploy-

ing different formulations for the artificial neurons and activation func-

tions. Two of these architectures, the multi-layer perceptron and the

recurrent neural network, constitute the main components of the neu-

ral machine translation model studied in this dissertation, which are used

to learn different information related to the translation task and jointly
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predict the mapping between an input sentence and its translation. In

some extensions of the neural machine translation model, convolutional

neural networks have also been used in order to compute input repre-

sentations of translation units. The next sections present descriptions of

these three architectures.

2.2.1 The Multi-layer Perceptron

The perceptron [83] is the simplest artificial neural network structure which

has shown the capability of approximating linear functions. It consists of

a set of neurons which apply a linear transformation on the input and a

threshold function to predict the corresponding output.

Figure 2.1: The perceptron

For a given input sequence txi : i “ 1, .., nu to the network, the output

ŷ is computed as a linear transformation of x followed by the activation

function gp.q

ŷ “ gp
n
ÿ

i

wixi ` bq (2.2)
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where w and b are a set of scalar weights and a bias used in the linear

transformation.

In order to approximate non-linear functions, it usually suffices to add

one or more hidden layers between the input and output layers of the

perceptron. The neurons of this layer are called hidden units, as their acti-

vations cannot be directly observed. This structure is called a multi-layer

perceptron. Figure 2.2 illustrates the connections of artificial neurons in

a multi-layer perceptron which has a single hidden layer, n inputs and a

single output.

Figure 2.2: A multi-layer perceptron with a single hidden layer

In this case, the overall response of the neurons in the hidden layer h is

computed through a linear transformation of the input x with the weight
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matrix V , the bias vector b and a non-linear activation function ghp.q
1.

h “ ghpV x` bq (2.3)

o “ wh` c (2.4)

ŷ “ gypoq (2.5)

Similarly, the response of the neurons at the output layer o is computed

using the input from the layer h, the weight vector w and the scalar bias

b, which is then transformed with the activation function gyp.q to obtain

the prediction ŷ.

An activation function is usually a non-linear differentiable transfor-

mation that should normalize the output values into a given range. The

neurons deployed in the hidden layers are typically activated using sigmoid

functions such as the hyberbolic tangent (i.e. tanhp.q) function, which

has values in the range (-1, 1).

tanhpzq “
e2z ´ 1

e2z ` 1
(2.6)

Figure 2.3: The tanh activation function

The choice of the activation function in the output layer varies depend-

ing on the specific learning task. In order to model binary output distribu-
1The activation function is generally a pointwise function which is applied individually on each element

of the input sequence, such that gprx1, ..., xnsq “ rgpx1q, ..., gpxnqs.
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tions, a typical choice is the logistic sigmoid function (i.e. σp.q), which

has values in the range (0,1).

σpzq “
1

1` e´z
(2.7)

Figure 2.4: The logistic sigmoid activation function

If the output nodes are interpreted as probabilities of a set of categories,

a conventional choice of activation function is the softmax, defined as:

softmaxpzqj “
ezj

ř

k e
zk

(2.8)

The softmax function normalizes a K-dimensional vector z with arbi-

trary real values into a same size vector of probabilities, where K is the

number of categories.

softmaxpzqj ą 0, @j (2.9)
ÿ

k

softmaxpzqk “ 1 (2.10)

On the other hand, if the output should predict a set of, for instance,

positive or non-zero real numbers, one can opt for a rectifier, or specifically,

a rectified linear unit (i.e. ReLU(.)), which converts all output values

to positive, or a softplus activation, which ensures non-zero and positive
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values.

ReLupzq “ maxp0, zq (2.11)

Figure 2.5: The rectified linear unit activation function

softpluspzq “ logp1` ezq (2.12)

Figure 2.6: The softplus activation function

The multi-layer perceptron is a universal function approximator [30],

which makes it very suitable for creating mathematical models by regres-

sion and classification analysis. Today, it is one of the most commonly

used machine learning methods for supervised classification tasks. How-

ever, one major drawback of using multi-layer perceptrons is the require-

ment of pre-processing the input before feeding to the network, in order to
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extract adequate features which might be useful for the given task. This

limitation has led to the development of convolutional neural networks,

which are feed-forward neural networks that integrate feature extraction

into the neural network architecture and therefore eliminate the need for

pre-processing.

2.2.2 Convolutional Neural Networks

Convolution is an operation that determines how two real-valued functions,

x and w, overlap while w is shifted over x. It is denoted with the ˚ symbol

and defined in discrete time as follows:

sptq “ px ˚ wqptq “
8
ÿ

τ“´8

xpτqwpt´ τq (2.13)

In a convolutional neural network, this operation is used to predict a

set of parameters w, also called as the kernel, from an input function

x, that are beneficial in a prediction task. A convolutional neural network

typically consists of an input and an output layer, as well as multiple hidden

layers which include convolution layers, where the input is transformed into

kernels using the convolution operation, activations, pooling layers, and

fully-connected hidden layers. The pooling layer aids in filtering out the

features relevant to the task and conventionally include simple operations

such as taking the maximum of the kernel values or averaging them.

Convolutional neural networks allow very efficient computation by es-

tablishing a sparse connectivity between the input and output, as the out-

put is only directly connected to the feature maps. By sharing the network

parameters through the kernels, they also reduce the number of parame-

ters to be stored. Due to these reasons, convolutional neural networks are

widely adopted methods in image processing applications [41].

The multi-layer perceptron and the convolutional network are feed-

forward neural networks, as the information flows from x, through the
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intermediate computations used to predict f , to the output y [41]. A major

limitation of using feed-forward networks is the requirement to operate on

finite-dimensional input and outputs. In order to process sequential input

with varying lengths, such as sentences, a more preferred approach has

become using recurrent neural networks.

2.2.3 Recurrent Neural Networks

Recurrent neural networks are artificial neural networks which can have

feedback connections within their hidden layers [84]. The outline of a

recurrent neural network with input, hidden and output layers and the

time-unfolded representation of the network can be seen in Figure 2.7.

Since the input is sequential, the output of a recurrent neural network

is computed recursively for each time step t using the current input xt,

the network weights and the updated hidden state ht until the end of the

sequence

ht “ tanhpUxt `Wht´1 ` bq (2.14)

ot “ V ht ` c (2.15)

ŷt “ softmaxpotq (2.16)

where U , V and W the weight matrices at the input, recurrent and

output layers, respectively.

Recurrent neural networks have achieved very successful results in many

tasks involving learning structural dependencies between sequential vari-

ables, and eventually became the core of the state-of-the-art architectures

in machine translation.

The next section presents details on the optimization of the parameters

of artificial neural networks.
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Figure 2.7: A recurrent neural network and its time-unfolded representation

2.2.4 Training and Optimization

The parameters θ of an artificial neural network, consisting of the weight

and bias values at each layer, are jointly optimized to find the best function

approximation ŷ “ fpx; θq over a training set D, consisting of a set of

observations of inputs x and their corresponding correct outputs y. The

optimization is performed with a cost function Jpθq which measures how

good the model predictions are:

Jpθq “ Epx,yq„p̂DLpfpx; θq, yq (2.17)

where L is a loss function typically chosen as a distance metric between

each prediction value and the corresponding correct output, and p̂D is the

empirical distribution obtained from the training data.
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The optimal values of the parameters are predicted as the values where

the the cost function Jpθq is minimum, i.e. the gradient of the cost func-

tion is zero. Nevertheless, computing a closed-form representation of the

gradient of the cost function with respect to all the parameters of the nodes

in the network is mathematically intractable. Alternatively, a direct eval-

uation of the gradient can be computed using the Back Propagation

method, or its extension for recurrent neural networks, Back Propaga-

tion Through Time algorithm [84].

Each computation of ŷ from an input x using the artificial neural net-

work is called a forward propagation. During training, the forward prop-

agation continues until it produces a scalar cost Jpθq. In order to compute

an estimation of the gradient of the cost, the same network can be used

to perform a backward propagation, where the gradient of the cost func-

tion computed at the last nodes can be propagated backwards until the

input nodes to obtain an evaluation of the gradient with respect to the

parameters of each layer. At each layer, the gradient of the output with

respect to all node parameters are computed according to the chain rule

of derivation.

The evaluation of the gradient can then be used to find the optimal

values of the network parameters which minimize the cost function. This

is typically accomplished using gradient-based optimization methods, the

most well-known of which is the stochastic gradient descent [12]. Stochas-

tic gradient descent is an iterative method for updating the values of the

parameters until they reach some optimal values. At each iteration, the

algorithm randomly samples a set of n examples, called a batch, from the

training data and computes the gradient of the objective function over this

set in order to update the network parameters using the following equation:

θ :“ θ ´ η
1

n

n
ÿ

i

∇Jipθq (2.18)
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where Jipθq is the value of the cost function evaluated on the ith example,

and η is the learning rate, which quantifies the amount of update to be

performed.

In stochastic gradient descent, all network parameters are optimized

using the same learning rate, which might lead to difficulties in reaching

convergence, especially when the training data is sparse. In order to im-

prove the performance of the optimization method, a better approach is to

deploy an adaptive learning rate. One of the methods that adopt this ap-

proach is AdaGrad [32], the Adaptive Gradient algorithm, which deploys

an adaptive learning rate depending on the sparseness of the parameters.

Another commonly used method is Adam (Adaptive Moment Estimation)

[53], where the learning rate is dynamically computed based on the values

of the parameters, the gradients and their second moments.

Once the network is trained using the gradient-based optimization al-

gorithms, one can evaluate its performance on a test data consisting of

new examples. In addition to minimizing the error on the training data,

the second goal during training is to minimize the difference between the

training and test errors, which indicates that the model is able to predict

outputs of previously unseen inputs.

If the error on the training data is small, but it is large on the test

data, this might indicate overfitting, which occurs when the parameters

are tuned to predict the function y “ fpx, θq too closely or exactly to

match the examples in the training data. A conventional method adopted

in artificial neural networks in order to prevent this is dropout [99]. Dur-

ing gradient-based optimization, the parameters of individual nodes may

develop complex co-adaptations in order to improve the errors computed

by other nodes. The idea of the dropout method is to randomly discon-

nect some of them from the network during training of each single input

in order to avoid correlations between single inputs and single nodes and



2.2. ARTIFICIAL NEURAL NETWORKS 17

force distributed learning.

2.2.5 Extensions to Recurrent Neural Networks

Empirical studies on recurrent neural networks have shown that they are

prone to forgetting information relevant to the hidden state representations

computed at time steps far back in history [46, 9]. This problem is also

called as the vanishing gradient problem, and it is related to the fact

that while training the network on long input or output sequences, the

gradients computed with back-propagation may become smaller at each

iteration. If the gradients eventually become close to zero, this effectively

prevents the network weights from changing their values. In order to alle-

viate this problem, some studies suggested modifying the recurrent neural

network architecture to allow it to learn better long-term dependencies.

The most widely used models today include the long short term mem-

ory and the gated recurrent unit.

Long Short Term Memory

Hochreiter and Schmidhuber [46] suggested an extension of the recurrent

neural network model where the hidden states are computed using three

gates, called as the input, the forget and the output gates.

At each time step, the forget gate determines how much information

to be passed to the next hidden state, using the input and the previous

hidden state representation:

ft “ σpWf rht´1, xts ` bfq (2.19)

On the other hand, the input gate determines how much information

from the input and the previous hidden state will be used for updating the
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Figure 2.8: Long short term memory

network:

it “ σpWirht´1, xts ` biq (2.20)

ct “ ft ¨ ct´1 ` it tanhppWcrht´1, xts ` bcq (2.21)

where ĉt represents the cell state, a novel component which accumulates

information about the previous computations. The cell state is then passed

to the output gate, which has the role of filtering how much information

from the cell is going to be used to produce the new hidden state of the

neural network:

ot “ σpWorht´1, xts ` boq (2.22)

ht “ ot ¨ σpctq (2.23)

The long short term memory network has significantly better perfor-

mance in learning long-term dependencies, whereas it also increases the

computational cost of the recurrent neural network in terms of training

time and number of parameters. A less computationally demanding alter-

native is the gated recurrent unit.
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Gated Recurrent Unit

The gated recurrent unit [16] was proposed as an alternative solution to

the vanishing gradient problem. It has a reset and an update gate which

determine how much information to be eliminated (or forgotten) in the

next iteration, and how much of it will be used to update the network

weights.

rt “ σpWrrht´1, xts ` brq (2.24)

zt “ σpWzrht´1, xts ` bzq (2.25)

The next hidden state is computed using the values of the reset and

update gates, the previous hidden state and the input as follows:

ht “ tanhpW rrtht´1, xtsq (2.26)

ht “ p1´ ztqht´1 ` ztht (2.27)

Figure 2.9: Gated recurrent unit

Due to the less number of parameters, the gated recurrent unit is more

computationally efficient than the long short term memory, but also typ-

ically provides worse performance. Nevertheless, both architectures are

found to achieve comparable performance when an equal number of pa-

rameters are used [19].
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2.3 The Sequence-to-Sequence Model

One of the earliest approaches to neural machine translation [100] is based

on the idea of using a sequence-to-sequence model consisting of two re-

current neural networks, which jointly model the conditional probability

of translating a source text x, represented by the input word sequence

x “ px1, x2, . . . xmq of length m, into a target text y, represented as the

target word sequence y “ py1, y2, . . . yi . . . ynq of length n as follows:

ppy|x; θq “
n`1
ź

i“1

ppyi|yi´1, ..., y0, xm, ..., x1; θq (2.28)

where θ represents the model parameters and y0 and yn`1 are conven-

tional sequence delimiter symbols.

The model is essentially a language model, which learns the probabilities

of words in a continuous space, based on a varying-length of context defined

as all the previous words in the sentence. The input word sequence is

modeled by the encoder, which maps each input word into a context

dependent continuous representation.

The inputs of the encoder are |V |-dimensional one-hot vectors, i.e. vec-

tors with a single bit set to one to identify each word in the vocabulary,

where the total number of words in the vocabulary is |V |. The vocabulary

is a set of the possible words in the language, i.e. the lexicon, and it is

usually learned from the training corpus. Using a linear transformation,

each one-hot vector is mapped to a more dense representation in contin-

uous space and a lower dimension N , called an embedding. Using the

embeddings of each word in the sentence, the encoder obtains a distributed

representation of the entire source sentence, the context vector, using a

long-short term memory [100] as in Equation 2.23, where the context is

represented by the last hidden state hm of the encoder.

A second recurrent neural network, called decoder, models the target
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Figure 2.10: The sequence-to-sequence model

language in a similar fashion using the target word embeddings, the tar-

get sentence context, and the source context. Conditioning on the source

context is accomplished by initializing the first hidden state of the decoder

with the context vector.

The main objective of the model is to predict the probability distribution

of the following target word given the previous word yt´1 and the current

context (hidden state) st of the decoder. Each target word yt is predicted

by sampling from the word distribution the most likely target word in

the vocabulary. The probability distribution ŷt over the target vocabulary

is computed by projecting the decoder hidden state into a vocabulary-

size space through an embedding matrix E and by applying the softmax

function:

ŷt “ softmaxpEstq (2.29)

where the softmax operates over the vocabulary size |V |.

The overall network is trained to maximize the log-likelihood of a par-

allel training corpus D consisting of sentences in the source language and
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their translations in the target language:

LpD, θq “
ÿ

px,yqPD

log ppy|x; θq (2.30)

via stochastic gradient-descent and the back propagation through time

algorithm, as described in Section 2.2.4.

2.4 The Attention Mechanism

Although the above sequence-to-sequence model proved to be very effec-

tive, it had difficulty in translating long sentences [5]. This is due to the

fact that the all of the information from the source sentence is compressed

into a fixed-length context vector, which inevitably suffers of information

loss when long sequences are encoded.

In order to increase the performance of the model in translating long

sentences, Bahdanau et al. [5] proposed to compute the context vector

dynamically with an attention mechanism. During decoding, the atten-

tion mechanism predicts a set of words in the source sentence where the

most relevant information about the next word to be generated is concen-

trated. The model then predicts each target word based on the current

context vector associated with these source positions and the previously

generated target words. An illustration of the decoding process using the

attention-based sequence-to-sequence learning model can be seen in Figure

2.11.

In the extended architecture, a bi-directional recurrent neural network is

used to encode the source word representations, which allows to model the

word context with both left and right neighbors. A bi-directional recurrent

neural network consists of two recurrent neural networks that iterate over

the input sequence in opposing directions: a forward recurrent neural
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Figure 2.11: The attention mechanism

network learns the word representations given the previous context, while

backward recurrent neural network learns the representation based on the

future context, allowing to incorporate positional information of the words

in the sentence. The output of the bi-directional recurrent neural network

is the concatenation of the last hidden states of the two layers [91].

At each time step, the attention mechanism computes the context vector

relevant to the current target word yt as a weighted sum over the encoder
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hidden states

ct “
m
ÿ

j“1

αt,jhj (2.31)

where the weights αt,j of each annotation are computed as follows:

αt,j “
eet,j

řm
k“1 e

et,k
(2.32)

et,j “ alignpst´1, hjq (2.33)

The score et,j computed by the alignment model alignp.q indicates

how the input word at position j relates to the output word at position

t and is computed based on the decoder state st´1 and the jth encoder

hidden state hj. The alignment model is parametrized using a multi-layer

perceptron which is jointly trained with all the other components of the

neural machine translation model.

While improving the translation performance by adding a notion of lo-

cality to the decoder about which part of the sentence is translated at each

step, the attention mechanism slightly increases the computational cost of

the overall model due to the additional multi-layer perceptron that needs

to process the encoder hidden states repeatedly to generate the alignments

for each target word. In order to compute the alignment scores in a more

efficient way, Luong et al. [67] proposed a simpler attention mechanism.

Instead of the multi-layer perceptron, in the so-called general attention

mechanism, the alignment scores for each target word are computed as a

linear transformation on the current decoder hidden state st (the decoder

state is updated before the attention step) and the encoder hidden states

hj

et,j “ sTt Wahj (2.34)

where Wa is suitable linear transformation. The context vector ct, com-

puted in the same fashion as in Equations 2.31 and 2.32, is then combined



2.5. DECODING 25

with the current decoder state st to produce an attentional hidden state

ŝt “ tanhpWcrct; stsq (2.35)

which is used to predict the target word using the softmax layer. In

addition to providing a much more efficient solution to decoding in neural

machine translation, this method has also obtained the state-of-the-art

performance in the English to German machine translation task [67].

2.5 Decoding

Translation of a sentence in the source language x into a sentence in the

target language y is usually referred as decoding. A naive approach to

decoding is computing the translation word by word, by picking the most

likely word in the vocabulary as predicted by the decoder at each time step.

This approach is called greedy search. However, as the goal of decoding

is to generate the most likely word sequence, the strategy of making word-

by-word local decision is clearly sub-optimal. In other words, the most

likely word at a given time may not be the best option in terms of correct

meaning and grammatical accuracy of the entire target sentence.

On the other hand, generating all possible translations and performing

search over an exponentially-large hypothesis space is clearly intractable.

Hence, a better approach is to perform a search over a subset Spxq of

promising candidate translations (hypotheses) and find among them the

one which has the maximum posterior probability.

ŷ “ arg maxyPSpxq ppy|xq (2.36)

In this approach, the model simultaneously searches for multiple hy-

potheses and picks the most likely word sequence once the decoding of

each hypothesis is completed. This approach is usually implemented using

the beam search algorithm.
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function BeamSearch(Hyp,Best,t)

NewHyp Ð ()

for all (seq,score,state) in Hyp do:

(words,logpr,state’) Ð ForwardPass(tail(seq),state)

for all (w,lp) in (words,logpr) do:

hyp=[append(seq,w),score+lp,state’]

if (IsSolution(hyp) and hyp.score ą Best.score)

then Best=hyp

else Push(NewHyp,hyp)

NewHyp Ð Prune(NewHyp,Best)

NewHyp Ð TopB(NewHyp)

if (NewHyp)

return BeamSearch(NewHyp,Best,t+1)

else return Best

Algorithm 1: The beam search algorithm

The beam search algorithm performs decoding by predicting the B most

likely hypotheses at each time step, which are stored in a beam of size

B, by computing the joint probability of the current hypotheses and the

previously generated words in each beam. The decoding continues until all

beams are completed. A high-level pseudo code of the method is given in

Algorithm 1.

2.6 The Vocabulary Limitation

In neural machine translation, the word embeddings which are used for the

source and target words, respectively, by the encoder and the decoder are

stored only for a limited number of source and target words determined

by the training data. A conventional method for constructing the word

vocabularies is to include only the top k frequent words in each side of the

parallel corpus [5]. This limitation is due to two major aspects arising by

the fundamental design of the model: high computational complexity and



2.6. THE VOCABULARY LIMITATION 27

inability to cope with data sparsity.

From the softmax function in Equation (2.29), one can see that the

computational cost of predicting each word scales linearly with the target

vocabulary size. In general, larger source and target vocabulary sizes imply

an increase in the number of parameters, thus, longer training and inference

time and a larger dynamic memory usage. In addition to controlling the

computational complexity, using a fixed-size vocabulary for only the most

frequent words is also beneficial in managing the accuracy of the word

embeddings. As the translation is conventionally modeled at the lexical

level, the model relies on the distributed representations of words, which

can only be learned by observing the words in many varieties of context

during training. Therefore, the statistical distribution of the words has a

crucial role in guiding the neural machine translation model. A high level

of variance in the lexical distribution implies a high level of sparsity and a

low expectation to observe each individual word, resulting in low quality

representations for many words in the language.

In fact, this limitation is an important bottleneck in translating any

rare or unseen words that might be encountered in new sentences. One

of the early approaches to improving the accuracy of the translations of

unknown words was proposed by Luong et al. [67], which replaces the out-

of-vocabulary words in the output with their corresponding inputs using

a word alignment model as a post-processing step to decoding. This ap-

proach is useful for translating rare words like numbers or named entities

that are not found in the vocabulary, and in principle, should have the

same form in two languages. However, it is far from providing a complete

solution to the vocabulary limitation problem, since a large portion of the

vocabulary in a morphologically-rich language contains infrequent words

that are derived or inflected word forms and carry important semantic and

syntactic information, thus, cannot be translated in isolation from the rest
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of the sentence.

2.7 Subword Segmentation

A better approach that addresses the vocabulary limitation in neural ma-

chine translation, which has now also become the prominent method, is

redefining the model vocabulary in terms of interior orthographic units

compounding the words, called as subword units, and learning transla-

tion as a mapping between the subword units of two languages. In order

to predict a subword vocabulary, a segmentation algorithm is applied on

the training corpus prior to training the neural machine translation model,

which splits each word in the corpus into a sequence of subword units while

preserving the original word boundaries and the splitting positions. After

translation, using the splitting marks, the words in the target sentence are

reconstructed from the generated subword units.

The algorithms used to apply subword segmentation generally differ

by two main approaches; including likelihood-based statistical algorithms

that predict a set of subwords that can optimally fit a given vocabulary

size based on their frequencies and disregard any linguistic notion, and

supervised morphological analysis tools which can be used to transform

the surface forms of words into sequences of morphological segments or

representations of their lemmas and syntactic features. The next section

presents an overview of both approaches as well as their potential limita-

tions.

2.7.1 Byte-Pair Encoding

Byte-pair encoding is a likelihood-based subword segmentation method

that has obtained successful results in neural machine translation of many

languages [11]. It is originally a data compression algorithm that mini-
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mizes the length of sequences of bytes by finding the most frequent con-

secutive byte pairs and encoding them using unused byte values [34]. It

was modified by Sennrich et al. [94] to apply vocabulary reduction for neu-

ral machine translation, where the most frequent character sequences are

iteratively merged to find the optimal description of the corpus vocabulary.

This purely statistical method is based on the assumption that many

types of words can be translated when segmented into smaller units, such

as numbers, named entities and loanwords. This assumption holds true

when applied on languages which do not exhibit high lexical sparsity, where

the rare words in the training corpus are typically of this nature. Never-

theless, in case of morphologically-rich languages where common morpho-

logical paradigms such as derivational or inflectional transformations are

frequently observed, the method lacks a linguistic notion that could allow

it to better generalize syntactic patterns among the data and use the vo-

cabulary space more efficiently. Table 2.1 lists some of the entries found in

the neural machine translation model dictionary after the segmentation of

the corpus with byte-pair encoding, which is seen to store many repetitions

of the same lemma in different surface forms.

Another crucial problem is related to the semantic losses which occur

due to segmenting words at positions which breaks the morphological struc-

ture. Table 2.2 presents some of the typical mistakes observed in the model

output using subword units segmented with byte-pair encoding. In the first

example, the Turkish word ‘kanunda’ (‘in the law’ ), the lemma of which

is ‘kanun’ (‘law’ ), is segmented in the middle of the root, which causes a

semantic shift. The segmented word now becomes a completely different

word, ‘kan’ (‘blood’ ). In the second example, inaccurate segmentation of

the root and suffixes leads to generate the wrong inflected form in English.

The lack of consideration on the morphological structure of words during

vocabulary reduction is not only delimiting in terms of the translation
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Corpus Frequency Vocabulary Entry English Translation

2184 hapis jail

1011 hapishane jailhouse

793 hapishan@@ -

587 hapishanede in the jailhouse

471 hapisten from the jail

245 hapishaneden from the jailhouse

229 hapishanesinde at the jailhouse of (him/her/it)

181 hapishanenin of the jailhouse

170 hapis@@ -

156 hapiste@@ (in the jail)@@

149 hapisteki the one in the jail

121 hapisan@@ -

100 hapishanesine to the jailhouse of (him/her/it)

Table 2.1: Turkish vocabulary entries obtained after segmentation with byte-pair encoding

Source Segmentation Output Reference

kanunda kan@@ unda in your blood in the law

sigortalılar sigor@@ talı@@ lar the insurers the insured ones

Table 2.2: Examples of output from the neural machine translation model trained with a

Turkish byte-pair encoding subword vocabulary

accuracy, but also potentially harmful for the generalization capability of

the neural machine translation model, as it might prevent the model from

generating unseen word forms corresponding to combinations of different

morphological paradigms applied on a given root.

2.7.2 Supervised Morphological Analyzers

The second family of approaches to neural machine translation using sub-

word units include supervised morphological analysis tools that segment

words into their morphemes or morphological features. For instance, Sánchez-

Cartagena and Toral [87] suggested using the Finnish morphological seg-
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mentation tool Omorfi [79] to separate words in the training corpus into

their bases and inflectional suffixes to perform vocabulary reduction in

English-to-Finnish neural machine translation. Similarly, Huck et al. [49]

and Tamchyna et al. [101] applied morphological analysis to split words

into sequences of lemma and syntactic feature sets in English-to-German

and English-to-Czech neural machine translation.

Since supervised morphological analysis preserves semantic and syntac-

tic information during segmentation, it can potentially eliminate morpho-

logical errors that may be caused when statistical subword segmentation is

used. However, one major disadvantage of this approach is related to the

fact that morphological analysis of a given corpus is deterministic, hence,

the subword vocabulary after segmentation may be still too large in terms

of the computational cost of training the neural machine translation model.

In this case, the model vocabulary is usually constructed by applying cut-

off thresholds on the vocabulary and reducing the coverage of the long

tail of less frequent subwords, or further applying byte-pair encoding to

reduce the vocabulary to a given size. In this case, one can obtain a more

compact representation of subword units the vocabulary, although sub-

word segmentation being applied after morphological analysis may cause

many roots to be split, leading to morphological errors. Moreover, super-

vised morphological analyzers are language-specific annotated tools which

are not available in many languages, hence, they do not provide an ideal

approach for machine translation.

2.8 Character-level Neural Machine Translation

An alternative direction to open-vocabulary neural machine translation in-

cludes a set of approaches which perform translation directly at the level

of characters without applying any form of explicit segmentation. Costa-



32 CHAPTER 2. NEURAL MACHINE TRANSLATION

Jussa and Fonollosa [23] proposed processing source sentences character

by character by augmenting the encoder of the neural machine transla-

tion model with a convolutional neural network, which extracts phonetic

features from the input sentences and feeds these feature representations

into the sequence-to-sequence model for predicting translations. Lee et al.

[62] further extended this approach to achieve fully character-level neural

machine translation by changing the decoder with a character-based one

[18]. Another approach that also implements fully character-level neural

machine translation based on convolutional neural networks is ByteNet

[51], which performs translation in linear time steps with respect to the

source sentence length.

The main problem with these approaches is that they generally disre-

gard lexical boundaries while learning distributed representations of the

input units. Indeed, these methods are more optimal for Asian languages

like Chinese and Japanese which do not have explicit word boundaries

[62], nevertheless, for most languages where grammar operates at the lex-

ical level, it is controversial whether syntax and semantics, and therefore

morphology, can be modeled without maintaining a context also defined

at the lexical level. Moreover, using solely convolution may not be suffi-

cient in capturing information about the relative positions of the interior

units inside words, which could provide important cues about their mor-

phological roles. More information on morphology and how it interacts

with different levels of language is going to be given in Chapter 3.

Cherry et al. extended the approach of neural machine translation based

on subword units to deploy the neural machine translation model directly

at the level of characters. This approach proposes performing translation

with the standard sequence-to-sequence architecture based on a vocabu-

lary of character units, while lexical boundaries are preserved by processing

the spaces between words as additional tokens in the input sentence [15].
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Following this approach, the character-level neural machine translation

model could reach comparable performance to subword based neural ma-

chine translation, although this would require much larger networks which

require a large amount of training data and long convergence time [15].

The major reason to this requirement lies behind the fact that treating

characters as individual tokens at the same level and processing input se-

quences in linear time increases the difficulty of learning abstract linguistic

functions including the semantic, syntactic and morphological structure of

the language. The increased sequence lengths caused by processing the

sentences as sequences of characters also augments the computational cost

despite the reduced complexity in the softmax layer.

In many languages, words are the core atomic units of semantic and

syntactic structure, and their explicit modeling can be useful for properly

learning the target language. Another direction of approaches to open-

vocabulary neural machine translation suggested character-based transla-

tion which regards word boundaries in the translation model, where trans-

lations are generated through a hierarchical decoding procedure based on

word and character level representations. Nevertheless, these approaches

were generally deployed through hybrid solutions due to the requirement

of observing words in varying lexical context and surface forms in order

to properly model the lexical distribution and learn reliable representa-

tions. Ling et al. [63] proposed estimating word representations through

a composition function over the character units using bi-directional re-

current neural networks, where a set of word embeddings learned from

a large monolingual corpus using a language model were then set as tar-

get representations to approximate the character composition function and

character embeddings. However, the isolation of the training procedures

of word and character representations potentially prevents the model from

learning dependencies between the phonetic and syntactic structure, which
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is known to be crucial in morphology. Luong and Manning [66] proposed

using a hybrid network including a word-level as well as a character-level

hierarchical neural machine translation model, where unknown words in

the vocabulary of the word-level neural machine translation model could

be generated using the character-level neural machine translation model.

In addition to still requiring to store representations of a large vocabulary

of words, this approach also needs to train two different components, which

increases the computational cost and the length of the decoding pipeline.
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2.9 Conclusion

Neural machine translation is a useful technology which can provide com-

petitive performance in machine translation, yet state-of-the-art approaches

still suffer from inefficient handling of data sparsity mainly due to the vo-

cabulary limitation, and consequently low accuracy in translating rare or

unseen words. In order to overcome the vocabulary limitation in neural

machine translation, this dissertation proposes a set of methods for un-

supervised learning of morphology that can provide the model with the

ability to represent rare or unseen words more accurately and increase

their translation quality. The next chapter introduces the concept of mor-

phology and presents information on how it has been studied in different

fields of linguistics.
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3.1 Introduction

Morphology is the study of the linguistic structure that is responsible for

constructing words using the atomic semantic and syntactic units in a

language. The morphological phenomena observed in a language is an

important factor that has a direct impact on its lexical sparsity. In or-

der to illustrate this aspect, this chapter introduces the basic concepts of

morphology and how it has been studied in different fields of linguistics.

3.2 Morphemes and Their Types

A morpheme is the smallest atomic unit inside a word that carries mean-

ing. In linguistics, morphemes have been mainly studied using two ap-

proaches, either on their functional roles in terms of the semantic and

syntactic attributions to the word, or how they physically contribute to

the word form.

3.2.1 Formal Morphology

Formal morphology studies the physical structure of words, specifically,

how morphemes can be classified according to the position they are located

in the word, or the ways in which they can be combined to form the word.

The basic unit of a language which represents lexical meaning is called

a lexeme. The lexeme symbolizes the set of forms that a word can take

through combinations with different morphemes, and it is typically ob-

served in the root morpheme. The root has the most crucial role of defin-

ing the meaning and contains one of several categories (i.e. noun, verb,

adjective, or preposition).

The physical form in which the root morpheme is observed is the base.

Other morphemes observed in the word are generally called as affixes,
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which are typically attached to the base to form new words. An affix that

is attached to the front of the base is called a prefix, and an affix that is

attached to the end of the base is called a suffix. English is a language

where both prefixes and suffixes can be observed, whereas in Turkish words

expand only through the attachment of suffixes.

Root Affixed Form

accurate inaccurate

engage engagement

Table 3.1: Examples of affixation in English

Root Suffixed Form

geç ‘(to) pass’ geçmiş ‘the past’

geçmiş ‘the past’ geçmişte ‘in the past’

Table 3.2: Examples of suffixation in Turkish

In very few languages like Arabic, it is also possible to observe infixes,

types of affixes that are attached to the root within a base [75]. These

changes are not accepted in the same nature as internal changes, which

cause substitution of one non-morphemic segment for another due to case

changes (e.g. as in the transformation of ‘sing’ into ‘sang’ ).

Root Suffixed Form

ktb ‘(to) write’ kutib ‘have been written’

ktb ‘(to) write’ aktub ‘(to) be writing’

Table 3.3: Examples of infixation in Arabic

The form of a morpheme can vary phonetically depending on its mor-

phological environment. This phenomenon is defined as alternation in
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linguistics, an occasion when a morpheme exhibits variation in its phono-

logical realization. In many languages it is typical to see morphemes un-

dergoing phonemic changes during the composition of a new word in order

to achieve phonetic harmony, although their functions or meanings do not

change. One such example is allomorphy, the case when a morpheme

can be have multiple surface forms depending, for instance, on the vowels

previously observed in the root or the preceding affixes.

Root Suffixed Form

ev ‘house’ evde ‘at the house’

okul ‘school’ okulda ‘at the school’

Table 3.4: Examples of allomorphemes in Turkish

Another non-functional change in word structure is consonant muta-

tion, where a consonant in a word is adapted to another of its phonological

neighbors following the attachment of a new affix.

Root Affixed Form

seek sought

act action

Table 3.5: Examples of consonant mutation in English

3.2.2 Functional Morphology

From a functional perspective, morphemes can be combined with the root

to produce words mainly in two ways. Derivational morphemes can either

alter the meaning of the root to derive new meanings, or the grammatical

category of the root. After formation, the derived words become indepen-
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dent items in the lexicon.

Affix Meaning Category Example

un- ‘not’ ADJ Ñ ADJ unhappy

re- ‘once more’ V Ñ V rethink

ex- ‘former’ N Ñ N ex-husband

-able ‘ability’ V Ñ A understandable

-al ‘relating to’ V Ñ N refusal

-ful ‘full of’ N Ñ ADJ hopeful

-ize ‘become’ N Ñ V crystalize

-ly ‘manner’ ADJ Ñ ADV accurately

-ity ‘quality’ ADJ Ñ N priority

-en ‘creation of a state’ ADJ Ñ V shorten

Table 3.6: Examples of derivational affixes in English

A word can take multiple derivations, and the derivation process always

occurs following the same rules. Nevertheless, a derivational morpheme

cannot be combined with all roots in a given category. This restriction

may depend on the linguistic origin of the root, or even its phonological

properties. For example, the suffix ‘en’ can be attached to the root ‘mad’

to form ‘madden’ but not to the root ‘angry’ to form ‘angryen’.

Inflectional morphemes, on the other hand, carry information rele-

vant to syntax. They typically ensure that the the word is transformed

into a correct surface form so that the sentence is grammatically accept-

able. Inflection may serve in identifying the place occupied by a word in

a syntactic structure, such as a phrase or sentence, or its agreement with

relevant words in the phrase [52]. Thus, the lexeme remains unaltered in

any inflected form [13]. Inflection can be studied in terms of the different

categories of functional morphemes that can be used for inflecting nouns

or verbs.

Nouns are generally used to describe semantic objects, and they can be
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inflected to specify their inherent properties. One of the obligatory cate-

gories of a noun is the number, which indicates if the noun is singular or

plural.

Root Inflection

ev ‘house’ evler ‘houses’

ağaç ‘tree’ ağaçlar ‘trees’

Table 3.7: Examples of inflection for the number case in Turkish

Nouns can also be inflected according to case, which indicates their

grammatical configuration in the sentence, and can be one of the fol-

lowing: grammatical, oblique, nominative-accusative and ergative-

absolutive.

The grammatical case is used to mark the syntactic function of the noun

in terms of its role as an object or a subject in a verbal phrase, whereas

the oblique case marks its semantic function with verbs indicating motion.

Evi boyadık.

Object Verb

‘the house’ ‘we painted’

Eve geldik.

Adverb Verb

‘to the house’ ‘we came’

Table 3.8: Examples of grammatical and oblique cases in Turkish

The inflection of nouns to comply their cases with the verbs can be

achieved either through the nominative-accusative or the ergative-absolutive

systems. In Turkish, nouns are inflected through the nominative-accusative

system.
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Case Inflection

Nominative ben ‘I’

Accusative beni ‘me’

Genitive benim ‘my’

Dative bana ‘to me’

Ablative benden ‘from me’

Table 3.9: Examples of inflection for noun cases in Turkish

In nominative-accusative languages, the subject of a transitive verb,

i.e. nominative and the object of an intransitive verb, i.e. accusative,

behave similarly. On the other hand, in the ergative-absolutive system,

the case used for the subject of an intransitive verb and the object of a

transitive verb, namely the absolutive and the ergative, are inflected

differently. In some languages, the nouns are categorized by their gender

(or class), often denoted as femininity or masculinity. Words in a phrase

relevant to a noun are then inflected to agree with its class.

Verbs, on the other hand, typically describe an event. The inherent

inflection categories of the verb include morphemes that specify the event

described by the verb. The tense and aspect functions indicate the time

and progress of the action.

Affix Function Example

-s present tense, 3rd person walks

-ed past tense walked

-ing progressive walking

Table 3.10: Examples of inflection on the English verb ‘walk’

The mood describes whether the action is necessary, possible, permis-

sible or desirable.
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Mood Inflection

Condition gidersem ‘if I go’

Necessity gitmeliyim ‘I should go’

Possibility gidebilirim ‘I may go’

Table 3.11: Examples of inflection for verb moods in Turkish

The conjugation of a verb classifies it according to how the inflection

will be formed along with the subset of inflectional morphemes that it can

be used with.

Conjugation Class Infinitive 2PL Present

1 nuotare ‘(to) swim’ nuotate

2 scrivere ‘(to) write’ scrivete

3 partire ‘(to) leave’ partite

Table 3.12: Examples of verbal conjugation for 2nd Person Plural (2PL) and Present Tense

in Italian

Other inflectional morphemes may determine the agreement of the verb

with its object or subject, specifically in terms of person, gender and

number; or its configurational properties, such as reflexivization, which

is a condition when the object and the subject of the verb are the same.

There are also cases where the inflectional morpheme marks the location

of the word in its syntactic phrase. An example to this paradigm is the

subjunctive mood, which is used when the verb appears in a subordinate

clause which is dependent on the main clause in the sentence with a verb

expressing desire or wish [52].

The number of categories that could be observed for each inflectional

morpheme may vary from language to language. For instance, in Ger-

man there are three noun classes, whereas in English and Turkish, there

are none. Verbal classes in English are not inflected, whereas in Italian,
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verbs are inflected for all persons according to the gender of the subject.

Although characteristics and the possible number of derivational or inflec-

tional morphemes greatly vary depending on the language, one can still ob-

serve a variety of generalizations about formal properties of the morphemes

that are universal. For instance, if a word contains both a derivational and

an inflectional affix, the derivational affix would always be located closer

to the root [55], as derivation takes place before the root can be inflected.

The order of the inflectional affixes are also bound to specific rules, which

also depend on the language.

Another way of forming words that is seen in many languages is com-

pounding, where words from different categories are combined to express

new meanings. In most cases, the category of the rightmost morpheme

determines the category of the entire word [75].

Figure 3.1: Forming of the German compound word ‘Handschuch’ (‘glove’) from the

words ‘hand’ (‘hand’) and ‘schuh’ (‘shoe’)

3.3 Morphological Typology

The world languages are generally grouped into two categories in terms of

their morphological structure. In analytic languages, the morphemes are

unbound, i.e. they can form a word on they own without the necessity to

be attached to any base. In this case, there is typically a one-to-one corre-
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spondence between a word and a morpheme. Many Astroasiatic languages

like Thai, Vietnamese, Mandarin Chinese, Lao, Mai Brat and Khmer have

analytic morphology.

Figure 3.2: Example of verbal inflection in Thai

In synthetic languages, a word can contain numerous bound mor-

phemes, which can only be used with other morphemes for inflecting or

deriving new word forms. The bounding of multiple morphemes to form

words can occur in three different ways. Fusional languages are charac-

terized by their tendency to use a single inflectional morpheme to denote

multiple grammatical, syntactic, or semantic features. When combined to-

gether, the phonetic forms of semantically distinct features are merged to

create a single and unique bound form, thus, the morphemes are no longer

observable individually at the surface level. The languages in the Indo-

European family typically show fusional characteristics. A high degree

of fusion can also be observed in the Finno-Ugric, Uralic, and Samoyedic

language families.

In analytic and fusional languages, surface forms of words tend to be

shorter, thus, leading to have low lexical sparsity. In agglutinative lan-

guages, on the other hand, combination of different morphemes occurs in

a concatenating fashion, allowing a direct identification of the morpheme

boundaries in the final word form. As the word forms can grow expo-

nentially with the concatenation of new morphemes, there is generally a
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Figure 3.3: Example of noun inflection in Russian

higher level of lexical sparsity. A vast amount of word languages have

agglutinative morphology, which include the Turkic, Mongolian, Korean,

Japanese, and Dravidian languages in Central and East Asia, Basque in

Europe, Athabascan, Siouan and Quechua languages in North America,

Berber and Bantu languages in Africa.

Figure 3.4: Example of noun and verb inflection in Turkish

In templatic languages, morphological paradigms are formed through

a combination of phonological rules and functional templates. Templatic

morphemes have three components: roots, patterns and vocalisms. The

root is generally a sequence of three to five consonants, and vocalisms rep-

resent some of the vowels. The patterns are strings of letters which identify

how roots and vocalisms are combined, and they are specific for a given

inflectional or derivational transformation. A word is typically formed by

inserting the root and vocalisms in the pattern morpheme. In Arabic, the

majority of inflections are observed as prefixes or suffixes, whereas deriva-

tions are constructed by infixation inside the root [43]. The Semitic lan-
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guages spoken in the Northern and Central Africa, such as Arabic, Hebrew,

Amharic and Tigrinya exhibit templatic morphological typology. Similar

to agglutinative languages, templatic languages also have high lexical spar-

sity.

3.4 Theories of Morphology

In linguistics, the underlying structure in language which results in mor-

phology has been widely studied. The main schools of thought generally

differ in terms of the central unit which determines the organization of the

lexicon. Early studies in structural linguistics suggested that morphology

should be organized in terms of a linear structure which operates on mor-

phemes as the atomic units, where there is a direct correspondence between

each morpheme and its semantic or syntactic representation. However, fol-

lowing work by many scholars in linguistics and cognitive sciences have

shown that morphology, in reality, should have a more complex hierarchi-

cal structure in the organization of which the role of words is crucial.

3.4.1 Word-and-paradigm Morphology

One of the first theories that suggested to put words as the key units

of morphological structure is the word-and-paradigm morphology [47,

82, 68]. First proposed by Hockett in 1954 to formalize the traditional

grammar of Latin, this theory was further extended by Matthews [68] to

explain inflectional phenomena observed in many languages.

In the word-and-paradigm theory, morphological transformations are

organized in terms of paradigms which should be generalized between dif-

ferent inflected versions of words. Mainly driven by the fusional realization

of inflection in many languages where inflection cannot simply be formal-

ized in terms of rules that combine individual morphemes into words or
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generate new words from roots, Matthews suggested that inflections should

occur as transformations on the roots which serve as exponents of morpho-

logical feature sets.

Despite not being widely adopted in linguistics, by proving the impor-

tance of words as central units in morphological structure this approach

has been quite influential in the development of more sophisticated theories

of morphology [52].

3.4.2 Lexical Morphology

Similar to the word-and-paradigm theory, the lexical morphology theory

also suggests that the word, rather than the morpheme, is the central or-

ganizational unit in morphology. The major claim of the supporters of this

theory is that in addition to syntactic paradigms, the morphological struc-

ture of a word is also determined by the way it is pronounced. Therefore,

lexical morphology is often also denoted as the theory of lexical phonology

[4, 95, 78, 55, 70].

According to the theory of lexical morphology, the morphological com-

ponent of grammar has a hierarchical structure with multiple layers, also

called as strata, each of which are responsible for the application of cer-

tain inflectional and derivational paradigms. A lexical morphology model

suggested by Kiparsky [55] can be seen in Figure 3.5.

The input to this model is the root of the word, to which affixes are

attached as it passes from different layers. The stratum 1 is responsible for

the affixation of primary morphemes, which are described as phonologically

non-neutral affixes. Non-neutral affixes are affixes which affect the location

of the stress in the word pronunciation, such as the suffix ‘ic’ in English.

The differentiation between neutral and non-neutral affixes has been

studied in terms of strength of boundaries in English [17]. Affixation of

the base with a neutral suffix is said to create a weak boundary, denoted
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Root Derivation

democrat democratic

phoneme phonemic

strategy strategic

Table 3.13: Examples of derivation with the non-neutral affix ‘ic’ in English

as #, whereas non-neutral affixes create strong boundaries, which are

shown as `.

Figure 3.5: The lexical morphology model

The following layers receive as input the new derived or inflected word

and applies further morphological paradigms associated with the given

stratum. The affixation of neutral affixes takes place in the stratum 2,

whereas, the inflectional affixes necessary for the grammatical role of the



3.4. THEORIES OF MORPHOLOGY 51

word in the sentence are attached in stratum 3. If there are further

phonological transformations of the word that are not related to word

formation, these take place in the post-lexical phonology layer.

Although the hierarchical structure of the lexical morphology model

has been widely accepted, there has not been an agreement on the exact

number of strata that can describe all morphological paradigms. This

leads to an indeterminacy on the nature of morphological rules formulated

by the model and how they are organized. In lexical morphology, the

morphological rules are divided into strata and can access information only

related to the stratum on which they operate. However, the pre-determined

ordering and the limitation of information access between strata can lead

to inability to create some word forms [52]. This problem is related to the

fact that of the division of strata is dependent on the categories of affixes,

and not the lexeme itself. The negligence of the phonetic and categorical

properties of the lexeme in determining the hiearchical structure and the

final phonetic realization of the word is the major reason of the critisms

[37, 98] raised to the lexical morphology model. Nevertheless, the theory

still has a significant place in the study of morphology.

3.4.3 Prosodic Morphology

A prosody describes a phonological element that is a feature of the pro-

nunciation of a word relevant to its morphological construction, whereas

not being an inherent to the individual phonemes that form the word

[52]. In contrast to the theory of lexical morphology, prosodic morphol-

ogy suggests organizing a hierarchical structure of morphology in terms of

prosodies.

The theory of prosodic morphology suggests a phonological model of

morphology based on the generative phonology model known as autoseg-

mental phonology [17, 40]. In autosegmental phonology, phonological
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forms are constructed from combinations of many segments, such as stress,

tone, vowel and consonants, through independent and parallel levels of

representations called as tiers. Each tier carrying information on certain

segments can interact with one another through a hierarchical structure,

which is defined as the skeletal tier (or CV-tier) [40], although a one-

to-one mapping of each element on a tier with the elements of another

is not necessary; the theory suggests, on the contrary, that only relevant

elements of each tier should be connected. The constraints that determine

the mapping of tiers are governed by the mapping principles based on the

Universal Grammar [21, 40].

The hierarchical structure through which the tiers are associated to each

other is, in fact, related to morphology [52]. This has led to the develop-

ment of prosodic morphology [69], which, unlike previous studies that only

attempted to formalize paradigms like affixation and compounding, can

formalize a more complex morphological paradigm: infixation.

As described in Section 3.3, in Semitic languages, words are formed by

modification of the root internally through patterns that indicate inflec-

tional or derivational features. In Arabic, the behaviour of vowels being

inserted into consonantal roots to realize morphological phenomena can be

described with prosodies. In the prosodic morphology model of McCarthy,

inflection of a verb can be modeled using three tiers. The root tier carries

the lexeme of the verb and the consonants associated with it. The skele-

tal tier functions as the template which defines the physical shape of the

word depending on its grammatical and semantic role, whereas the vocalic

melody tier determines the inflectional features, such as the tense or the

mood of the verb [69]. The inflection in this model takes place as an inter-

action between the tiers, as given in Figure 3.6. In this model, inflection

of the verb ‘ktb’ in the past tense and 3rd person masculine (‘he wrote’ ),

is achieved through the vowel ‘a’, as ‘kataba’, whereas the double usage
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of the consonant ‘t’ in the second inflection ‘kattaba’ allows to extend the

meaning to ‘he cause to write’.

Figure 3.6: Inflection of the verb ‘ktb’ (‘(to) write’) in Arabic with the prosodic morphol-

ogy model

Prosodic morphology assumes a hierarchical lexicon which is formed

through conflation of separate tiers carrying different morphemes. From

this perspective, the theory has significantly contributed to morphological

theory in extending previous work with a more complex and comprehensive

model of morphology.

Although the formalization of a universal theory of morphology has

not yet been accomplished, it is clear that morphology is one of the most

complex structures in language which interacts with all different linguistic

layers, including phonology, semantics and syntax.
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3.5 Computational Morphology

Computational morphology aims to automatize the processing of word

structure in written or spoken signals, such as identifying the morphemes

and their semantic or syntactic roles in a given word, splitting the word

to its stem and affixes, or predicting the corresponding surface form of a

word for a given root and target inflection. Initial efforts in computational

morphology considered using resources prepared by human experts such as

dictionaries or lexicons and a list of rules that define the ways of perform-

ing inflection or derivation. However, unavailability of this type of data in

every language and considerations on the required time and resources to be

devoted in human annotation motivated the development of models that

would be more independent, such as methods deploying supervised machine

learning methods which can generalize morphological rules to analyze un-

seen words, or even unsupervised machine learning methods that can be

used to directly learn morphology from natural language corpora. In spite

of increasing the computationally complexity, these methods decrease the

dependency to human experts and find applications in natural language

processing tasks, such as machine translation [10, 22], speech recognition

[2], sentiment analysis [1] and parsing [92]. This section presents the lit-

erature on computational methods for learning morphology with a general

focus on the types of adopted learning approaches.

3.5.1 Supervised Morphology Learning

Supervised morphology learning is based on the hypothesis that words

appear in limited variations of context and form, which can be learned

and generalized into morphological rules that apply for future data. The

methods which deploy supervised learning typically make use of a lexicon

of root words and some examples of morphological paradigms to construct
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Figure 3.7: Two-level morphology with finite-state transducer

a statistical morphology model. One of the earliest studies in building

non-deterministic algorithms for learning morphology was conducted by

Garvin, who showed that inflectional patterns can be discovered using a

list of root words and examples of their different inflected forms [35]. The

sequential nature of these transformation patterns were first suggested by

Golding and Thompson, who used a sequential algorithm to induce rules

of inflection in English [38].

A more extensive sequential morphology induction method was devel-

oped by Theron and Cloete, which uses a hierarchical morphology model,

called as the two-level morphology model [58] consisting of a lexicon

which contains the list of morphemes in their basic forms (i.e. bases and

affixes) and a set of inflectional transformation rules defined by finite-

state automata [103]. Most morphological phenomena can be described

with finite-state techniques, especially when morphological processes are

assumed to occur in a concatenative fashion. The two components work

together to generate and recognize new word forms in the form of two com-

posed transducers. In this model, inflection is formulated as insertions of

affixes to a given base, where the base and affixes of a word are discovered

through an exhaustive search in the lexicon by choosing the most frequent

segments that could be combined to obtain the word form and would result
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in the minimum amount of editions. Despite its almost naive simplicity,

this model can efficiently find the roots of many previously unseen words.

Finite-state morphological analyzers are high-precision tools useful for

many natural language processing applications, although due to the re-

quirement of preparing hand-crafted features and large lexicons that should

contain most words in the vocabulary, they do not provide ideal solutions

in terms of efficiency and usability in different languages. In order to

integrate more autonomy to the rule induction procedure, a few studies

suggesting using probabilistic sequential learning models, such as semi-

Markov conditional random fields [25]. Semi-Markov Conditional random

fields [61, 88] are discriminative un-directed graphical models based on

the Markovian assumption, which model the formation of sequential struc-

tures by transitions between probabilistic states, where the probability of

observing a state is dependent on the previous states. This analogy can

be used for morphology learning by modeling inflectional transformations

as transitions between states which represent different segments in a word.

Current state-of-the-art models in morphological segmentation typically

deploy more advanced learning methods, such as long short term memory

networks [109] or the sequence-to-sequence learning model [33].

Compared to finite-state transducers, probabilistic sequential inference

models generally have higher computational complexity, however, they al-

low better generalization capability. Nevertheless, for many languages,

there are often not any annotated tools or labeled data available to train

algorithms for morphological analysis and segmentation. The next section

presents studies aimed to fully automatize morphology learning by using

methods that do not require any supervision.
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3.5.2 Unsupervised Morphology Learning

Methods that aim to learn the morphology of a language in an unsuper-

vised fashion generally consider the phonological form of a word and predict

its segments by relying on the frequency of each segment and some bor-

der heuristics. One of the earliest methods for unsupervised morphology

learning was developed by Harris [45], which computes the frequencies of

letters in a given corpus according to the varieties of their successors or

predecessors, and uses these statistics to predict affixes or paradigm candi-

dates to generate new words from characters. The most frequent character

sequences are given a direct interpretation as candidates for segmentation.

In his method, Harris explicitly targets the variety in letter successor types

independent from their individual frequencies.

Based on the idea that the frequency distributions of characters might

carry a better notion of the morpheme boundaries, following studies sug-

gested performing segmentation based on the entropy of the character to-

ken distribution [44] or by computing the maximally-skewed characters

[36] to predict the presence or absence of a morpheme boundary at a given

position in the word. The calculated statistics can then be used for seg-

mentation by comparing the frequencies of segments with pre-determined

cut-off thresholds or ranges [45, 44]. As the over-representation values

that determine the thresholds, many studies used the more-frequent-

than-its-length heuristics, which assumes that a character sequence will

have a higher expectancy as its length decreases.

Using threshold heuristics are simple solutions to unsupervised mor-

phology learning; although they lack any theoretical background for gen-

eralization of morphology across the language. Moreover, they are not

completely unsupervised as their settings require human expertise. These

problems have led to development of more sophisticated models inspired
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by compression techniques. One very successful approach in this direction

include the minimum description length based morphological analysis,

which aims to generate a description of data which minimizes its length

according to a specific coding scheme [31]. The algorithm iteratively com-

putes a set of hypotheses H, each of which is used to encode data D

LpDq “ argmin
HεH

pLpHq ` LpD|Hqq (3.1)

where the hypothesis minimizing the data length is chosen as the best

description of data. The main idea behind minimum description length

based morphology learning is that morphology is essentially a structure

that allows expressing new semantic and syntactic information by using

different combinations of smaller and more compact units, each of which

corresponds to a distinct semantic or syntactic feature, and morphologi-

cal regularities or patterns could be discovered by searching for a set of

segments which results in the most compact description of a given corpus.

The minimum description length principle has been widely adopted in

unsupervised morphology learning algorithms, which generally work by

first identifying the set of stems and affixes, and then running a greedy

search among the lexicon and the list of word formation rules to find the

shortest descriptions of the words in a corpus [89, 39, 72, 26]. Nevertheless,

one problem related to these approaches is that the semantic and syntactic

properties of morphemes are completely disregarded during segmentation.

A better alternative is to use a stochastic sequential learning algorithm

which models morphological segmentation considering properties of words

other than their frequencies. The Morfessor Categories-MAP [27] model

and its extension for semi-supervised learning, FlatCat [42] are algorithms

which are based on this approach.

Similar to the two-level morphology model of Koskenniemi [58], the
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category-based morphology model of Morfessor consists of mainly two

parts: a lexicon that contains the list of morphemes and a grammar

which defines the set of rules that can be used to combine different mor-

phemes together to generate new words. The method is optimized using

the Maximum A-Posteriori principle, the aim of which is to avoid over-

fitting by finding a balance between model accuracy and complexity [27].

The maximum posterior conditional probability of the model M given a

training data D is formulated as follows:

arg maxM P pM |Dq “ arg maxM P pD|MqP pMq (3.2)

where the two factors respectively represent the likelihood of the train-

ing data and the prior probability of the model. The former is estimated

by a Hidden Markov Model which considers the transitions between dif-

ferent morpheme categories (e.g. prefix-to-stem or stem-to-suffix) when

each word in the corpus is being segmented. The latter is modeled by

the lexicon, which represents a list of morphemes discovered in the corpus

along with their distinctive properties, and a grammar, the set of rules to

combine the morphemes.

P pMq “ P plexicon, grammarq (3.3)

The grammar has a deterministic structure which defines the set of

categories to which the morphemes can belong: namely a prefix, suffix,

stem or a non-morpheme. The probability of the grammar P pgrammarq

is taken as equal to 1.

P pMq « P plexiconq (3.4)
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The prior probability of a lexicon of m morphemes µ1,...,µM can be

formulated in the following way.

P plexiconq “m!P psizeplexiconq “Mq (3.5)

P ppropertiespµ1q, ..., propertiespµmqq (3.6)

The term P psizeplexiconq “ Mq is discarded in the original cost func-

tion to allow the lexicon to converge to a size that is optimal for the model.

The remaining attributes of morphs µi are modeled in the following way.

P plexiconq « m!
m
ź

i

P pusagepµiqq P pformpµiqq (3.7)

« m!
m
ź

i

pP pµiq P plengthq (3.8)

P pperplexityleftq P pperplexityrightqq (3.9)

P pformpµiqq (3.10)

The usage of a morpheme is related to its meaning and is modeled with

its frequency, length, and the left and rightwards perplexities. The form

of a morpheme is the set of physical properties that distinguish it from the

others in the lexicon.

The frequency of a morpheme, denoted as P pµiq, aids in understanding

if it is a content or a functional word. The general assumption in choosing

this function is based on the fact that functional words like prepositions

would be observed more frequently in a given corpus compared to content

words. It can be modeled using the combinatorics of choosing m possible

distinct morphemes from a corpus with n tokens, which is equal to the sum

of frequencies of the m word types in the lexicon.
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Figure 3.8: Hidden Markov Model of Morfessor Categories-MAP

P pµiq “
1

C
pn´1q
pm´1q

“
pm´ 1q!pn´mq!

pn´ 1q!
(3.11)

The length of a morpheme carries a cue on its likeliness to be a stem,

whereas perplexity serves as a measure for predicting the immediate con-

text and aids in estimating the probability of a morpheme being an affix.

For instance, if the leftward perplexity of a morpheme is high, one might

assume that the morpheme is a suffix, as it would be observed following

various types of contexts. The perplexities are typically implemented as

sigmoid functions.

The composition of a word is modeled with a Hidden Markov Model [8],

where each hidden state represents a morphological category. The emission

probability, the probability of a given morph in a category that is needed

to segment the corpus, is calculated with the Bayes’ formula:

P pµi|Ciq “
P pCi|µiqP pµiq

ř

µi1
P pCi|µi1qP pµi1q

(3.12)

where

P pCi|µiq “ P pCi|usagepµiqq (3.13)



62 CHAPTER 3. MORPHOLOGY

determines the assignment of a given morpheme to a certain category.

Given the state transition and emission probabilities, the corpus prob-

ability is computed as:

P pD|Mq “
ź

j

P pCj1|Cj0q
ź

k

P pµjk|CjkqP pCjpk`1q|Cjkq (3.14)

The transition probabilities between categories, as in Figure 3.8, rep-

resent the gradual formation of a word including the transition from the

word beginning to the first morph until the transition from the last morph

to the word boundary (#).

During training, the algorithm iteratively searches for the optimal seg-

mentation of the corpus which minimizes the negative log-likelihood of the

a-posteriori probability.

LpD,Mq “ ´ logpD|Mq ´ logP pMq (3.15)

Initially developed for Finnish, the Morfessor Categories-MAP model

achieved state-of-the-art performance in unsupervised morphological seg-

mentation of many languages particularly exhibiting agglutinative mor-

phology.
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3.6 Conclusion

Morphology has been a well-studied subject in computational linguistics,

which led to the development of many theories and computational meth-

ods to model the structural nature of morphological transformations in

language. Some of these studies, especially the lexical morphology theory

and morphology learning methods, such as the finite-state transducer based

morphological analyzers and the Morfessor Categories-MAP model for un-

supervised morphological segmentation, have been highly influential in the

development of the methods included in this dissertation. Before start-

ing to describe the theoretical work, in the next chapter, we present the

details of the experimental methodology used to confirm certain hypothe-

ses and evaluate different approaches to open-vocabulary neural machine

translation.
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4.1 Introduction

In order to evaluate different approaches proposed to solve the vocabulary

limitation problem in neural machine translation we construct a common

benchmark consisting of languages with different morphological character-

istics, and consequently, varying levels of lexical sparsity. This chapter

presents the details of the evaluation methods, including the languages

and the data sets used in the evaluation benchmark as well as the evalu-

ation metrics used to measure the accuracy of the outputs of each neural

machine translation model.

4.2 Languages

Most languages do not belong exclusively to one category of morphological

typology. In fact, there are many languages where different morphological

phenomena are observed together. Based on how much such phenomena

are typical in a language, it is expected to observe increased sparseness in

the lexical surface forms. Consequently, the morphological characteristics

of a language would be directly influential on the statistical distribution

obtained from a textual corpus in the given language.

In order to better enlighten this aspect, the evaluation of neural machine

translation models in this study is performed on a common benchmark in-

volving the translation of six languages. Each of the chosen languages

in the benchmark represents a different language family and falls into a

distinct combination of morphological typology. The selected languages

consist of English and German from the Germanic, Italian from the Italic,

Czech from the Slavic, Turkish from the Altaic and Arabic from the Semitic

language families.
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Figure 4.1: Language families included in the evaluation. Yellow: Italic, Green: Germanic,

Orange: Slavic, Pink: Turkic, Gray: Semitic.

English is a West Germanic language widely spoken in the United King-

dom, Ireland, United States, Canada, Australia and New Zealand by an

estimated 400 million people. It has a rather low-complexity morphology

that exhibits mostly fusional and at times agglutinative transformations.

We choose English as the pivot language in our machine translation exper-

iments since the vocabulary is often small and do not necessarily imply a

problem of vocabulary reduction, whereas being the most studied language

in computational linguistics it stands as a reference point in comparing ex-

perimental findings.

Arabic is a Central Semitic language that is a collection of many di-

alects and it is spoken by around 290 million people in the world. The

most widely used dialect is Modern Standard Arabic. It has a unique writ-
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ing system where text is written from right to left in a cursive style. In

Arabic morphology, every word is formed by a discontinuous combinations

of templatic morphemes.

Czech is a Slavic language spoken by around 10 million people in the

Czech Republic. It is a nominative-accusative language and, like other

Slavic languages, it is rich in conjugation and nominal declension [48].

Depending on the verb, conjugation can occur as a prefix or suffix whereas

the declension generally occurs through suffixes. The inflection is highly

fusional, although agglutinating morphemes can also be observed.

German is a language of the Germanic family, and is spoken by around

130 million people in central Europe. German is the language with the

most inflectional morphology in its family. There are three genders and

four cases for nouns, and verbs are conjugated for person and number.

Most inflections take place through highly fusional suffixation. It is also

possible to frequently observe compounding in German.

Italian belongs to the Italic language family, which includes all Ro-

mance languages. It originated from the area corresponding to modern

day Italy, and today it is spoken by about 85 million people. Italian, with

its highly fusional morphology [75], presents both derivational and inflec-

tional transformations, although its morphological complexity is quite low.

Verbs are in general conjugated for person, number, gender and cases using

a single suffix.

Turkish is a Turkic language and its major morphological characteris-

tics are vowel harmony and extensive agglutination that allows a complete

transparency in morphological composition. Inflections and derivations oc-

cur only by suffixation, where compounding is also rarely observed. The

words always start with a root and can extend from left to right indef-

initely. There are no articles and noun genders, wheres a high number

of cases. In Turkish, there are about 30,000 root words and about 150
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Language Family Morphological Formal Types of

Complexity Inflection

English Germanic Low Fusional

Italian Italic Low Fusional

German Germanic High Fusional

Czech Slavic High Mostly Fusional, Partially Agglutinative

Turkish Turkic High Agglutinative

Arabic Semitic High Concatenative, Templatic

Table 4.1: Languages, families and morphological typology

distinct suffixes, which can experience agglutinating concatenations and

alternations, allowing the surface forms to grow exponentially [74].

4.3 Data

The training of neural machine translation models are carried out using two

main approaches. The first approach constructs a common benchmark for

all the chosen languages in the same domain and under low-resource set-

tings. The benchmark includes TED Talks corpora [14], which consists of

collections of speech transcriptions in generic domain. For validating and

testing the accuracy of each model the official data sets of the IWSLT1

evaluation campaign from 2010 to 2015 are used. The machine translation

task is modeled by pairing each chosen language in Section 4.2 with English

either as source or target, which aids in having a variety of languages with

different morphological typology within the same benchmark. The details

of the statistical characteristics of each training set used in the experiments

and the chosen development and testing sets are given in Tables 4.2 and

4.4. In the second approach, the neural machine translation models are

1The International Workshop on Spoken Language Translation with shared tasks on machine trans-

lation organized between 2003-2017.
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evaluated in a more challenging and practical scenario where the training

data is constructed as a combination of resources from multiple domains.

The data sets in the training corpora include TED Talks and additional

resources from domains such as news, literature, movie subtitles and techni-

cal documents. The additional resources include EU Bookshop [96], Global

Voices, Gnome, Tatoeba, Ubuntu [105], KDE4 [104], Open Subtitles [64]

and SETIMES [106] corpora. Depending on the experiments, this evalua-

tion is performed for either Italian or Turkish, which represent the least and

most sparse languages in the benchmark. In order to reduce the computa-

tional cost of the experiments, the size of the resulting collected resources

is reduced by data selection [29], while the vocabulary sizes on the English

side are kept comparable. The statistical properties of the multi-domain

training corpora are given in Table 4.3.

Language # sentences # tokens # types

Arabic-English 238K 3,9M (Arabic) 220K (Arabic)

- 4,9M (English) - 120K (English)

Czech-English 118K 2M (Czech) 118K(Czech)

- 2,3M (English) - 50K (English)

German-English 212K 4M (German) 144K(German)

- 4,3M(English) - 69K(English)

Italian-English 185K 3,5M (Italian) 95K (Italian)

- 3,8M (English) - 63K(English)

Turkish-English 136K 2,7M (Turkish) 171K (Turkish)

- 2M (English) - 53K (English)

Table 4.2: Training sets from the TED Talks corpora (M : Million, K : Thousand.)
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Language # sentences # tokens # types

Italian-English 785K 21M (Italian) 152K (Italian)

- 22M (English) - 106K (English)

Turkish-English 434K 6M (Turkish) 373K (Turkish)

- 8M (English) - 135K (English)

Table 4.3: Multi-domain training set (M : Million, K : Thousand.)

In addition to machine translation, some of the proposed approaches

are also evaluated in the task of morphological segmentation. In this case,

different segmentation models are evaluated on the official data sets of

MorphoChallenge 20102 [60].

All data sets are tokenized and true-cased using the Moses scripts3 [57],

except for Arabic, which is normalized using the Arabic normalization tool

of QCRI4 [86].

4.4 Evaluation Metrics

In this dissertation, different approaches for performing open-vocabulary

neural machine translation are evaluated in the tasks of machine transla-

tion, as well as morphological segmentation. This allows to enlighten the

capacity of each neural machine translation model to learn morphology or

generalize to unseen or rare word forms. The evaluation metrics used in

each task are presented in the next sections.

4.4.1 Morphological Segmentation

Morphological segmentation is essentially a classification task, where the

output is drawn from a predefined set of morphological features or mor-

2Shared Task on Unsupervised Morphological Analysis
3www.statmt.org/moses
4alt.qcri.org/tools/arabic-normalizer
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Language Data sets # sentences # tokens

Arabic-English Development dev2010, 5,835 89K (Arabic)

test2010, - 114K (English)

test2011,

test2012

Testing test2013, 4,121 66K (Arabic)

test2014 - 83K (English)

Czech-English Development dev2010, 3,112 52K (Czech)

test2010, - 61K (English)

test2011

Testing test2012, 2,836 47K (Czech)

test2013 - 55K (English)

German-English Development dev2010, 5,777 108K (German)

test2010, - 113K (English)

test2011,

test2012

Testing test2013, 3,543 67K (German)

test2014, - 70K (English)

test2015

Italian-English Development dev2010, 3,517 74K (Italian)

test2010, - 79K (English)

Testing test2011, 3,230 55K (Italian)

test2012 - 60K (English)

Turkish-English Development dev2010, 2,433 34K (Turkish)

test2010 - 47K (English)

Testing test2011, 2,720 39K (Turkish)

test2012 - 53K (English)

Table 4.4: Development and testing sets (M : Million, K : Thousand.)

phemes. In statistical analysis of classification, a typical measure of accu-

racy is the balanced F score (also called as the F1 score).

In binary classification, the F1 score is calculated as the harmonic mean

of precision and recall as follows:
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F1 “

´

1
recall `

1
precision

2

¯´1

(4.1)

where precision and recall measure the percentage of the outputs to

a given class that are correctly classified, and the percentage of overall

correctly classified output, respectively.

precision “
true positive

true positive` false positive
(4.2)

recall “
true positive

true positive` false negative
(4.3)

4.4.2 Machine Translation

Machine translation models are typically evaluated using automatic eval-

uation metrics. A commonly preferred method that also shows high corre-

lation with human judgments is BLEU [76]. Given a machine translated

text, i.e. hypothesis and the correct translation i.e. reference, the BLEU

score is a measure on the percentage of matches in words between the

output and reference sentences. The n-gram precision score in BLEU is

computed by summing the n-gram matches for each hypothesis in the test

data with the reference sentences

log pn “

ř

HεD

ř

ngramεH Countmatchedpngramq
ř

HεD

ř

ngramεH Countpngramq
(4.4)

The overall precision is computed by taking the geometric mean of the

n-gram precisions for each n-gram size, typically with the maximum size

of 4 or 5.
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BLEU “ BP expp
1

N

N
ÿ

n“1

pnq (4.5)

BP is the brevity penalty which aids in penalizing the tendency to give

higher precision to shorter translations. It is calculated as

BP “

$

&

%

1, if c ą r

exp1´r{c, if c ď r
(4.6)

where c and r are the lengths of the hypothesis and the reference, re-

spectively.

Solely relying on matching in the output words is not sufficient to eval-

uate the models, especially in the case of translating into morphologically-

rich languages, where the BLEU metric could give low precision to an

output which contains inflected or derived word forms which might be se-

mantically and grammatically acceptable. Another evaluation method one

can use in such a case is CHRF [80], which computes the matches in the

hypothesis and reference in terms of n-grams of characters, rather than

words. The general formula for CHRF score is

CHRFβ “ p1` β
2
q

CHRPCHRR

β2CHRP ` CHRR
(4.7)

where CHRP and CHRR stand for character n-gram precision and recall

arithmetically averaged over all n-grams and β is a weight parameter which

can be used to give more favor to recall than to precision. Both precision

and recall have equal importance when β “ 1.

In addition to the translation accuracy, we will also test if an observed

performance improvement is real or due to statistical fluctuations. We

will evaluate the statistical significance of a score improvement with the

Bootstrap Hypothesis Testing, as implemented in the MultEval tool [20].
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4.5 Conclusion

We have presented the experimental setup which will be used to evaluate

different approaches to open-vocabulary neural machine translation in this

dissertation. Neural machine translation systems will be evaluated on the

machine translation task using automatic evaluation metrics, whereas we

also evaluate different approaches to subword segmentation on the task of

morphological segmentation. All experiments are conducted in an evalua-

tion benchmark consisting of six languages, each from a different language

family and a distinct morphological typology. The next chapter starts our

study by presenting a novel vocabulary reduction method based on unsu-

pervised morphology learning.
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5.1 Introduction

We start our research by investigating the primary question of whether

morphological information is relevant or crucial in affecting the quality of

distributed representations of translation units obtained by subword seg-

mentation in neural machine translation. For this purpose, this chapter

presents a novel statistical subword segmentation algorithm which con-

structs an optimal translation vocabulary while considering the morpho-

logical properties of individual subword units during splitting. Our method

is an extension of the Morfessor FlatCat algorithm, where prediction of

the morpheme lexicon is performed by accounting for the target lexicon

size, making it useful for vocabulary reduction for neural machine transla-

tion. We first evaluate the accuracy of our method in the task of morpho-

logical segmentation against the original algorithm, and compare it with

byte-pair encoding, to confirm that indeed the computed set of subword

units are more coherent with morphological boundaries. We later com-

pare the performance of our method against existing subword segmenta-

tion methods, including byte-pair encoding and the approach of vocabulary

reduction with morphological analysis, in machine translation of different

morphologically-rich languages using the evaluation benchmark described

in Chapter 4, and perform an analysis to study the factors affecting the

output quality, such as the morphological typology of the translated lan-

guages, the rate of vocabulary reduction and the size of training data used

to train the models.

5.2 The Method

Linguistically-motivated vocabulary reduction is a subword segmentation

method for neural machine translation based on unsupervised morphology
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learning, which models the optimal way of segmenting words into subword

units considering both their individual morphological properties and the

required target vocabulary size. Similar to previous approaches to vocab-

ulary reduction, the method can be used in a pre-processing step prior to

training the neural machine translation model.

The model is an extension of Morfessor FlatCat [42], which uses the

category-based Hidden Markov Model and maximum a-posteriori opti-

mization as described in Section 3.5.2, and a flat lexicon structure. The

category-based model is essential for a linguistically-motivated segmenta-

tion as words would only be split considering the possible categories of

their subwords. In contrast to the Categories-MAP model, a distinct fea-

ture of this model is that it uses a flat lexicon structure. In a flat lexicon,

the morpheme forms are encoded as strings; therefore longer morphemes

that are frequent in the corpus tend to be kept unsplit due the high cost of

encoding them by separate morphemes. On the contrary, the hierarchical

lexicon as used in the Categories-MAP model allows to eliminate repeti-

tions among the lexicon by using existing morphemes to describe different

words. However, training of an hierarchical lexicon is not trivial especially

in terms of the maximum-likelihood parameters. The frequency count of

a morpheme would include its referral within the corpus as well as within

the lexicon, making the two model parts, which have opposing minima,

difficult to optimize together at a given rate [42]. Some analysis on the

lexicon types also show that using the hierarchical lexicon, one may end

up with rather conservative splitting compared to the maximum-likelihood

methods [28]. Therefore, the choice of using the FlatCat model aids us in

modifying the derivation of the optimization criteria.

Using the a-posteriori probability given in Equation 3.2, one can train a

segmentation model considering both the model complexity and the likeli-

hood of the corpus, without any control on the size of the output lexicon.
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In order to use the model to achieve controlled vocabulary reduction for

neural machine translation, we insert a constraint on the desired lexicon

size into the cost function, by applying a regularization weight over the

lexicon cost and giving more favor in a reduction of the model complexity

during optimization. The cost function is then estimated by the general

formula:

LpD,Mq “ ´ logP pD|Mq ´ α logP pMq (5.1)

where α ą 1 would force the optimization algorithm to find a smaller

lexicon size and a finer segmentation. Considering the tendency of the flat

lexicon models to keep the frequent words unsegmented in the corpus [42],

in order to achieve a more accurate segmentation model we disregard the

frequency distribution P pµiq from the weighted part of the cost function.

In fact, the value of the term is generally too small to affect the model

complexity, but has an important role in determining the characteristics of

the discovered morphemes.

We assume a linear relationship between the model likelihood and the

output lexicon size, and enduce a scaling bias on the likelihood parameter

to allow control over the output lexicon size by setting the regularization

weight α as:

α “
mi

mt
(5.2)

where mi is the initial vocabulary size of the corpus, measured by the

number of distinct word types, and mt is the number of morpheme types

that would exist in the corpus after segmentation, i.e. the desired vocab-

ulary size. The modified model has a new input parameter called as the

output lexicon size, which sets the amount of regularization that should

reduce the vocabulary to the desired size.
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5.3 Evaluation

In order to evaluate different subword segmentation methods and verify

our hypothesis that a subword segmentation which preserves morpheme

boundaries of words can provide better performance in neural machine

translation of morphologically-rich languages, we design a comprehensive

analysis which includes an intrinsic and an extrinsic evaluation. Our in-

trinsic evaluation task involves morphological segmentation which com-

pares the performance of different segmentation approaches in predicting

subwords that are coherent with the morpheme boundaries inside a word.

On the other hand, the extrinsic evaluation consists of evaluating each ap-

proach by means of the translation quality they obtain in neural machine

translation of different language pairs and directions.

5.3.1 Morphological Segmentation

We evaluate the performance of statistical subword segmentation meth-

ods, including byte-pair encoding, linguistically-motivated vocabulary re-

duction as well as the original Morfessor FlatCat algorithm, in the task of

morphological segmentation in Turkish by training segmentation models

on the Turkish sides of the parallel TED Talks corpora and measuring the

segmentation accuracy on the MorphoChallenge test sets.

As given in Table 5.1, linguistically-motivated vocabulary reduction

achieves the best accuracy, also outperforming the original Morfessor Flat-

Cat algorithm. This is probably related to the more greedy optimization

preferred in the extended algorithm, which in this case results in more

accurate segmentations. Lacking any linguistic notion in its statistical in-

ference approach, byte-pair encoding obtains the lowest accuracy.
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Method Precision (%) Recall (%) F1 (%)

BPE 66.17 40.51 50.26

FlatCat 77.19 40.46 53.09

LMVR 72.05 49.54 58.71

Table 5.1: Intrinsic Evaluation of byte-pair encoding (BPE), Morfessor FlatCat and

linguistically-motivated vocabulary reduction (LMVR)

5.3.2 The Advantage of Preserving Morphological Information

We evaluate the effect of preserving morphological information during sub-

word segmentation on the translation accuracy, by comparing the transla-

tion accuracy obtained by neural machine translation models using word

or different subword-based vocabularies constructed by supervised mor-

phological analyzers, byte-pair encoding and linguistically-motivated vo-

cabulary reduction. This analysis is only performed for Turkish, using

the morphological analyzer of Oflazer [73]. The morphological analyzer

in this experiment serves as an indicator of the vocabulary reduction ap-

proach that maintains the full morphological description and semantics of

the original words, nevertheless, it can only reduce the vocabulary to an

extent. Hence, to eliminate the effect of the out-of-vocabulary words in the

test set to the output accuracy, we set-up a controlled experiment where

we segment the training set using the morphological analyzer and sample a

portion of it, corresponding to approximately half of its initial size, so that

the total vocabulary includes only 40,000 subword units. We sample also

the development and test sets in the same fashion so there are no out-of-

vocabulary words. In order to achieve a fair comparison between different

vocabulary reduction approaches, we train the splitting rules of both un-

supervised subword segmentation algorithms separately on the source and

target sides of the parallel data.

The neural machine translation models that are used in our evaluation



5.3. EVALUATION 83

are based on the Nematus toolkit [93]. They have a hidden layer and

embedding dimension of 1024, a mini-batch size of 100 and a learning

rate of 0.01. The model vocabulary size is 40,000 (for both source &

target languages) and the subword segmentation models are trained with

a number of merge rules of equal size to the model dictionary. We use the

default hyper-parameters for training the Morfessor FlatCat model. The

models are trained using the Adagrad optimizer with a dropout rate of 0.1

on the input layer and and 0.2 on the embedding and hidden layers. The

training data is shuffled at each epoch. The models are trained until the

perplexity does not decrease for five epochs and we choose the model with

lowest perplexity on the development set for translating the test set. The

translation accuracy of each neural machine translation model is measured

using the BLEU and CHRF3 scores and significance tests are computed

with MultEval, the descriptions of which can be seen in Section 4.4.2.

Table 5.2 shows the performance of different segmentation methods in

the first experiment. In this setting, linguistically-motivated vocabulary re-

duction achieves the best performance on average, proving our hypothesis

that a subword segmentation method which preserves morpheme bound-

aries leads to more accurate translations. Its performance is higher than

byte-pair encoding by 2.2 BLEU and 1.6 CHRF3 points. Another impor-

tant result of this experiment is that despite not achieving a 100 % accuracy

in morphological segmentation, linguistically-motivated vocabulary reduc-

tion can still achieve comparable performance to subword segmentation

based on morphological analysis. The slightly lower performance of the

morphological analyzer might also be due to its lack of coverage on some

of the words in the training corpus.

In order to better illustrate the properties of the subword units gener-

ated by each approach, we present example translations of two words from

the test set. The two words have different roots, the first one is ‘ağ’ (‘(fish-
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1. TED corpus, no-OOV case

Method BLEU CHRF3

No Segmentation 17.77 0.3894

BPE 19.52 0.4233

Supervised 21.61Ĳ 0.4401

LMVR 21.71Ĳ 0.4390

Input (Reference) Method Segmentation Output

ağlarını BPE ağ@@ larını the cry

(the nets) LMVR ağ +larını the nets

Supervised ağ +Noun + A3pl networks

ağlamayacak BPE ağ@@ lamayacak will not survive

(would not be crying) LMVR ağlama +yacak will not cry

Supervised ağla +Neg +Fut +A3sg will not cry

Table 5.2: Results of the 1st experiment in Turkish-to-English translation, no-OOV (out-

of-vocabulary) case. Top: Output accuracies, where Ĳindicates statistically significant

improvement over the BPE baseline (p´ value ă 0.05). Bottom: Translation examples.

ing) net’ ), and the second one is ‘ağla’ (‘(to) cry’ ). Byte-pair encoding

segments both words to the same root ‘ağ’, a character sequence frequently

observed in root words in Turkish. As can be seen in the output of the

neural machine translation model, this leads to semantic ambiguity in the

embedding of the subword unit, and consequently, inaccurate translations

of both words. On the other hand, linguistically-motivated vocabulary re-

duction can generate relevant translations to both words, which are similar

to the output of the model deploying the supervised method for vocabulary

reduction.

5.3.3 The Effect of Vocabulary Reduction Rate

In a second experiment, we evaluate the methods at different rates of vo-

cabulary reduction using data containing out-of-vocabulary words in the

Turkish-to-English translation direction. In Experiment 2.a, we use the

TED Talks corpus and reduce the vocabulary at a rate of 4.5 (i.e. from
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140K to 40K words), where linguistically-motivated vocabulary reduction

obtains an improvement of 2.3 BLEU points over byte-pair encoding. In

the more challenging case, Experiment 2.b, we use half of the multi-domain

training set and decrease the source vocabulary limit to 30,000, requiring a

vocabulary reduction rate of almost two times of the case in 2.a (i.e. from

270K to 30K words). As given in Table 5.3, linguistically-motivated vocab-

ulary reduction still outperforms byte-pair encoding by 1.0 BLEU point.

The evident tendency of the improvements to decrease as the vocabulary

reduction rate is increased suggests the importance of the vocabulary size

in determining the advantage of using linguistically-motivated vocabulary

reduction. At settings where the vocabulary size is too small to efficiently

store a set of morphemes, the algorithm starts to oversegment morphemes

in order to fit into the vocabulary, starting to create morphological errors

and obtain closer performance to byte-pair encoding.

2.a TED corpus, voc=40K 2.b Large corpus, voc=30K

Method BLEU CHRF3 BLEU CHRF3

BPE 20.45 42.65 24.42 0.4705

LMVR 22.76Ĳ 45.36 25.42Ĳ 0.4771

Table 5.3: Effects of vocabulary reduction rate. Ĳindicates statistically significant im-

provement over the BPE baseline (p´ value ă 0.05).

5.3.4 The Effect of Morphological Typology

In the third set of experiments, we evaluate the performance of different

methods on the common benchmark described in Section 4.3, in the ma-

chine translation task of the six languages both in the source and target

sides of the neural machine translation model. We train the models using

the same settings as in the first experiment, while we use a model dictio-

nary of 30,000 units. The Morfessor FlatCat hyper-parameters are kept
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as default except for the perplexity threshold, for which we keep the de-

fault value of 10 for six languages, while for Arabic we use the value 70 as

suggested by Al-Mannai et al. [3].

The findings of the third experiment, presented in Tables 5.4 and 5.5,

illustrate how the translation accuracy of neural machine translation mod-

els using different vocabulary reduction methods vary among different lan-

guages. A first glance at the findings proves the advantage of using subword

segmentation in all languages. This is mainly due to the higher reduction

of sparsity that is achieved with respect to the approach of filtering out

infrequent words (Word method). When rare words that do not fit into

the limited vocabulary are segmented into sequences of subwords, result-

ing with a new vocabulary of frequent subword units, as each subword

is observed in more types of context than the word in which it occurs.

The lower data sparsity obtained by subword segmentation versus Word

is evident from Figure 5.1a, which plots the corresponding token-to-type

ratios of each training corpus. The significant difference in output quality

observed with two different segmentation approaches tells, however, that

their impact highly depends on the nature of the splitting process and the

characteristics of the language on which they are applied.

An interesting outcome of our experiments is that the improvements

obtained with linguistically-motivated vocabulary reduction increases pro-

portionally to the complexity of morphology. Arabic, Czech and Turkish all

have a high level of lexical sparsity. As can be seen in Figures 5.1a and 5.1b,

linguistically-motivated vocabulary reduction can reduce the lexical spar-

sity, i.e. increase the token-to-type ratio, in the corpus at higher degrees by

applying a more homogeneous segmentation among the corpus, indicated

in the levels of increase in the average sentence lengths. Sentence lengths

generally remain close to their original lengths with byte-pair encoding.

One can also see that the improvements in each language are related to
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the formal characteristics of subwords. All three languages have inflections

or derivations that are formed in a rather concatenating fashion, compared

to German and Italian, where the affixes cannot be observed independently

on the surface level. This explains the success of linguistically-motivated

vocabulary reduction in learning subwords that are more consistent with

the morphological boundaries. In Turkish, an agglutinative language where

morpheme boundaries are transparent, it is possible to achieve a complete

segmentation of the morphemes inside a word. Despite the limitation of

achieving a complete morphological segmentation in Arabic and Czech,

where there is less transparency in terms of the morpheme boundaries,

having a notion of morphology during segmentation can still allow to ob-

tain better translations.

In German, English and Italian, languages with highly fusional mor-

phology, different approaches in vocabulary reduction do not yield large

differences in the output quality. This is mainly due the formal proper-

ties of fusional morphology, where typographic changes at the input may

not yield sufficient information for the model to learn significantly better

translations. In addition to fusional transformations, German is also rich

in compounding, which can be defined as an agglutinating transformation.

However, the small difference in the performance of either segmentation

methods suggests that both methods can handle this phenomena similarly.
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Language Segmentation BLEU chrF3

Direction (Src) (Tgt)

Arabic-English Word BPE 26.76 0.4793

BPE BPE 29.59 0.5102

LMVR BPE 30.67Ĳ 0.5248

Czech-English Word BPE 26.82 0.4689

BPE BPE 28.21 0.494

LMVR BPE 29.2Ĳ 0.5091

German-English Word BPE 30.71 0.5109

BPE BPE 32.57 0.5432

LMVR BPE 32.53 0.5437

Italian-English Word BPE 31.41 0.5237

BPE BPE 32.50 0.5322

LMVR BPE 32.21 0.5302

BPE LMVR 32.16 0.5416

LMVR LMVR 32.50 0.5446

Turkish-English Word BPE 17.58 0.3859

BPE BPE 21.28 0.4335

LMVR BPE 22.83 0.4501

BPE LMVR 20.99 0.4390

LMVR LMVR 23.13Ĳ 0.4599

Table 5.4: Effects of morphological typology. Best scores for each translation direc-

tion are in bold font. Those marked with Ĳare also statistically significantly better

(p´ value ă 0.05) than the baseline.
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chrF3 BLEU Segmentation Language

(Src) (Tgt) Direction

0.3460 15.20 BPE Word English-Arabic

0.4490 17.91 BPE BPE

0.4610 18.95Ĳ BPE LMVR

0.3731 18.46 BPE Word English-Czech

0.4378 19.09 BPE BPE

0.4483 19.98Ĳ BPE LMVR

0.4927 26.35 BPE Word English-German

0.5431 27.24 BPE BPE

0.5485 27.38 BPE LMVR

0.5120 27.77 BPE Word English-Italian

0.5415 28.28 BPE BPE

0.5451 28.30 BPE LMVR

0.5412 27.99 LMVR BPE

0.5432 28.24 LMVR LMVR

0.2968 10.05 BPE Word English-Turkish

0.4183 11.31 BPE BPE

0.4410 12.53 BPE LMVR

0.4378 11.13 LMVR BPE

0.4435 12.63Ĳ LMVR LMVR

Table 5.5: Effects of morphological typology. Best scores for each translation direc-

tion are in bold font. Those marked with Ĳare also statistically significantly better

(p´ value ă 0.05) than the baseline.
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(a) Token-to-type ratios

(b) Average sentence lengths

Figure 5.1: Token-to-type ratios and average sentence lengths after subword segmentation

Another factor that affects the results is related to the statistical char-

acteristics of the languages, which, as can be seen in the vocabulary sizes

listed in Table 4.2, do not hold a large amount of sparsity. The experiment

results suggest that the quantity of rare words in the vocabulary that could

better be translated by different approaches could be an important indica-

tor of the overall output accuracy. Italian, unlike German, has a morphol-

ogy of comparably lower complexity and the word vocabulary is quite com-

pact, where rare words (singletons and less frequently observed words that



5.3. EVALUATION 91

are in the long tail of the frequency distribution) mostly consist of named

entities or numeric expressions. This is in contrast to morphologically-rich

languages, where the majority of rare words also include inflected or de-

rived word forms. Hence, in Italian, there is less necessity for performing a

morphologically-oriented subword segmentation. Hence, most of the Ital-

ian words can be kept unsegmented and translated directly at the lexical

level using byte-pair encoding. Although rare inflected words may exist

in the corpus, they are not observed many times, and the improvement

in their translation through linguistically-motivated vocabulary reduction

may not be significant enough to be observed at the output. English is

also a language of this group, with a morphology of very low complexity,

although most of the affixes are easily separable. The slight but significant

improvements obtained with using linguistically-motivated vocabulary re-

duction also on the English sides of the corpus suggest that it is possible

to segment the words according to their morphological boundaries, which

aids in improving the translation accuracy.

5.3.5 The Effect of Data Size

We also evaluate the performance change of each method under the con-

dition of larger size multi-domain training data in English-to-Turkish and

Turkish-to-English directions. The results of this experiment, given in

Table 5.6, confirm that the improvements obtained with linguistically-

motivated vocabulary reduction scale to mid-resource and multi-domain

settings. In the English-to-Turkish translation direction, linguistically-

motivated vocabulary reduction achieves 0.85 BLEU points of improve-

ment compared to byte-pair encoding, whereas the improvement is 0.7

BLEU points in the Turkish-to-English direction.
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Language Segmentation BLEU chrF3

Direction (Src) (Tgt)

Turkish-English Word BPE 20.13 0.4166

BPE BPE 24.18 0.4696

LMVR BPE 24.83Ĳ 0.4790

chrF3 BLEU Segmentation Language

(Src) (Tgt) Direction

0.3704 11.84 BPE Word English-Turkish

0.4532 13.74 BPE BPE

0.4710 14.59Ĳ BPE LVMR

Table 5.6: Experiments with Turkish using multi-domain data. Best scores for each trans-

lation direction are in bold font. Those marked with Ĳare also statistically significantly

better (p´ value ă 0.05) than the baseline.
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5.4 Conclusion

Subword segmentation is a useful approach to deal with the vocabulary

limitation in neural machine translation. Depending on the morphological

typology of a language, a single word may often contain multiple syntac-

tic and semantic features, which, during translation into another language

with a different morphological typology, may require learning many-to-

one or one-to-many lexical mappings between multiple words. Segment-

ing a long inflected word into its morphemes can thus aid in distributing

the information contained in the word into smaller tokens and learning a

more homogeneous alignment between the translation units. Subword seg-

mentation also allows learning higher quality of internal representations

of translation units by reducing the lexical sparsity, as rare word forms

are transformed into sequences of more frequent subwords, which can be

observed in more varieties of context.

The experimental results of this chapter suggest that the ability of a

segmentation method in capturing morphological boundaries is an impor-

tant factor in determining the accuracy obtained with a neural machine

translation model. Especially in the cases of high lexical sparsity occur-

ring with agglutinative or templatic morphology, where the vocabulary

generally consists of rare inflected or derived word forms, a morphological

segmentation can produce subwords that not only represent a compression

of a given training corpus, but also yields a statistical distribution that is

coherent among collections of sentences. This is due to the fact that the

domain and the size of the training data can vary in different applications,

whereas with the language, its morphological characteristics stay the same.

Thus, a segmentation method which can capture the morphological prop-

erties of subwords can allow for a more efficient estimation of vocabulary

items which can be used to infer knowledge among different sentences and
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varying corpora.

On the other hand, subword segmentation methods may also introduce

many drawbacks related to their optimization, the overall computational

pipeline and the fundamental design of the translation model. Statistical

subword segmentation is typically deployed as a pre-processing step be-

fore training the neural machine translation model, hence, the predicted

set of subword units are essentially not optimized for the translation task.

Both byte-pair encoding and linguistically-motivated vocabulary reduc-

tion have hyper-parameters that require expensive tuning experiments for

a given corpus and language. Our analysis shows that providing the neu-

ral machine translation model with a-priori information about morphology

is useful in maximizing the translation accuracy, although a given mor-

phology learning model is generally tailored to a specific class of languages

with similar morphological typology. For instance, linguistically-motivated

vocabulary reduction can successfully model agglutinative morphology, al-

though it cannot ideally be used to learn the non-concatative morphological

transformations observed in templatic or fusional morphology. Indeed, for

these languages, achieving a morphological analysis solely at the surface

level of words is intractable. An accurate model of morphology, however,

could be established by using latent representations of the semantic and

syntactic features of the morphemes observed inside words.

In regard of these considerations, the next chapter presents a novel

character-level neural machine translation architecture which addresses the

vocabulary limitation more efficiently by integrating morphology learning

directly within the encoder of the neural machine translation model.
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6.1 Introduction

Conventional approaches which have been proposed to achieve open-voca-

bulary neural machine translation, including either subword or character

level neural machine translation methods discussed in Sections 2.7 and 2.8,

have generally modeled the translation task at the sub-lexical level, thus,

the lexical boundaries are generally disregarded while learning distributed

representations of the input units. Nevertheless, it is controversial whether

semantics and syntax of a language can be modeled without maintaining a

context defined at the lexical level. Many of the theories presented in Sec-

tion 3.4 generally agree on the importance of word boundaries in defining

the morphological structure in language. Moreover, the role of phonology

has also been suggested to be crucial in many theoretical work.

In this chapter, we propose to implement a novel open-vocabulary neu-

ral machine translation model which hypothesizes a high-level model of

morphology at its input layer, where morphological structure is estimated

through a mapping between phonetic and lexical context. In this model,

distributed representations of input words are learned compositionally from

a vocabulary of smaller orthographic symbols, allowing the model to ac-

count for phonologically-informed word representations. Our model ex-

tends the work of Ling et al. [63], whereas in our approach, we learn all

word representations directly from the embeddings of character n-grams,

and on a set of parallel data, resulting in word representations optimized

for the machine translation task. In addition to evaluating the impor-

tance of modeling translation directly at the lexical level, this approach

also allows to test the possibility of eliminating the sub-optimal effects of

subword segmentation. We perform a fine-grained analysis of the optimal

set of vocabulary units that can be used to compose word representations

in different languages, and also present an evaluation of this model against



6.2. THE METHOD 97

subword and character-level neural machine translation methods, with a

specific focus on their capacity in translating rare and previously unseen

words.

6.2 The Method

We propose to overcome the vocabulary limitation in neural machine trans-

lation by extending the work of Ling et al. described in Section 2.8, where

distributed representations of all words in a given source sentence are com-

puted through morphological composition rules from a set of smaller or-

thographic symbols inside the words, such as character n-grams, that can

easily fit in the model vocabulary. The composition is essentially a function

which can establish a mapping between combinations of orthographic units

and lexical meaning, that is learned using the bilingual context, so that it

can produce representations that are optimized for machine translation.

This approach allows to maintain the translation at the lexical level while

eliminating the necessity to store word embeddings.

The mapping between the sub-lexical units and the lexical context is

performed by a bi-directional recurrent neural network, which encodes the

context of each interior unit inside the word and allows to capture impor-

tant cues about their functional roles. As a minimal set of input symbols

required to cope with contextual ambiguities, we opt to use intersecting

sequences of character trigrams, as suggested by Vania and Lopez [107].

We implement the network using gated recurrent units which have shown

comparable performance to long-short-term-memory units, whereas they

provide much faster computation [16].
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Figure 6.1: Neural machine translation with compositional input representations

Figure 6.2: Neural machine translation with subword units

Given a bi-directional recurrent neural network with a forward (f) and

backward (b) layer, the input representation wi of the word xi in the source

sentence, consisting of l characters, is computed from the hidden states hfi,l
and hbi,0, i.e. the final outputs of the forward and backward recurrent

neural networks, as follows:

wi “ Wfh
f
i,l `Wbh

b
i,0 ` b (6.1)

where Wf and Wb are weight matrices of each recurrent neural network

and b is a bias vector.

We implement the model by augmenting the input embedding layer of

the encoder of the sequence-to-sequence learning model with a bi-directional
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recurrent neural network, which computes compositional representations

for all words in the source sentence. The one-hot vectors of the character

n-gram units, after being fed into the embedding layer, are processed by an

additional composition layer, which computes the final input represen-

tations passed to the encoder to generate translations. The parameters of

the composition layer are jointly learned together with the the input token

embedding matrix and the sequence-to-sequence model while training the

neural machine translation system. Figures 6.1 and 6.2 illustrate the main

difference between the approaches of neural machine translation based on

compositional word representations and subword embeddings.

For an input of m tokens, our implementation increases the compu-

tational complexity of the network by OpKtmaxmq, where K is the bi-

recurrent neural network cost and tmax is the maximum number of symbols

per word. However, since computation of each input representation is in-

dependent, a parallelized implementation could cut the overhead down to

OpKtmaxq.

6.3 Evaluation

We evaluate our approach against conventional methods to open-vocabulary

neural machine translation in the machine translation task of different

morphologically-rich languages with varying levels of lexical sparsity. We

first perform a fine-grained analysis of the translation accuracy in terms

of varying levels of granularity on the input vocabulary units and morpho-

logical typology, and later we evaluate the approaches with the best per-

formance to illustrate how the accuracy they obtain scale to high-resource

settings and especially in translating unseen or rare words in the source

sentences.
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6.3.1 The Effect of Input Units and Morphological Typology

In order to evaluate our approach against the previously discussed open-

vocabulary neural machine translation methods, we first implement it using

the deep learning library Theano [102] and integrate it into the Nematus

toolkit [93]. Using the TED Talks benchmark, we then perform a fine-

grained analysis of the translation accuracy in terms of varying levels of

granularity on the input vocabulary units. The simple neural machine

translation model constitutes the baseline and performs translation directly

at the level of sub-word units, which can be of four different types: charac-

ters, character trigrams, and subword units predicted either using byte-pair

encoding or linguistically-motivated vocabulary reduction. The compo-

sitional model, on the other hand, performs neural machine translation

with input representations composed from sub-lexical vocabulary units. In

our study, we evaluate representations composed from character trigrams,

and subword units segmented with statistical subword segmentation meth-

ods, including byte-pair encoding and linguistically-motivated vocabulary

reduction. For each language in the benchmark, we model the transla-

tion task from the morphologically-rich language into English, where the

English vocabulary consists of subword units predicted by linguistically-

motivated vocabulary reduction.

In our experiments, we use a compositional layer with 256 hidden units,

a one-layer bi-directional gated recurrent unit encoder and one-layer gated

recurrent unit decoder of 512 hidden units, and an embedding dimension

of 256 for both models. We use a highly restricted dictionary size of 30,000

for both source and target languages, and train the segmentation models

(byte-pair encoding and linguistically-motivated vocabulary reduction) to

generate sub-word vocabularies of the same size. We train the neural ma-

chine translation models using the Adagrad optimizer with a mini-batch
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size of 50, a learning rate of 0.01, and a dropout rate of 0.1 in all layers and

embeddings. In order to prevent over-fitting, we stop training if the per-

plexity on the validation does not decrease for 5 epochs, and use the best

model to translate the test set. The model outputs are evaluated using the

(case-sensitive) BLEU metric and the MultEval significance test.

The performance of neural machine translation models in translating

each language using different vocabulary units and encoder input repre-

sentations can be seen in Table 6.1. Compared to the results of the exper-

iments in Chapter 5, the accuracies are generally lower due to the reduced

capacity of the neural machine translation models in order to limit the

computational cost of the experiments. Nevertheless, the characteristics of

each approach remain consistent, which suggests that the performance of

all models and the improvements would scale with increased capacity.

The experiments show that using the simple model, subword units based

on linguistically-motivated vocabulary reduction achieve the best accuracy

in translating all languages, with improvements over byte-pair encoding by

0.85 to 1.09 BLEU points in languages with high lexical sparsity (Ara-

bic, Czech and Turkish) and 0.32 to 0.53 BLEU points in languages with

low to medium sparsity (Italian and German). This confirms our previous

results in Chapter 5. Moreover, simple models using character trigrams

as vocabulary units reach much higher translation accuracy compared to

models using characters, indicating their superior performance in handling

contextual ambiguity. In the Italian-to-English translation direction, the

performance of simple models using character trigrams and byte-pair en-

coding based subword units as input representations are almost compara-

ble, showing that character trigrams can even be sufficient as the stand-

alone vocabulary units in languages with low lexical sparsity. The findings

confirm that each type of subword unit used in the simple model is specif-

ically convenient for a given morphological typology.
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Using the compositional model improves the quality of input representa-

tions for each type of vocabulary unit, nevertheless, the best performance

is obtained by using character trigrams as input symbols and words as

input representations. These results not only confirm our hypothesis that

the translation context should be modeled at the lexical level, but also

that the compositional word representations obtained by the bi-directional

recurrent neural network have higher quality representations compared to

those obtained from subword embeddings. Especially in the case of Turk-

ish, where linguistically-motivated vocabulary reduction was found to pro-

vide comparable performance to morphological analyzers in Chapter 5, the

compositional model seems to achieve higher capacity of learning and gen-

eralizing morphological information. Using the composition model seems

to also improve the Arabic word representations, in fact, the idea of learn-

ing morphology as a function of phonetic symbols and lexical meaning is

more coherent with the theory of prosodic morphology.

In order to better illustrate the characteristics of each representation,

we present sample outputs from Italian and Turkish neural machine trans-

lation models in Table 6.2. In Italian, the simple model fails to under-

stand the common subject of different verbs in the sentence due to the

repetition of the same inflective suffix after segmentation. In Turkish, the

genitive case ‘yerlerin fotoğraflarının’ (‘the photographs of places’ ) and the

complex predicate ‘birleştirilmesiyle meydana geldi’ (‘is composed of’ ) are

both incorrectly translated by the simple model. On the other hand, the

compositional model is able to capture the correct sentence semantics and

syntax in either case. These findings suggest that maintaining translation

at the lexical level apparently aids the attention mechanism and provides

more semantically and syntactically consistent translations.
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Input e comunque, em@@ ig@@ riamo , circol@@ iamo e

(Simple Model) mescol@@ iamo cos̀ı tanto che

non esiste più l’ isolamento necessario affinché

avvenga un’ evoluzione .

Output and anyway , we repair, and we mix so much that

(Simple Model) there ’s no longer the isolation that

we need to happen to make an evolution .

Input e comunque, emigriamo, circoliamo e

(Compositional Model) mescoliamo cos̀ı tanto che

non esiste più l’ isolamento necessario affinché

avvenga un’ evoluzione.

Output and anyway , we migrate , circle and

(Compositional Model) mix so much that

there ’s no longer the isolation necessary to

become evolutionary .

Reference and by the way , we immigrate and circulate and

intermix so much that you can ’t any longer

have the isolation that is necessary for

evolution to take place .

Input ama aslında bu resim tamamen , farklı

(Simple Model) yerlerin fotoğraf@@ larının

birleştir@@ il@@ mesiyle meydana geldi .

NMT Output but in fact , this picture came up with

(Simple Model) a completely different place of photographs .

Input ama aslında bu resim tamamen , farklı

(Compositional Model) yerlerin fotoğraflarının

birleştirilmesiyle meydana geldi .

Output but in fact , this picture came from collecting

(Compositional Model) pictures of different places .

Reference but this image is actually entirely

composed of photographs from different locations .

Table 6.2: Example translations with different approaches in Italian (above) and Turkish

(below)
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6.3.2 The Effect of Data Size and Domain

We also investigate how the performance of each approach scale with in-

creased levels of data sparsity through a second experiment using the multi-

domain Turkish-English and Italian-English evaluation data presented in

Section 4.3. We implement a more efficient version of the compositional

model using the PyTorch library [77] and integrate it into the OpenNMT-

py toolkit [56]. In this case, we conduct the experimental comparison

between the compositional and simple neural machine translation models

using an equal number of parameters, where the compositional model uses

an encoder of two bi-directional gated recurrent units, each of which prop-

agates over the characters or words, whereas the simple model deploys an

encoder consisting of a two-layer bi-directional gated recurrent unit propa-

gating over the subword units in the source sentence. Both models deploy

a two-layer decoder based on the stacked gated recurrent unit architecture

[6], an embedding and hidden unit size of 512, and a model vocabulary of

30,000 units. The compositional model uses a trigram vocabulary of the

same size, whereas the words in the source and target sides are segmented

using linguistically-motivated vocabulary reduction with a target lexicon

size of 30,000 units. The models are trained using the Adam optimizer with

an initial learning rate of 0.0002 and default values for the other hyper-

parameters. We clip the gradient norm at 1.0 [77] and set the dropout to

0.1 after hyper-parameter tuning.

The performance of neural machine translation models in translating

Turkish and Italian in the multi-domain case using different types of en-

coder input representations can be seen in Table 6.3. The better perfor-

mance of the compositional model in translating Turkish suggests that our

approach is beneficial in eliminating the morphological errors caused by

segmentation. In Italian, which represents the case of the lowest level of
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Language Model BLEU chrF3

Direction

Italian-English Simple (BPE) 29.02 0.5328

Compositional 28.66 0.5293

Turkish-English Simple (LMVR) 23.02 0.4613

Compositional 23.13 0.4703

Table 6.3: Experiment results in multi-domain settings. Best scores are in bold font. All

improvements over the baseline are statistically significant (p´ value ă 0.05).

lexical sparsity, the source word vocabulary is around 150,000 words in a

corpus of approximately 1 million tokens. The higher overall performance

of the simple neural machine translation model suggests that subword seg-

mentation may be sufficient in efficiently reducing this vocabulary to fit

into a space of 30,000 units.

6.3.3 Accuracy in Translating Rare and Unseen Words

Since the performance of the simple and compositional models have been

found to provide comparable in the overall translation accuracy, in order

to better illustrate their difference we perform an additional analysis eval-

uating both models in terms of their actual performance in translating rare

and unseen words. This analysis is performed by sampling from the test

sets only the sentences that contain singletons (i.e. words that are ob-

served once in the training corpus) in the source side or out-of-vocabulary

words, and evaluating the translation accuracy obtained with each neural

machine translation model on these sentences. This sampling results in 190

sentences in Italian and 470 sentences in Turkish for singletons, and 443

Italian and 1096 Turkish sentences for out-of-vocabulary words. The eval-

uation of each model on these test sets, results of which are also given in

Table 6.4, show that the compositional model is especially advantageous in
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translating rare and unseen words and can provide a higher generalization

capability to the neural machine translation model.

The results of this analysis, as given in Table 6.4, show that the compo-

sitional model translates sentences containing rare words more accurately

than the simple model in both languages, where the improvements are

0.53 BLEU points in Italian and 1.22 BLEU points in Turkish. The

improvement obtained also in the Italian-to-English translation direction

shows that although in overall subword segmentation achieves higher out-

put accuracy, it is still not as efficient as our approach in translating the

small portion of rare words in the Italian corpus. Similarly, also in the

out-of-vocabulary evaluation, the compositional model again outperforms

the simple model by 1.75 BLEU points in Italian and 1.19 BLEU points

in Turkish. These findings suggest that the compositional neural machine

translation model provides a better approach to representing unseen or rare

words, thus, a higher generalization capability compared to conventional

approaches to open vocabulary neural machine translation.

Language Model BLEU BLEU

Direction (Singletons) (OOVs)

Italian-English Simple (BPE) 23.54 23.23

Compositional 24.07 24.98

Turkish-English Simple (LMVR) 19.69 20.31

Compositional 20.91 21.50

Table 6.4: Translation accuracy of neural machine translation models evaluated only on

sentences containing singletons and out-of-vocabulary words. Best scores are in bold font.

All improvements over the baseline are statistically significant (p´ value ă 0.05).
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6.4 Conclusion

This chapter addressed the problem of translating infrequent words in neu-

ral machine translation with the approach of using input representations

learned compositionally from character n-grams to operate the neural ma-

chine translation model at the level of words, without the requirement of

managing a lexical vocabulary. We tested our approach by augmenting

the encoder of the neural machine translation model with a bi-directional

neural network and evaluating it in the machine translation task from five

morphologically-rich languages into English. Our approach obtained signif-

icant improvements over the approach of performing neural machine trans-

lation with subword or character embeddings, showing promising applica-

tion for neural machine translation of low-resource and morphologically-

rich languages. In the next chapter, we explore the benefit of using compo-

sitional input representations also in the target side of the neural machine

translation model through a novel hierarchical decoding architecture.
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7.1 Introduction

In this chapter, we propose a novel decoding architecture which deploys

compositional word representations in the decoder of the neural machine

translation model, allowing to achieve a more efficient solution to open-

vocabulary neural machine translation while translating into morphologi-

cally-rich languages. Our decoding architecture processes target sentences

at multi-level dynamic time steps, integrating a notion of hierarchy into the

decoder, where all word representations are learned compositionally from

character embeddings, and perform translation by generating each word

character by character based on the predicted word representation. In

addition to the decoding architecture, we also present a hierarchical beam

search algorithm that allows to take advantage of the hierarchical structure

of the decoder. We explore the optimal decoding architecture and target

vocabulary units which can aid in minimizing the sparsity and learning

reliable representations in the target language in the most computationally

efficient manner through an evaluation comparing our approach against

subword or character-level decoding in neural machine translation.

7.2 The Method

7.2.1 Model

Similar to the encoder of the compositional neural machine translation

model, the hierarchical decoding model has an input layer composed of an

embedding layer which encodes embeddings of the characters inside each

word in the target sentence, and a character-level bi-directional recurrent

neural network which estimates a composition function over the character

embeddings to compute the target word representations. The prediction

of the each target word is accomplished as in the standard architecture us-
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ing the compositional target word representations, which are computed as

given in Section 6.2, where the attention mechanism and the target context

is predicted by a unidirectional recurrent neural network that operates at

the level of words. Instead of classifying the predicted target word in the

vocabulary, in the hierarchical decoding model, its distributed representa-

tion h̄j is fed to a character-level unidirectional recurrent neural network

to generate the target word character by character by modeling the prob-

ability of observing the lth character in the jth word, ppyj,l|yj,ăl, h̄jq, given

the word prediction and the previous characters in the word.

Similar to Luong and Manning [66], we initialize the character-level

recurrent neural network with the attentional vector h̄t, which is computed

once for each word in the target sentence based on the word-level context

and previously generated words as follows:

h̄j “ tanhpW rct;hjsq (7.1)

where hj is the hidden state of the word-level recurrent neural network

representing the current target context.

Hierarchical decoding consecutively iterates over the words and char-

acters of the target sentence, therefore each recurrent neural network is

updated in dynamic steps based on the word boundaries.

7.2.2 Predictions

In order to achieve efficient decoding with the hierarchical neural machine

translation decoder, we implement a hierarchical beam search algo-

rithm, suggested also by Ling et al. [63]. The algorithm starts decoding

by predicting the B most likely characters and storing them in a character

beam along with their probabilities. Different than the standard algorithm,

the beams are reset each time the generation of a word is complete and

the B most likely words computed after the beam search are stored in an
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Figure 7.1: Hierarchical character-level decoder: input words are encoded as character

sequences and output words are generated as character sequences.

intermediate word-level beam. The word beam is used to compute the B

distributed representations corresponding to the most likely B next target

words, which are fed to the character-level recurrent neural network to con-

tinue the beam search. When the beam search is complete, the most likely

character sequence is generated as the best hypothesis. The pseudo-code

of the method can be seen below.

7.3 Evaluation

The evaluation of our architecture includes an analysis to determine the

set of vocabulary units to use in decoding, followed by our standard evalu-
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function HierarhicalBeamSearch(Hyp,Best,t)

NewHyp Ð ()

for all (seq,score,state) in Hyp do:

(chars,logpr, ˆstate) Ð CharRNNFwd(tail(seq), state)

for all (c,lp) in (characters,logpr) do:

hyp=[append(seq,c),score+lp, ˆstate]

if (IsSolution(hyp) and

hyp.score ą Best.score)

then Best=hyp

else Push(NewHyp,hyp)

NewHyp Ð Prune(NewHyp,Best)

NewHyp Ð TopB(NewHyp)

NewHyp.state Ð WordRNNFwd(NewHyp)

if (NewHyp)

return BeamSearch(NewHyp,Best,t+1)

else return Best

Algorithm 2: The hierarchical beam search algorithm.

ation task of machine translation using the common evaluation benchmark

under low-resource and mid-resource settings. The next sections present

the findings of different sets of experiments where we compare each open-

vocabulary neural machine translation method performing decoding at the

level of character, subwords, or hierarchical word-character units.

7.3.1 The Effect of Output Units

We start our study with an analysis of the optimal set of output units that

can minimize the search space in decoding by measuring the reconstruc-

tion accuracy of words with an auto-encoder based on recurrent neural

networks. The input of the auto-encoder is the compositional word rep-

resentation computed from the character n-grams inside the word with a

bi-directional recurrent neural network, as described in Section 6.2. The

decoder, a unidirectional recurrent neural network then tries to reconstruct
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the given word by predicting the sequence of character n-grams that pro-

duced the word.

Figure 7.2: The auto-encoder used in the output unit analysis

In our analysis, we use the Turkish language as it has the most complex

morphology, and transform the corpus from the TED Talks benchmark

where the input and outputs are character n-gram sequences constructing

each unique word in the corpus. By using different compositional units such

as character unigrams, bigrams or trigrams, we measure the accuracy in

reconstructing each word in terms of the percentage of correctly generated

character n-grams.

Output Unit Reconstruction Accuracy (%)

Character unigrams 99.80

Character bigrams 98.87

Character trigrams 98.21

Table 7.1: Reconstruction accuracy of the character-level auto-encoder

The results of our analysis, as shown in Table 7.1, indicates that a lower

level of sparsity in the output units allows to obtain a higher reconstruction

accuracy. In light of these findings, we proceed to construct the target vo-

cabulary in our neural machine translation model from the set of characters

in the target language.
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7.3.2 Effects of Morphological Typology

We evaluate decoding architectures deploying different levels of granular-

ity in the vocabulary units and the attention mechanism, including the

standard decoding architecture deployed either with subword [94] or fully

character-level [15] units, which constitute the baseline approaches, and

the hierarchical decoding architecture, by implementing all in Pytorch [77]

within the OpenNMT-py framework [56] in the machine translation task

from English into the five morphologically-rich languages included in the

TED Talks benchmark.

All models are implemented using gated recurrent units [16] and evalu-

ated while using a comparable number of gated recurrent unit parameters.

We use a hierarchical decoding model which deploys 3 layers of gated re-

current units. In order to show the difference of maintaining the context

and the attention mechanism at the level of words, we compare our model

against a fully character-level decoder which also uses a 3-layer stacked

gated recurrent unit architecture. The subword-level decoder has a 2-layer

stacked gated recurrent unit architecture, to account also for the larger

number of embedding parameters. The models using the standard archi-

tecture have the attention mechanism after the first gated recurrent unit

layer, and have residual connections after the second layer [6]. The hierar-

chical decoder implements the attention mechanism after the second layer

in order to compute the context vector at the level of words.

The source sides of the training data used in all models, and the tar-

get sides of the models using subword embeddings are segmented using

byte-pair encoding in German, Czech and Italian and with linguistically-

motivated vocabulary reduction in Arabic and Turkish with 16,000 shared

merging rules. The small vocabulary size is chosen to minimize the model

parameters while keeping the output accuracy at an acceptable level. The
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character-level decoders, including the fully character-level model and the

hierarchical model, both use a target vocabulary of 150 units. All models

use an embedding and hidden unit size of 512. We train the subword-based

models using the Adam optimizer with a learning rate of 0.0003, and the

character-based models with an initial learning rate of 0.0004 and a decay

of 0.9. We use a batch size of 64 and tune the dropout rates as 0.1 for

the character-level, 0.2 for the hierarchical, and 0.3 for the subword-level

neural machine translation models.

The results of the experiments given in Table 7.2 show that the hier-

archical decoder can reach comparable or better performance to the neu-

ral machine translation model based on subword units in all languages

while using approximately five times less parameters. The improvements

are especially evident in Arabic and Turkish, where the hierarchical de-

coder reaches 1.05 and 0.71 BLEU points of improvement, respectively.

In Czech, Italian and German, which constitute the fusional languages,

the performance of the two decoders are generally comparable, where in

Czech the hierarchical model outperforms the subword unit based model

with 0.19 BLEU and in Italian by 0.41 BLEU points. In German, the su-

perior performance of the subword based model suggests the convenience

of byte-pair encoding as an open-vocabulary neural machine translation

solution.

The character-level neural machine translation model, on the other

hand, significantly outperforms the hierarchical model in Turkish by 0.91

BLEU and in Czech by 0.15 BLEU points. As can be seen in the statistical

characteristics of the training sets given in Table 4.2, these two directions

constitute the most sparse settings, where the training data is quite small,

ranging from around 118 to 137 thousand sentences, in addition to large

word vocabularies. The improvements are proportional to the amount

of sparsity in two languages, as given in the token-to-type rations in the
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Model En-Ar En-Cs En-De

BLEU chrF3 BLEU chrF3 BLEU chrF3

Subwords 14.50 0.3992 16.60 0.4123 24.29 0.5129

Characters 12.72 0.3804 16.94 0.4103 22.23 0.4884

Hierarchical 15.55 0.4154 16.79 0.4068 23.91 0.4956

Model En-It En-Tr

BLEU chrF3 BLEU chrF3

Subwords 26.23 0.5168 9.03 0.3804

Characters 24.33 0.5007 10.63 0.3810

Hierarchical 26.64 0.5046 9.74 0.3771

Table 7.2: Experiment Results in TED Talks benchmark. Best scores for each translation

direction are in bold font. All improvements over the baselines are statistically significant

(p´ value ă 0.05).

training corpora (Figure 5.1a), where Turkish has the highest amount of

sparsity in the benchmark, followed by Czech as the second most com-

plex language. In cases of high lexical sparsity, learning to translate based

on representations of characters might allow to reduce contextual sparsity,

leading in better distributed representations of translation units. As the

sparsity in the language decreases, either in the form of the training data

size, or the morphological complexity of the target language, the advantage

of using character-level neural machine translation becomes less evident.

In Arabic and Italian, where the training data is almost twice as large as

the other languages, using the hierarchical model provides improvements

of 2.83 and 2.31 BLEU points, respectively.

7.3.3 The Effect of Data Size

In order to see how the performance of each method scales with increasing

data size and multi-domain conditions, we repeat the experiments in the

English-to-Turkish and English-to-Italian directions, using the data sets
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described in 4.3. The results of these experiments can be seen in Table 7.3.

Model En-It En-Tr

BLEU chrF3 BLEU chrF3

Subwords 26.66 0.5299 10.65 0.3893

Characters 18.01 0.4454 8.94 0.3274

Hierarchical 27.28 0.4830 10.35 0.3870

Table 7.3: Experiment results in multi-domain settings. Best scores for each translation

direction are in bold font. All improvements over the baselines are statistically significant

(p´ value ă 0.05).

In the English-to-Italian direction, an increase in the data size leads to a

slight increase in the accuracy of the hierarchical and subword-based NMT

decoders, where the hierarchical model outperforms the subword-based one

by 0.66 BLEU points. The fully character-level model obtains significantly

lower accuracy compared to both approaches, where its accuracy on the

same test set drops by 6.32 BLEU points, which might be due to the

increased level of ambiguity in character embeddings when the model is

trained over the mid-resource noisy corpora without increasing the network

capacity. Studies have shown that fully character-level models could po-

tentially reach the same performance with the subword-based NMT models

by increasing the amount of capacity [15]. However, the consistency of the

improvements obtained with the hierarchical decoding architecture under

different settings, along with its lower average convergence time, suggests

the advantage of using explicit modeling of word boundaries in achieving

a more computationally efficient solution to character-level translation.

Increased data size in the English-to-Turkish translation direction, on

the other hand, does not necessarily yield a reduction in lexical sparsity, on

the contrary, increases the possibility of observing even more rare words,

either in the form of morphological inflections due to the complex agglu-
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tinative morphology of Turkish, or ambiguous terminology raising from

the multi-domain characteristics. In this experiment, the character-level

model again experiences a drop in performance, whereas the subword-based

model achieves the best accuracy by 0.30 BLEU points above the hierar-

chical model, suggesting a better capacity in reducing the lexical sparsity.
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7.4 Conclusion

The perception and generation of language are fundamentally different

processes, and require adopting different approaches to their modeling. The

results of Chapter 6 have shown the advantage of performing translation

at the level of words by using compositional word representations. In the

case of encoding, adding phonetic context into the vocabulary units that

compose the words by means of intersecting character trigrams allowed

learning richer representations which are especially useful in representing

rare or unseen words.

In generation, on the other hand, the level of sparsity in the vocabulary

units is crucial as it defines the granularity of the search space. Our anal-

ysis showed that the highest reconstruction accuracy for a given word is

obtained using a vocabulary of interior units with the lowest level of granu-

larity, which is the set of characters in the target language. However, in the

task of generating sentences, a higher level of granularity, such as perform-

ing the search over the sets of all possible words, rather than subwords or

characters in the sentence, could be beneficial, as the uncertainty at each

step in the generation process would be reduced. This is due to the fact

that for each correct word in the target sentence, there might be multiple

possible sets of subword units that have potentially similar likelihoods to

the likelihood of generating the correct word.

This chapter explored the idea of performing the decoding procedure in

neural machine translation in a multi-dimensional search space in terms

of asynchronous word and character level generation. The hierarchical

decoder we proposed achieved better performance than the conventional

open-vocabulary neural machine translation solutions based on subword

units in multiple languages while using a significantly less number of pa-

rameters. The main advantage of the hierarchical decoding model is that
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it learns to translate based on word representations learned by the lexical

context, which is linguistically more coherent, as semantics and syntax of

the language are typically defined at the lexical level. On the other hand,

by eliminating the necessity to store any of the word representations, it can

drastically reduce the computational cost of the neural machine translation

model.

On the other hand, the requirement of observing words a sufficient num-

ber of times in different lexical contexts in order to model the lexical distri-

bution efficiently, and learn a reliable morphological composition function

such that the model can extract generalizable patterns, is an important

limitation for its usage under low-resource settings. In the next chapter,

we present an approach for modeling this variance in the lexical distribu-

tion and aiding the model in learning more reliable lexical representations

under conditions of high lexical sparsity.
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8.1 Introduction

As described in Chapter 2, neural machine translation models are conven-

tionally trained based on the approach of maximizing the log-likelihood

on a training corpus in order to predict the model parameters θ. In this

approach, belonging to the school often referred as frequentist statistical

modeling, one generally assumes that the data is dynamic, and the model

parameters, on the other hand, are static variables, and are learned such

that they capture the probabilistic model represented for that data. Once

the parameters are learned, their values are deterministic and are used to

make predictions on new data. The main problem with this approach is

that the uncertainty in model predictions is often ignored, which may be

crucial in cases where the data has high variance, such that there might

be many likely hypotheses in a given context. In order to induce an un-

certainty in the model outcomes, one can instead opt for the Bayesian

modeling approach, where the model is also probabilistic, including its pa-

rameters and its possible predictions. In this approach, parameters are

random variables, the prior distribution of which can be defined a-priori,

which aids the learning process as instead of learning the parameter val-

ues, the model needs to infer a set of stochastic latent variables, which

can represent the probabilistic model, based on the posterior distribution

obtained from the data. Each model parameter, and consequently predic-

tions, would then always contain a level of uncertainty, essentially allowing

one to have a conceptually more inclusive probabilistic model which can,

in principle, have a better notion on generalization over variance in the

data and model outcomes.

Bayesian modeling is relevant to our study since it can reduce the re-

liance on data for learning a given task, aiding in learning statistical models

under high amount of data sparsity. In this chapter, we study the benefit
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of applying the approach of Bayesian modeling in order to learn the dis-

tributed representations of words in the neural machine translation model.

For this purpose, we formulate a novel stochastic model of morphology,

the variables of which represent the distribution of morphological features

inside words, and are learned such that they can be shared to represent dif-

ferent words, aiding in generalizing the contextual representations of words

across their different surface forms. In this model, instead of the lexical

representations learned by the word-level recurrent neural network, the

predictions with the hierarchical decoder are done based on word represen-

tations encoded by combining a set of latent morphological features, which

allows to model the uncertainty in the target words and their forms. We

present the design of our model, some related work which have also adopted

stochastic modeling in natural language processing tasks, such as morpho-

logical reinflection [112] or sentiment classification [7], and the updated for-

mulations of the objective function used to infer the latent variables during

training. We evaluate our method in the three most sparse languages in

our evaluation benchmark that were found to be problematic with the hi-

erarchical decoding model in Chapter 7, and a detailed analysis comparing

the generative properties of different methods for open-vocabulary neural

machine translation.

8.2 The Method

8.2.1 Model

Our generative latent morphology model for neural machine translation

formulates word formation in terms of a stochastic process, which induces

a stronger bias towards achieving a data-driven model of morphological

analysis. In our stochastic morphology model, each word is represented

using two latent variables corresponding to its major morphological com-
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ponents: a continuous vector aimed at representing the lexical semantics of

the word, or its lemma, and a set of approximately discrete sparse features

aimed at capturing the word’s inflectional features.

Using a latent variable model for this formulation has mainly two ad-

vantages. First, deterministic models are by definition unimodal: when

presented with the same input, or the context, they always produce the

same output. When we model a sequential generation process, it is rea-

sonable to expect a large degree of uncertainty since most of the context

essential for generating the correct output may not yet be generated. For

instance, while generating a word starting with a noun root which should

receive a prefix before the generation of the root, we may continue by in-

flecting the word differently depending on the latent mode of operation we

are at, such as nominative, accusative or dative noun. Second, in latent

variable models, a-priori choice of the statistical distribution provides a

mechanism to favour a particular type of representation, aiding the model

in capturing the underlying corpus statistics more reliably in case of data

sparseness. In our case, we use sparse distributions for inflectional fea-

tures to accommodate the fact that morphosyntactic features are discrete

in nature.

Our latent variable model is an instance of variational auto-encoders

[54]. A variational auto-encoder consists of an encoder, also called as an in-

ference model, which learns to encode a representation of the input data

into a parameter vector representing a stochastic variable with a prede-

fined statistical distribution, and a decoder, also called as the generative

model, which aims to reconstruct the original input with minimal loss by

predicting a sample from the learned probability distribution during test

time. Being widely used in unsupervised generative models, variational

auto-encoders provide an efficient means to encode an input in terms of

some latent feature representations, which can also be regarded as a com-
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Figure 8.1: The latent morphology model for computing word representations

pression mechanism.

Similar to previous approaches to unsupervised morphology learning

based on the minimum-description length principle [89, 39, 72, 26], we

model the morphology learning process as a compression task using two

variational auto-encoders, one for the estimation of a lexicon (i.e. cluster-

ing of a set of lexemes) and another one for inferring the set of inflectional

features, although the inference of both variables are accomplished in vec-

tor space, based on the distributed word representations in the hierarchical

target language model, which based on strong evidence from many studies
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[107, 85], have shown to contain many cues on the phonetic and semantic

features of words.

During decoding, we first sample a Gaussian-distributed representation

in context, representing the lemma, inspired by the model of Zhou and

Neubig [112] for morphological reinflection.1

Zi|x, yăi „ N pui, diagpsi d siqq

ui “ Wuhi ` bu

si “ softpluspWshi ` bsq

(8.1)

where two single-layer perceptrons, one of which predicts the location

vector in Rd with parameters Wu and bu, and another one the scale vector

in Rd
ą0 with parameters Ws and bs, of the Gaussian variable, from the word-

level decoder hidden state hi, which essentially represents the input x and

the target history yăi. Note that the softplus activation allows converting

all variance values to positive and non-zero.

In practice, we sample zi via a reparameterization in terms of a fixed

Gaussian, namely,

zi “ ui ` εi d si (8.2)

for εi „ N p0, Idq. This is known as the reparameterization trick [54],

which allows back-propagation through stochastic units [81].

Second, we sample a vector fi of K sparse scalar inflectional features

conditioned on the source x, the target prefix yăi, and the sampled lemma

zi. We model sampling of fi conditioned on zi in order to capture the

insight that inflectional transformations typically depend on the category

of a lemma [52].

1Notation We use capital Roman letters for random variables (and lowercase letters for assignments).

Boldface Roman letters are reserved for neural network output vectors, and d stands for elementwise

multiplication.
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Having sampled fi and zi, the representation of the ith target word is

computed as a linear combination of zi and fi,

ŵj “ Wcrzj, fjs ` bc (8.3)

where Wc and bc are learnable weight and bias parameters.

As shown in Figure 8.1, our model generates each word character by

character auto-regressively by conditioning on the word representation ti

predicted by the latent morphology model, the current context ci, and the

previously generated characters following the same hierarchical decoding

structure described in Section 7.2.

8.2.2 Sparse Features

Since each target word yi may have multiple inflectional features, ideally, we

would like fi to be K feature indicators, which could be achieved by sam-

pling from K independent Bernoulli distributions parameterized in con-

text. The problem with this approach is that sampling Bernoulli outcomes

is non-differentiable, thus, their training requires gradient estimation [110]

and sophisticated variance reduction techniques.

Instead, Louizos et al. [65] proposed obtaining a continuous sample

c P p0, 1q from a distribution for which a reparameterization exists and

stretch it to a continuous support pl, rq Ą p0, 1q using a simple linear trans-

formation

s “ l ` pr ´ lqc (8.4)

where c P p0, 1q is the original continuous variable. A rectifier is then

employed to map the negative outcomes to 0 and the positive outcomes

larger than one to 1, i.e. f “ minp1,maxp0, sqq. The rectifier is only non-

differentiable at s “ 0 and at s “ 1, however, because the stretched variable

s is sampled from a continuous distribution, the chance of sampling s “ 0

and s “ 1 is essentially 0.
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Figure 8.2: The top row shows the density function of the continuous base distribution

over p0, 1q. The middle row shows the result of stretching it to include 0 and 1 in its

support. The bottom row shows the result of rectification: probability mass under pl, 0q

collapses to 0 and probability mass under p1, rq collapses to 1, which cause sparse out-

comes to have non-zero mass. Varying the shape parameters pa, bq of the underlying

continuous distribution changes how much mass concentrates outside the support p0, 1q

in the stretched density, and hence the probability of sampling sparse outcomes.

This stretched-and-rectified distribution allows the sampling procedure

to become differentiable with respect to the parameters of the distribution,

to sample sparse outcomes with an unbiased estimator, and and to calculate

the probability of sampling f “ 0 and f “ 1 in closed form as a function

of the parameters of the underlying distribution, which corresponds to

the probability of sampling s ă 0 and s ą 1, respectively. Bastings et

al. [7] proposed using this method with latent variables based on the

Kumaraswamy distribution [59], a two-parameters distribution that closely

resembles a Beta distribution and is sparse whenever its (strictly positive)

parameters are between 0 and 1.

For each token yi, we sample K independent Kumaraswamy variables
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in context,

Ci,k|x, yăi, zi „ Kumapai,k, bi,kq k “ 1, . . . , K

rai,bis “ softpluspWfprzi,hisq ` bfq
(8.5)

where Wf and bf are the parameters of the single-layer neural network

predicting the parameters of the Kumaraswamy variable, a and b.

This sampling results in a continuous random vector ci in the support

p0, 1qK .2 We then stretch-and-rectify the samples via fi,k “ minp1,maxp0, l´

pr ´ lqci,kqq making fi a random vector in the support r0, 1sK .3

The probability that fi,k is exactly 0 is

π
t0u
i,k “

ż ´l
r´l

0

Kumapc|ai,k, bi,kqc (8.6a)

and the probability that fi,k is exactly 1 is

π
t1u
i,k “ 1´

ż 1´l
r´l

0

Kumapc|ai,k, bi,kqc (8.6b)

and therefore the complement

π
p0,1q
i,k “ 1´ π

t0u
i,k ´ π

t1u
i,k (8.6c)

is the probability that fi,k be any continuous value in the open set p0, 1q.

In Section 8.2.4, we will derive regularizers based on π
p0,1q
i,k to promote

sparse outcomes to be sampled with a large probability.

8.2.3 Parameter estimation4

Parameter estimation of neural network models is typically done via maximum-

likelihood estimation, where we approach a local minimum of the negative
2In practice we sample ci,k via a reparameterization of a fixed uniform variable, namely, ci,k “ p1 ´

p1´ εi,kq
1bi,kq1ai,k where εi,k „ Up0, 1q, which much like the Gaussian reparameterization enables back-

propagation through samples [71].
3We use l “ ´0.1 and r “ 1.1. Figure 8.2 illustrates different instances of this distribution.
4The formulations in this section were done in collaboration with Wilker Aziz from the University of

Amsterdam.
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log-likelihood function via stochastic gradient descent with gradient com-

putation automated by the back-propagation algorithm. Unfortunately,

maximum-likelihood estimation for variational auto-encoders is intractable

because the marginal likelihood requires summing over an infinite number

of configurations of the lemma variables zl1 as well as of the morpholog-

ical features f l1. To circumvent this intractability, we employ variational

inference [50].

Using the following shorthand notation:

αpziq , ppzi|x, yăi, zăi, făi, θq (8.7a)

βpfiq ,
K
ź

k“1

ppfi,k|x, yăi, zăi, făi, zi, θq (8.7b)

γpyiq ,
li
ź

j“1

ppyi,j|x, yăi, zďi, fďi, yi,ăj, θq . (8.7c)

The log-likelihood for a single data point can be formulated as:

log ppy|x, θq “ log

ż l
ź

i“1

αpziqβpfiqγpyiqzf (8.8)

Since the above computation is intractable, we employ variational in-

ference [50], where we optimize a lower-bound on the log-likelihood

Eqpz,f |x,y,λq

«

l
ÿ

i“1

log
αpziqβpfiqγpyiq

qpz, f |x, λq

ff

(8.9)

expressed with respect to an independently parameterized posterior ap-

proximation qpz, f |x, y, λq. For as long as sampling from the posterior is

tractable and can be performed via a reparameterization, we can rely on

stochastic gradient-based optimization. In order to have a compact pa-

rameterization, we choose

qpz, f |x, y, λq :“
l

ź

i“1

αpziqβpfiq . (8.10)
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This simplifies the lowerbound, which then takes the form of l nested

expectations, the ith of which is Eαpziqβpfiq rlog γpyiqs. In contrast to the

general approach, we do not deploy an additional inference model, thus,

our approximate posterior is in fact, also our parameterized prior.

Concretely, for a given source sentence x, target prefix yăi, and a latent

sample zďi, fďi, we obtain a single-sample estimate of the loss by computing

Lipθq “ ´ log γpyiq. Although this objective does not particularly promote

sparsity, we employ sparsity-inducing regularization techniques that will

be discussed in the next section.

8.2.4 Regularization

In order to promote sparse distributions for the inflectional features, we

apply a regularizer inspired by expected L0 regularization [65]. Whereas L0

is a penalty based on the number of non-zero outcomes, we design a penalty

based on the expected number of continuous outcomes, which corresponds

to π
p0,1q
i,k as shown in Equation (8.6). For a given source sentence x, target

prefix yăi, and a latent sample zăi, făi, we aggregate this penalty for each

feature

Ripθq “
K
ÿ

k“1

π
p0,1q
i,k (8.11)

and add it to the cost function with a positive weight ρ. The final loss of

the neural machine translation model is

Lpθ|Dq “
ÿ

x,y„D

|y|
ÿ

i“1

Lipθq ` ρRipθq . (8.12)

8.2.5 Predictions

In our model, obtaining the conditional likelihood for predicting the most

likely hypothesis requires marginalization of the latent variables, which is
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intractable. An alternative approach is to heuristically search through the

joint distribution,

arg maxy,z,f ppy, z, f |xq (8.13)

rather than the marginal, an approximation that has been referred to

as Viterbi decoding [97]. During beam search, we populate the beam with

alternative target words, and for each prefix yăi in the beam, we resort

to deterministically choosing the latent variables based on a single sample

which we deem representative of their distributions, which is a common

heuristic in previous work which used variational auto-encoding in ma-

chine translation [111, 90]. For unimodal distributions, such as the Gaus-

sian ppzi|x, yăi, zăi, făiq, we use the analytic mean, whereas for multimodal

distributions, such as the Hard Kumaraswamy ppfi|x, yăi, zďi, făiq, we use

the argmax. The beam search is implemented with the hierarchical search

algorithm described in Section 7.2.2.

8.3 Evaluation

We evaluate our model by comparing its machine translation accuracy

against three baselines used in the previous chapter, including the standard

architecture learning translation at the level of subword units (segmented

with byte-pair encoding or linguistically-motivated vocabulary reduction)

or characters, and the hierarchical decoding architecture employed for gen-

erating all words in the output character by character. For comparison,

we use the results of the experiments given in Section 7.3, where the la-

tent morphology model is also implemented using Pytorch [77] within the

OpenNMT-py framework [56]. In order to see the performance of our

model in languages with different morphological typology, we model the

machine translation task from English into three most sparse languages in

our benchmark: Arabic, Czech and Turkish. The latent morphology model
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Model AR CS TR

BLEU chrF3 BLEU chrF3 BLEU chrF3

Subwords 14.50 0.3992 16.60 0.4123 9.03 0.3804

Char.s 12.72 0.3804 16.94 0.4103 10.63 0.3810

Hierarch. 15.55 0.4154 16.79 0.4068 9.74 0.3771

Hierarch. with LMM 16.06 0.4251 16.97 0.4095 10.93 0.3889

Table 8.1: Results of the experiments in Arabic (AR), Czech (CS) and Turkish (TR)

under low-resource settings using in-domain training data. All improvements over the

baselines are statistically significant (p´ value ă 0.05).

uses the same number of layers as the hierarchical gated recurrent unit

based decoder, where the middle layer is augmented using four multi-layer

perceptrons with 256 hidden units. We use a lemma vector dimension of

150, 10 inflectional features and set the regularization constant to ρ “ 0.4.

We use the same network hyper-parameters as the baselines described in

Section 7.3 during training and decoding.

8.3.1 The Effect of Morphological Typology

The experiment results given in Table 8.1 shows the translation accuracy

obtained with each model. Using the latent morphology model provides

improvements of 0.51 and 0.30 BLEU points in Arabic and Turkish over

the best performing baselines, respectively. The fact that our model can

efficiently work in both Arabic and Turkish suggests that it can handle

the generation of both concatenative and non-concatenative morphological

transformations. The results in the English-to-Czech translation direc-

tion suggest that there might not be a specific advantage of using either

method for generating fusional morphology, where morphemes are already

optimized at the surface level, although our model is still able to achieve

translation accuracy comparable to the character-level model.
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Figure 8.3: The effect of feature dimensions on translation accuracy in Turkish

8.3.2 The Effect of Feature Dimensions

We investigate the optimal lemma and inflectional feature dimensions by

measuring the accuracy in English-to-Turkish translation using different

feature vector dimensions. The results given in Figure 8.3 show that

gradually compressing the word representations computed by the recur-

rent network hidden states, with an original dimension of 512, from 500 to

100, leads to a consistent increase in the output accuracy, suggesting that

encoding more compact representations might provide the model with a

better generalization capability. Our results also show that using a feature

dimension of 10 is sufficient in reaching the best accuracy.

8.3.3 The Effect of Data Size

The results of the experiments conducted in the English-to-Turkish trans-

lation direction by increasing the amount of training data to include cor-

pora from different domains can be seen in Table 8.2. Increased data size

in this case does not necessarily yield a reduction in lexical sparsity, on

the contrary, increases the possibility of observing even more rare words,

either in the form of morphological inflections due to the complex agglu-
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Model TR

BLEU chrF3

Subwords 10.65 0.3893

Char.s 8.94 0.3274

Hierarch. 10.35 0.3870

Hierarch. with LMM 11.48 0.3939

Table 8.2: Results of the experiments in Turkish (TR) under low-resource settings us-

ing multi-domain training data. All improvements over the baselines are statistically

significant (p´ value ă 0.05).

tinative morphology of Turkish, or ambiguous terminology raising from

the multi-domain characteristics. The comparison of the results with the

first experiment using single-domain data show that in case of increased

sparsity in data our model reaches a larger improvement of 0.82 BLEU

points over the best baseline, which is the subword-based neural machine

translation model.

8.3.4 Predicting Unseen Words

In order to illustrate how each model performs in predicting unseen words,

we perform an analysis by sampling the sentences in the development set

which contain out-of-vocabulary words, and compute the average perplex-

ity per character on these sentences using different models, as suggested

by Cotterell et al. [24]. The analysis is performed using the multi-domain

English-to-Turkish neural machine translation models operating on the lev-

els of subwords, characters, or the hierarchical decoding models.

In general, the lowest and highest perplexities are obtained using the

character and subword-based models respectively, indicating that increased

granularity aids in reducing the uncertainty during prediction, with the

exception of Czech, where the values are almost comparable. Due to its

stochastic nature, our model yields higher perplexity values compared to
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the hierarchical model, whereas the values range between subword and

character-based models, possibly finding an optimal level of granularity

between the two solutions.

In order to better illustrate the generative properties of different mod-

els, we present some sample translations in Tables 8.4 and 8.5, obtained

by translating English into Turkish using the neural machine translation

models trained on the multi-domain corpus. The input sentences are se-

lected such that they are sufficiently long so that one can see the ability of

each model in capturing long-distance grammatical dependencies. In this

example, all models fail to predict the correct translation of ‘(to) graph’

in the noun phrase ‘the measure of the technology that I’m trying to graph’

corresponding to (‘çizmek’ ), and assume that the input is a noun, probably

because the verbal form of the word has not been observed before. The

character-based decoder demonstrates the worst capacity in handling these

dependencies within the phrase, accompanied by many other mistakes such

as often repeating or missing words in the sentence, by generating a trans-

lation to the phrase that literally means ‘at the time of the technology which

I am trying to make a graph’. On the other hand, it can generate at least

a verbal phrase meaning ‘to make a graph’, which all other models fail at

achieving. The subword-level decoder generates an output with meaning

‘the technology I work in the graph’, showing mistakes both at grammatical

and lexical level. The output of the hierarchical decoder makes several mis-

Model Perplexity

AR CS TR

Subwords 2.84 2.62 2.78

Char.s 2.46 2.61 2.38

Hierarch. 2.59 2.65 2.46

Hierarch. with LMM 2.68 2.71 2.59

Table 8.3: Normalized perplexity measures per characters in different languages
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takes in the word order and morphological inflection, although gets very

close to the correct translation, with the generated output meaning ‘what-

ever measure of the technology I am working to the graph’. The stochastic

decoder, on the other hand, generates an output that is, while being not in

the same phrasing as in the reference sentence, grammatically correct and

conveys a similar meaning to the input, with the translation ‘the measure

of the technology I am working on the graph’. Only the stochastic decoder

inflects the noun with the preposition to into the correct form.

Input well the answer is, if I drew it on a normal curve

where, let’s say, this is years, this is time of some sort,

and this is whatever measure of the technology that

I’m trying to graph, the graphs look sort of silly.

Output cevap şu, eğer bunu normal bir eğriye çizersem,

Subword-based diyelim ki bu yıllar yıllar, bu bir tür zaman, ve grafikte

Decoder çalıştığım teknoloji her ne ise aptalca gözüküyor.

Output cevap bunu normal bir şekilde çekersem, bu tür bir

Character-based şekilde çekilebilir, ve bu bir şekilde grafik yapmaya

Decoder çalıştığım teknolojinin zamanında

grafiğin grafiklerini ölçebilirim.

Output cevap şu, eğer normal bir eğri çizdiğimde, diyelim ki,

Hierarchical bu yıllar, bu bir şekilde bir şey, ve grafikte çalıştığım

Decoder teknolojinin ne ölçüsü her ne ölçüyor, grafikler aptalca.

Output cevap şu ki, eğer bunu normal bir eğriye çevirdim,

Hierarchical Stochastic diyelim ki, bu yıllar, bu bir çeşit zaman, ve grafiğe

Decoder çalıştığım teknolojinin ölçüsü, grafikler aptalca görünüyor.

Reference cevabı şöyle; eğer bunu normal bir eğri üzerinde

çizersem diyelim ki burası yıllar, bir çeşit zaman,

ve bu da teknolojinin çizmeye çalıştığım hangi ölçeği

ise o. grafikler biraz saçma görünür.

Table 8.4: Example translations with different approaches in Turkish

The second example requires translating a sentence from a typical con-
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versation, which, requires remembering a long context with many refer-

ences. We highlight the words in each output sequence that is generated

for the first time.

Input when a friend of mine told me that I needed to

see this great video about a guy protesting bicycle fines

in New York City, I admit I wasn’t very interested.

Output bir arkadaşım New York’ta bisiklet protestosunu

Subword-based protesto etmek için bu filmi izlemeye

Decoder ihtiyacım olduğunu söylemişti.

Output bana bir arkadaşım bana New York’ta bir adam ile ilgili

Character-based bir adam hakkında görmem gereken bir adam hakkında

Decoder görmem gerektiğini söyledi.

Output bir arkadaşım New York’ta bisiklet yapmaya

Hierarchical ihtiyacım olduğunu söylediği zaman,

Decoder kabul ettim.

Output bir arkadaşım bana, New York City’teki bisiklet

Hierarchical Stochastic finalleri ile ilgili bir adam görmek istediğimi söyledi,

Decoder çok ilgili olmadığımı kabul ediyorum.

Reference bir arkadaşım New York şehrindeki bisiklet cezalarını protesto

eden bir adamın bu harika videosunu izlemem gerektiğini

söylediğinde, kabul etmeliyim ki çok da ilgilenmemiştim.

Table 8.5: Example translations with different approaches in Turkish

In this example, most models fail to generate a complete translation,

starting to forget the sentence history after the generation of a few words,

indicated by the start of generation of repetitions of the previously gener-

ated words. The character-level decoder seems to have the shortest memory

span, followed by the subword-based decoder, which completely omits the

second half of the sentence. The hierarchical decoder generates a full sen-

tence, although it still misses the last four words in the input, and has a few

lexical errors. The stochastic decoder is the only model that generates an

almost complete translation, but still translates the phrase ‘a movie about
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a guy protesting bicycle fines in...’ inaccurately, with the output literally

meaning ‘a man about the bicycle finals in...’.

8.3.5 Feature Variations

In order to understand if the latent inflectional features in fact capture

information about variations related to morphological transformations, we

try generating different surface forms of the same lemma by assigning dif-

ferent values to the inflectional features. We use the hierarchical stochastic

decoder to translate the English word ‘go’, and after sampling the lemma,

we fix its value and vary the values of the inflectional features at random

positions for generating different outputs. Table 8.6 presents different sets

of feature values and the corresponding outputs generated by the decoder.

Features Output English Translation

r1,1,1,1,1,1,1,1,1,1s git go (informal)

r0,1,1,1,1,1,1,1,1,1s ’a git to go

r0,1,0,1,1,1,1,1,1,1s ’da git at go

r0,0,0,1,1,0,0,1,1,0s gidin go (formal)

r1,1,0,0,0,0,1,0,1,1s gitmek to go (infinitve)

r0,0,1,0,0,0,0,0,0,1s gidiyor (he/she/it is) going

r[0,0,0,0,0,0,0,0,1,0s gidip by going (gerund)

r0,0,1,1,0,0,1,0,1,0s gidiyoruz (we are) going

Table 8.6: Outputs of the latent morphology model based on the lemma ‘go’ and different

sets of inflectional features

The model generates different surface forms for different sets of features,

confirming that latent variables encode information related to the infinitive

form of the verb, as well as its formality conditions, prepositions, person,

number and tense. We also observe that many trials based on different

feature combinations may result in the same outputs, although some fea-
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ture values may not be set in a single-word context. Varying the features

individually does not necessarily yield distinct changes in the output, sug-

gesting that some features may act jointly in determining the word form.
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8.4 Conclusion

In this chapter, we presented a stochastic morphology model which for-

mulates the process of word formation through a set of hierarchical latent

variables that are learned in a completely unsupervised fashion based on

phonetic features of words and their lexical context. We integrated this

morphology model within the neural machine translation decoder in or-

der to promote sparsity in lexical representations and induce uncertainty

on the surface forms during prediction. Our model significantly improved

the translation accuracy for the most sparse languages in our evaluation

benchmark, Arabic and Turkish, suggesting that it can learn both tem-

platic and agglutinative morphology under very low-resource settings. We

also presented an analysis indicating the improvements obtained with the

hierarchical stochastic modeling approach, which suggested that modeling

translation based on a context defined at the lexical level aids in learning

better grammatical and contextual dependencies. Moreover, the stochas-

ticity integrated in the decoder improves the capacity of the hierarchical de-

coding model in learning better lexical representations, remembering longer

context, and often times being able to generalize to different word forms.

Our model demonstrated promising application for improving the machine

translation accuracy for morphologically-rich and low-resource languages.
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Chapter 9

Conclusion

This dissertation addressed the vocabulary limitation in neural machine

translation, specifically the difficulty in learning to represent and generate

unknown words, and proposed to solve this task by enhancing the model

with the capability of learning morphology in a completely unsupervised

fashion. In order to achieve a model which has integral knowledge about

the structure of words, we gradually integrated methods for unsupervised

learning of morphology into the neural machine translation model, and

evaluated different approaches to open-vocabulary neural machine transla-

tion in a machine translation benchmark consisting of six languages with

distinct morphological typology.

We started our research in Chapter 5 by proposing a novel statistical

morphological segmentation algorithm which can be used for construct-

ing a subword-level translation vocabulary. Our experiments confirmed

the benefit of preserving morphological information during translation by

showing improvements in translation accuracy of three of the languages in

our evaluation benchmark. On the other hand, our analysis demonstrated

many drawbacks related to the approach of vocabulary reduction based on

statistical subword segmentation, the main one being the requirement of

tuning many hyper-parameters which are not optimized for the transla-
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tion task, and the fact that different algorithms seem to be convenient for

different sets of languages with a certain morphological typology.

Due to the limitations of implementing the neural machine translation

model based on subword units, we extended our approach in Chapters 6

and 7 to model translation at the level of words by augmenting the in-

put embedding layers of the model with a word composition layer, which

learns distributed representations of words from character n-grams. Our

approach showed to be a promising method to represent unknown words in

various languages with different morphological typology, proposing a more

generic solution to overcome the vocabulary limitation in neural machine

translatin. However, processing the sentence context at the level of words

also demonstrated the requirement of using larger training resources, since

there is a higher level of contextual sparsity when the distributed represen-

tations are learned at the level of words rather than subwords, especially

in morphologically-rich languages.

In order to reduce the reliance of the hierarchical neural machine trans-

lation model to high amounts of parallel training resources which are not

available in many languages and providing the decoder with better gener-

alization capability, in Chapter 8 we finally proposed a novel variational

inference algorithm which is used to encode word representations in terms

of latent morphological features which are shared among different words,

allowing to explicitly model the uncertainty in the surface forms of words

during generation. Our model provided significant improvements in trans-

lation accuracy for languages with highly complex morphology even under

low-resource settings.

Besides the improvements gained with our models for translating morpho-

logically-rich and low-resource languages, the models we developed also

demonstrated to be less demanding than conventional methods in terms of

the number of parameters to be learned and stored. On the other hand,
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our methods were deployed only with recurrent architectures, which are

no longer preferred in neural machine translation due to slow process-

ing and convergence times. Implementing our approaches with the feed-

forward architectures used today [108] could allow reaching much efficient

models, although we leave this to future work. Another possible direc-

tion includes exploring the advantage of finding morphological patterns in

multi-lingual neural machine translation, which has shown to be useful for

low-resource languages. Languages with similar morphological typology

could potentially benefit the transfer of morphological information from

the high-resource to the low-resource one if the model is trained for their

joint translation. Since our methods are unsupervised statistical methods,

they can be used in multi-lingual settings to develop a joint morphology

model, aiding the decoder in generating better translations, for instance in

a morphologically-complex and low-resource language.

In a field like machine translation where state-of-the-art models are

rapidly moving towards a direction with increasing demand on data and

resources, we carry the hope that our dissertation can provide better insight

on how to design more generic and efficient solutions that would allow to

study many under-represented languages and be deployed by institutions

who do not have access to expensive computing resources. All of the related

software implementing our models are available for public usage.
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