First generation of the World Wide Web (WWW) enabled users to have instantaneous access to a large diversity of knowledge. Second generation of the WWW (Web 2.0) brought a fundamental change in the way people interact with and through the World Wide Web. Web 2.0 has made the World Wide Web a platform not only for communication and sharing information but also for software development (e.g., web service composition). Web mashup or mashup development is a Web2.0 development approach in which users are expected to create applications by combining multiple data sources, application logic and UI components from the web to cater for their situational application needs. However, in reality creating an even simple mashup application is a complex task that can only be managed by skilled developers. Examples of ready mashup models are one of the main sources of help for users who don't know how to design a mashup, provided that suitable examples can be found (examples that have an analogy with the modeling situation faced by the user). But also tutorials, expert colleagues or friends, and, of course, Google are typical means to find help. However, searching for help does not always lead to a success, and retrieved information is only seldom immediately usable as it is, since the retrieved pieces of information are not contextual, i.e., immediately applicable to the given modeling problem. Motivated by the development challenges faced by a naive user of existing mashup tools, in this thesis we propose toaid such users by enabling assisted reuse of pattern-based composition knowledge. In this thesis we show how it is possible to effectively assist these users in their development task with contextual, interactive recommendations of composition knowledge in the form of mashup model patterns. We study a set of recommendation algorithms with different levels of performance and describe a flexible pattern weaving approach for the one-click reuse of patterns. We prove the generality of our algorithms and approach by implementing two prototype tools for two different mashup platforms. Finally, we validate the usefulness of our assisted development approach by performing thorough empirical tests and two user studies with our prototype tools.

Assisted Reuse of Pattern-Based Composition Knowledge for Mashup Development / Roy Chowdhury, Soudip. - (2013), pp. 1-183.

Assisted Reuse of Pattern-Based Composition Knowledge for Mashup Development

Roy Chowdhury, Soudip
2013-01-01

Abstract

First generation of the World Wide Web (WWW) enabled users to have instantaneous access to a large diversity of knowledge. Second generation of the WWW (Web 2.0) brought a fundamental change in the way people interact with and through the World Wide Web. Web 2.0 has made the World Wide Web a platform not only for communication and sharing information but also for software development (e.g., web service composition). Web mashup or mashup development is a Web2.0 development approach in which users are expected to create applications by combining multiple data sources, application logic and UI components from the web to cater for their situational application needs. However, in reality creating an even simple mashup application is a complex task that can only be managed by skilled developers. Examples of ready mashup models are one of the main sources of help for users who don't know how to design a mashup, provided that suitable examples can be found (examples that have an analogy with the modeling situation faced by the user). But also tutorials, expert colleagues or friends, and, of course, Google are typical means to find help. However, searching for help does not always lead to a success, and retrieved information is only seldom immediately usable as it is, since the retrieved pieces of information are not contextual, i.e., immediately applicable to the given modeling problem. Motivated by the development challenges faced by a naive user of existing mashup tools, in this thesis we propose toaid such users by enabling assisted reuse of pattern-based composition knowledge. In this thesis we show how it is possible to effectively assist these users in their development task with contextual, interactive recommendations of composition knowledge in the form of mashup model patterns. We study a set of recommendation algorithms with different levels of performance and describe a flexible pattern weaving approach for the one-click reuse of patterns. We prove the generality of our algorithms and approach by implementing two prototype tools for two different mashup platforms. Finally, we validate the usefulness of our assisted development approach by performing thorough empirical tests and two user studies with our prototype tools.
2013
XXV
2012-2013
Ingegneria e scienza dell'Informaz (29/10/12-)
Information and Communication Technology
Casati, Fabio
Daniel, Florian
no
Inglese
Settore INF/01 - Informatica
Settore ING-INF/05 - Sistemi di Elaborazione delle Informazioni
File in questo prodotto:
File Dimensione Formato  
RoyChowdhury-thesis.pdf

accesso aperto

Tipologia: Tesi di dottorato (Doctoral Thesis)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 15.29 MB
Formato Adobe PDF
15.29 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/368922
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact