
PhD Dissertation

International Doctorate School in Information and

Communication Technologies

DISI - University of Trento

Assisted Reuse of Pattern-Based Composition

Knowledge for Mashup Development

Soudip Roy Chowdhury

Advisor:

Prof. Fabio Casati and Dr. Florian Daniel

Università degli Studi di Trento

March, 2013

Abstract

First generation of the World Wide Web (WWW) enabled users to have instantaneous

access to a large diversity of knowledge. Second generation of the WWW (Web 2.0)

brought a fundamental change in the way people interact with and through the World Wide

Web. Web 2.0 has made the World Wide Web a platform not only for communication

and sharing information but also for software development (e.g., web service composition).

Web mashup or mashup development is a Web2.0 development approach in which users

are expected to create applications by combining multiple data sources, application logic

and UI components from the web to cater for their situational application needs. However,

in reality creating an even simple mashup application is a complex task that can only be

managed by skilled developers.

Examples of ready mashup models are one of the main sources of help for users who

don’t know how to design a mashup, provided that suitable examples can be found (exam-

ples that have an analogy with the modeling situation faced by the user). But also tutorials,

expert colleagues or friends, and, of course, Google are typical means to find help. How-

ever, searching for help does not always lead to a success, and retrieved information is

only seldom immediately usable as it is, since the retrieved pieces of information are not

contextual, i.e., immediately applicable to the given modeling problem.

Motivated by the development challenges faced by a naive user of existing mashup tools,

in this thesis we propose to aid such users by enabling assisted reuse of pattern-based

composition knowledge. In this thesis we show how it is possible to effectively assist these

users in their development task with contextual, interactive recommendations of composi-

tion knowledge in the form of mashup model patterns. We study a set of recommendation

algorithms with different levels of performance and describe a flexible pattern weaving ap-

proach for the one-click reuse of patterns. We prove the generality of our algorithms and

approach by implementing two prototype tools for two different mashup platforms. Finally,

we validate the usefulness of our assisted development approach by performing thorough

empirical tests and two user studies with our prototype tools.

Keywords[recommendation,weaving,assisted mashup development, personalized recom-

mendation, users studies]

Preface

This thesis is structured as a collection of articles that we published during this work

and those, thus, have been reviewed and accepted by peers in the scientific community.

Chapter 1 presents an executive summary of our research work, providing an overview of

the main problems, research challenges and solutions and the references to our articles

describing in details various parts of the work. Chapter 1 is structured as follows: first,

we provide motivations (in subsection 1.1) for this thesis. Then, we define problems

we identified in the context of the motivating example, research challenges (in section

1.3) associated with the identified problem statement, the research methodology that we

follow (in section1.4) during this research exploration. Section 1.5 summarizes the main

contributions of this thesis. Finally, Section 1.7 discusses the key lessons we learned during

this research work, limitations of this work and future work that we are planning to do

next. All the articles composing this work (cited in Figure 1.13) are included as appendix

at the end of this dissertation.

5

Acknowledgements

Quitting an esteemed research lab job for pursuing Ph.D. study was a tough call for

me back in 2009, however, the great guidances, which I had received from my mentors

and colleagues at IBM Research Lab helped me and motivated me to explore the tough

path of Ph.D. Now, when I analyze my so far journey in research before and during Ph.D.,

I can confidently say that my decision to take up this hard path was justified and I am

deeply grateful to my research mentor Dr. C. Mohan and other great managers from IBM

Dr. Manish Gupta, Dr. Shivkumar Kalyanraman, Dr. Sambit Sahu who had greatly

motivated me to take up the challenge for doing Ph.D.

I wish to convey my sincere gratitude to my advisor Prof. Fabio Casati for giving me

the opportunity to carry out my research in the University of Trento. I would also like to

express my sincere thanks to my co-advisor Dr. Florian Daniel for his advice during my

doctoral research endeavor. As my supervisor, he has constantly motivated me to remain

focused on achieving my goals. His observations and comments helped me to strive for

perfection and to move forward with research in depth.

Besides my advisors, I would like to thank my thesis committee : Prof. Boualem

Benatallah, Prof. Ihab Francis Ilyas and Prof. Cinzia Cappiello, for their encouragement,

insightful comments and feedback.

I would also like to thank Dr. Carlos Castillo, Dr. Patrick Meier for hosting me and

offering me an internship opportunity in Qatar Computing Research Institute that led

me to work on diverse exciting projects in social computing. This work experience has

certainly broaden my perspective as a researcher. I also wish to convey my sincere thanks

to all my colleagues and friends at Qatar Computing Research for providing a friendly

research environment.

I also thank Dr. Sihem Amer Yahia and Prof. Gautam Das for guiding and helping at

times during my Ph.D. journey with their insightful guidance and help. I wish to thank

OMELETTE EU FP7 project and COMPAS EU FP7 project for funding my research.

I also wish to convey my sincere thanks to my research collaborators who have worked

with me in these projects and who have co-authored with me for various publications. I

also thank my colleague and friends at DISI.

Last but not the least, I am deeply thankful to my family for their love and support.

I dedicate this thesis to my mother, who has been the continuous source of motivation in

my life. This last word of acknowledgment I have saved for my dear wife, who has been

with me in all the ups and downs of life. Her sacrifice, unlimited patience, understanding

and continuous encouragements through out my Ph.D journey has made this day possible.

7

(Soudip Roy Chowdhury)

i

ii

Contents

1 Thesis Summary 1

1.1 Motivating scenario and problem statement 1

1.2 State of the art . 3

1.3 Research challenges . 5

1.4 Research steps followed . 5

1.5 Contributions . 6

1.5.1 Theoretical foundation for the assisted re-use of pattern based com-

position knowledge . 6

1.5.2 Efficient, Interactive recommendation of composition patterns . . . 9

1.5.3 Filtering of recommended patterns by user preferences 10

1.5.4 Automated weaving of composition patterns 14

1.5.5 System design for our assisted mashup development platform 15

1.5.6 User studies and validation . 17

1.6 Structure of the thesis . 18

1.7 Conclusion . 20

1.7.1 Dissemination . 20

1.7.2 Limitations and future work . 20

Bibliography 25

Appendix A Wisdom-Aware Computing: On the Interactive Recommen-

dation of Composition Knowledge 27

Appendix B End-user requirements for wisdom-aware EUD 41

Appendix C Composition Patterns in Data Flow Based Mashups 59

Appendix D Efficient, Interactive Recommendation of Mashup Composi-

tion Knowledge 71

iii

Appendix E Discovery and Reuse of Composition Knowledge for Assisted

Mashup Development 87

Appendix F Baya: Assisted Mashup Development as a Service 91

Appendix G Assisting End-User Development in Browser-Based Mashup

Tools 97

Appendix H Assisted Mashup Development: On the Discovery and Rec-

ommendation of Mashup Composition Knowledge 101

Appendix I Complementary Assistance Mechanisms for End User Mashup

Composition 127

Appendix J Interactive Recommendation and Weaving of Mashup Model

Patterns for Assisted Mashup Development 133

iv

Chapter 1

Thesis Summary

All knowledge that the world has ever received comes from the

mind; the infinite library of the universe is in our own mind.

Swami Vivekananda

Despite several efforts for simplifying the composition process, the learning process

for using existing mashup editors remains rather difficult. Due to this difficult learning

process, the development of mashup applications is only achievable by expert developers.

In this thesis, we describe how this barrier can be lowered by means of an assisted devel-

opment approach that enables the reuse of existing composition knowledge. We further

demonstrate and verify how with the help of our efficient interactive pattern recommen-

dation technique, less-skilled user can successfully build mashup applications.

1.1 Motivating scenario and problem statement

In order to better understand the problem that we address in this thesis, let’s have a

look at how a mashup is, for instance, composed in Yahoo! Pipes http://pipes.yahoo.

com/pipes/, one of the most well-known and used mashup platforms as of today. Let us

assume we want to develop a simple pipe that fetches a set of news feeds from Google

News website, filters them according to a predefined condition (in our case, we want to

search for news on products and services by a given vendor), and locates them on a Yahoo!

Map based upon the geo-location associated with each news item.

The pipe that implements the required feature is illustrated in Figure 1.1. It is com-

posed of five components: The URL Builder is needed to set up the remote GeoNames

service http://www.geonames.org/, which takes a news RSS feed as an input, analyzes

its content, and inserts geo-coordinates, i.e., longitude and latitude, into each news item

(where applicable). Doing so requires setting few parameters of the URL Builder com-

http://pipes.yahoo.com/pipes/
http://pipes.yahoo.com/pipes/
http://www.geonames.org/

2 Thesis Summary

ponent: Base=http://ws.geonames.org, Path elements=rssToGeoRSS, and Query pa-

rameters=FeedUrl :news.google.com/news?topic=t&output=rss&ned=us. The so cre-

ated URL is fed into the Fetch Feed component, which fetches the geo-enriched news feed

from the Google News site. In order to filter out the news items we are really interested in,

we need to use the Filter component, which requires the setting of proper filter conditions

via the Rules input field. Feeding the filtered feed into the Location Extractor component

causes the plot of the news items on a Yahoo! Map. Finally, the Pipe Output component

specifies the end of the pipe.

If we analyze the development steps above, we can easily understand that developing

even such a simple composition is out of reach for people without sufficient programming

knowledge, it is even difficult for a less-skilled developer. As pointed out in the Figure

1.1, the URL Builder, for example, requires the correct setting of it’s configuration pa-

rameter. Then, components need to be correctly connected in order to define a consistent

data-flow logic i.e., the output parameter of a component must be mapped correctly to

the input parameter/s of other component/s. But more importantly, plotting news onto a

map requires knowing that this can be done by first enriching a feed with geo-coordinates,

then by fetching the actual feed, and then by plotting the fetched items on a map. Under-

standing all these programming concepts is neither trivial nor intuitive for a less-skilled

developer.

To have a more detailed understanding of the problem space i.e., end user development,

we performed an initial user study [3] with few end users (10 university accountants), who

have little technical expertise. The study revealed that less-skilled developers wished to

be assisted with automatic/contextual help through out the development process in case

they are developing an application. In one hand the less-skilled developers (the users

who have limited technical knowledge; e.g., users who know how to use the basic spread

sheet functionalities but never used any software programming tools) want to be assisted

in their development tasks. On the other hand, more-skilled users (people who possess

technical expertise for programming) develop useful applications using such platforms

and thus generates composition knowledge in terms of best practices. By bridging the

gap between these two types of developer communities (less-skilled and more-skilled), i.e.,

by reusing the knowledge created by the more-skilled users to help the less-skilled ones,

we can reduce the overhead of learning time and enhance the usability for any mashup

tool like Yahoo! Pipes. Designing a suitable recommendation system that helps to reuse

composition knowledge that are either harvested from existing applications developed by

more-skilled users, or are provided by the domain experts themselves could be a viable

solution. However, designing of such a system for the composition development (mashup)

domain, is not the same as designing a recommender for music, books or movie domains.

http://ws.geonames.org
news.google.com/news? topic=t&output=rss&ned=us

State of the art 3

The non-trivial programming concepts (e.g., data flow, control flow, components, con-

nectors, configuration settings etc.) of mashup development, as explained in Figure 1.1,

make the design of a suitable recommendation system more complex and challenging.

Being motivated by this challenge, in this thesis, we address the following problem

statement (PS): How can we assist less-skilled developers in their mashup designs by

providing them necessary support to reuse the existing composition knowledge?

choosing the
right component

filling the correct config.
parameter value

connecting
components together

defining the correct
data mappings

Figure 1.1: Screenshot of the Yahoo! Pipes mashup environment showing typical composition

steps

1.2 State of the art

In the context of web mashups, several works aim to assist less skilled developers in the

design of mashups. Syntactic approaches [23] suggest modeling constructs based on syn-

tactic similarity (comparing output and input data types), while semantic approaches [9]

annotate constructs to support suggestions based on the meaning of constructs. In pro-

gramming by demonstration [1], the system aims to auto complete a process definition,

starting from a set of user-selected model examples. Goal-oriented approaches [?] aim

to assist the user by automatically deriving compositions that satisfy user-specified goals.

Pattern-based development [4] aims at recommending connector patterns (so-called glue

patterns) in response to user selected components (so-called mashlets) in order to au-

4 Thesis Summary

tocomplete the partial mashup. The limitation of these approaches is that they partly

overestimate the skills of less skilled developers, as they either still require advanced mod-

eling skills (which users don’t have), or they expect the user to specify complex rules for

defining goals (which they are not able to), or they expect domain experts to specify and

maintain complex semantic networks describing modeling constructs (which they don’t

do).

The business process management community more specifically focuses on patterns as

a means for knowledge reuse. Among the related works for applying or weaving recom-

mended patterns, the automated pattern application approach [5] uses structural prop-

erties of the current composition model to tell the user which pattern (simple merge,

exclusive choice, parallel branch, and similar) among the workflow patterns introduced

by Van Der Aalst et al. [22] are applicable in the current modeling context. The struc-

tural properties of the workflow patterns are verified against the current process model

structure to check their applicability. These control flow patterns are not able to capture

domain knowledge of the underlying mashup applications, and hence are not contextual.

The syntax-based assistance approach proposed in [8] recommends the user a set of

workflow patterns based on his current process model, and, once a user selects one of the

recommended patterns, weaves the pattern by considering the structural compatibility

among modeling constructs (e.g., a gateway must be followed by an activity in the current

composition). However, this approach is limited to only block-structured models, and also

the instance level information of a composition model (e.g., an activity of type A must

be followed by an activity of type B, and so on) is not captured in the recommended

patterns.

To address the limitations as identified in the existing related works, in our research,

we aim at designing a more generic knowledge reuse approach, that can also be applicable

to design models that are not block-structured. In addition to the structural compati-

bility, we also consider the underlying mashup language (data flow based mashup) while

capturing the knowledge to be reused for the assistance. In summary, in this research

we design a more extensive assistance mechanism that not only interactively recommends

reusable composition knowledge that are applicable to the current application context,

but also enables the one-click knowledge reuse approach by applying (weaving) the knowl-

edge in the current composition context on behalf of a user. The detailed analysis of the

state-of-the-art, for each of the research aspect as addressed in this research, can be found

in corresponding papers as listed in appendices (A-J).

Research challenges 5

1.3 Research challenges

To find a solution to the problem statement PS and to address the gap identified in the

existing state-of-the-art approaches, the specific research challenges (RC) that we address

in this research are:

• RC1: How to design a conceptual model for the interactive development recom-

mendation system that supports the reuse of existing composition knowledge for

developing mashups in a step-by-step manner.

• RC2: How to represent the composition knowledge that captures the typical mod-

eling steps in mashup designs.

• RC3: How to design a set of algorithms that support interactive and contextual

retrieval of composition knowledge at runtime.

• RC4: How to design a set of algorithms that automate the application (weaving) of

the modeling edits (addition or deletion of components, connectors etc.), captured

in a composition knowledge, to the current composition context.

• RC5: How to implement a system that can help us to integrate the solutions for

RC1, RC2, RC3 and RC4 and that also helps us to evaluate the usefulness of our

interactive recommendation approach.

• RC6: How to assess the usability and the accuracy of our recommendation algo-

rithms and our system via user studies and empirical tests.

1.4 Research steps followed

The summary of how we proceeded in our research exploration and the research method-

ology that we followed for the execution of this research are described below:

• The foundation of this thesis is based upon a set of hypotheses that emphasize the

benefit of the assisted reuse of existing composition knowledge in end user develop-

ment.

• We confirmed the validity of our initial hypothesis by performing an early user

study with a low-fidelity mockup of our perceived assisted mashup platform. This

process helped us in eliciting further requirements for the development of new set of

recommendation algorithms to aid less-skilled users during the development process.

6 Thesis Summary

• By analyzing the existing state of the art related to assistance mechanism across mul-

tiple domains, we found a set of novel research challenges that are not yet addressed

in the existing body of research and that we addressed in this research work.

• Based upon the elicited requirements, we defined the theoretical foundation (con-

ceptual model of interactive pattern recommendation, pattern representation) of our

assisted mashup platform, and then we proposed a set of novel interactive recom-

mendation and an automated weaving algorithm that could satisfy the requirements

elicited before and the theoretical foundation defined before.

• To validate the benefit of our proposed algorithms, we developed a prototype system

(Baya) that help us in collecting the necessary data for measuring the viability and

usability of our approach among the target user groups.

• We further elicited requirements for the improvements (e.g., incorporating user pref-

erence aspects for filtering the recommendations) of our algorithms by performing

thorough empirical test of our algorithms.

• We performed user studies with the target user groups to validate and fine tune the

initial hypotheses underlying our approach.

• Finally by disseminating the results of this thesis across several mashup platforms

(Yahoo! Pipes, Apache Rave http://rave.apache.org/, MyCocktail http://www.

ict-romulus.eu/web/mycocktail), we proved the generality as well as the suitabil-

ity of our approach in end user development paradigm in general, mashup develop-

ment in particular.

1.5 Contributions

The contributions of this thesis span across theoretical and algorithmic aspects of interac-

tive, contextual development assistance that address all related research challenges listed

in Section 1.3.

1.5.1 Theoretical foundation for the assisted re-use of pattern based compo-

sition knowledge

The primary goal of the interactive pattern recommender is to assist users in designing

mashups in a step-by-step manner. The knowledge we want to recommend is reusable

composition patterns, i.e., model fragments that bear knowledge that may come from

a variety of possible sources, such as usage examples or tutorials of the modeling tool

http://rave.apache.org/
http://www.ict-romulus.eu/web/mycocktail
http://www.ict-romulus.eu/web/mycocktail

Contributions 7

(developer knowledge), best modeling practices (domain expert knowledge), or recurrent

model fragments in a given repository of mashup models (community knowledge [13]).

The structure and types of composition patterns that capture the typical design steps in

a mashup environment are the core knowledge behind our step-by-step recommendation

approach.

Composition pattern types. Composition patterns capture the typical modeling

steps performed by a developer (e.g., filling input fields, connecting components etc. as

shown in Figure 1.1) in a Pipes-like mashup tool. By analyzing the model of existing

mashups [14], we specifically identified following five types of composition patterns.

• Parameter value pattern. The parameter value pattern represents a set of value

assignments for the input parameters of a component. This pattern helps filling

input parameters of a component that require explicit user input.

• Connector pattern. The connector pattern represents a connector between a pair of

components, along with the data mapping of the target component. This pattern

helps connecting a newly placed component to the partial mashup model in the

canvas.

• Component co-occurrence pattern. The component co-occurrence pattern captures

pairs of components that occur together. It comes with two associated components

as well as with their connector, parameter values, and data mapping logic. This

pattern helps developing mashups incrementally in a connected fashion.

• Component embedding pattern. The component embedding pattern captures which

component is typically embedded into which other component, both being preceded

by another component. This pattern helps, for instance, modeling loops, a task that

is usually not trivial to non-experts.

• Multi-component pattern. The multi-component pattern represents model fragments

that are composed of one or more of the patterns as described before.

This list of pattern types is not exhaustive, but it contains the most representative

steps in mashup designs. These patterns help in understanding the domain knowledge

and the best practices as well as keeping agreed-upon modeling conventions. To read

more about the basic intuitions behind coming up with this set of composition patterns,

one can refer to our earlier work [14].

Conceptual model for interactive pattern recommender. Figure 1.2 depicts

the conceptual model of our interactive pattern recommendation approach. The “white

part” in the right hand side of Figure 1.2 represents the condition or context under which

8 Thesis Summary

Modeling
Action

Select

Drag&Drop

Connect

Fill

Delete

Embed
Object

Composition
Fragment Connector Component Parameter

Field

Partial
Composition 1..N1

Object-action-
recommendation rule

Recommendation

1..N

1
triggers

part of

1..N

1..N

applies to

1

0..N

1

0..N

10..N

Composition pattern

provides

Complete

Substitute

Highlight

Connector Component
embedding Multi-componentParameter value Component

co-occurence

------------- Context for interactive recommendations

------------- Interactive recommendation preliminaries

Figure 1.2: Conceptual model of interactive pattern recommendation approach

a recommendation is triggered by the recommendation algorithm. For example, applying

a modeling action fill to an object of type parameter field triggers a recommendation that

consists of a parameter value pattern. The Object-action-recommendation rule determines

the type/s of recommendations to be invoked based on the current partial composition

state, modeling action and the object inside the current partial composition. The “grey

part” of the Figure 1.2 represents the concepts related to the recommendation. A rec-

ommendation can be to complete a partial composition with a composition pattern or to

substitute an existing component/s in the current composition with a similar one from

the composition pattern, or the recommendation can highlight compatible components in

the current modeling canvas. Composition pattern types are recommended to the users

Contributions 9

1..N

DataMapping

ID
SourceOutputAttribute
TargetParameter
Usage
Date

Connectors

ID
SourceComponent
SourceOutputPort
SourceOutput
TargetComponent
TargetInputPort
Usage
Date

0..1

ParameterValues
ID
Component
Parameter
Value
Usage
Date

MultiComponent
ID
C
DF
DF'
Usage
Date

ComponentCooccur
ID
SourceComponent
TargetComponent
TargetOutput
Usage
Date

Embedding
ID
SourceComponent
EmbeddingComponent
EmbeddedComponent
Usage
Date

0..1

1..N

0..1
1..N

1..N

1..N

0..1

0..1 1..N

1..N

0..1

0..1

Figure 1.3: KB schema for composition patterns

in order to help them to proceed with the development steps. For more details about the

conceptual model and the theoretical foundations of this thesis, we refer the reader to

[13], [15].

1.5.2 Efficient, Interactive recommendation of composition patterns

The algorithmic contributions for the pattern recommender consist of a pattern knowledge

base (KB) that is structured to support fast retrieval of composition patterns at runtime,

an exact and an approximate search algorithm that are designed for the efficient retrieval

of graph-like pattern structures and a novel user-preference based filtering and ranking

algorithm that improves the accuracy of our pattern retrieval algorithm.

Pattern KB. The core of the interactive recommender is the KB that stores composi-

tion patterns, but decomposed into their constituent parts, so as to enable the incremental

recommendation approach.

Figure 1.3 illustrates the structure of the pattern KB. This schema enables fast retrieval

of the composition patterns with a one-shot query over a single table. The KB is partly

redundant (e.g., the structure of a complex pattern also contains components and connec-

tors), but this is intentional. It allows us to avoid expensive database join operations or

to defer them to the moment in which we really need to retrieve all details of a pattern. In

order to retrieve, for example, the representation of a component co-occurrence pattern,

it is therefore enough to query the ComponentCooccur entity for the SourceComponent

and the TargetComponent attributes; weaving the pattern then into the modeling canvas

requires querying ComponentCooccur ./ DataMapping ./ ParameterV alues for details.

Exact and approximate search of recommendations. Patterns in the KB are

retrieved based upon an object-action-recommendation rule, which tells which patterns to

10 Thesis Summary

be retrieved in the current composition context. The object of an action is used as a query

for searching of suitable patterns from the KB. We develop a similarity based algorithm

to retrieve suitable patterns for the given composition context. As for the retrieval of

similar patterns, our goal was to help modelers, not to disorient them. This led us to

the following principles for the identification of “similar” patterns: preference should

be given to exact matches of components and connectors in object, candidate patterns

may differ for the insertion, deletion, or substitution of at the most one component in

a given path in object, and among the non-matching components preference should be

given to functionally similar components (e.g., it may be reasonable to allow a Yahoo!

Map instead of a Google Map). For the fast execution of similarity based algorithm

we pre-process the graph structure of the original patterns, and the query object to an

intermediate representation. This pre-processing step saves us from the costly graph-

traversal steps at runtime. For each retrieved pattern, we compute a rank based on the

pattern description (e.g., containing usage and date), the computed similarity, and the

current partial mashup context. We then sort the patterns based upon their rank value

and group the recommendations by their type, and filter out the topk patterns for each

recommendation type. Details of our pattern recommendation algorithm are described in

[15].

Performance evaluation of our recommendation algorithm. To prove the ef-

ficiency of our recommendation algorithm we wished to verify its performance under

different stress conditions. To perform such stress tests, we generate a realistic test

data set, containing 130 parameter values, 650 component co-occurrence and, 3250 data-

mapping, and 1000 multi-component patterns. In the worst-case scenario (KB of 1000

multi-component patterns, approximate similarity matching of patterns), the recommen-

dation engine retrieves relevant patterns within 608 milliseconds (cf. Figure 1.4). Details

of the performance evaluation tests are described in our previous work [15].

1.5.3 Filtering of recommended patterns by user preferences

A close investigation of users’ development histories in Yahoo! Pipes reveals that users

tend to use same modules/data sources across all applications he/she develops. [21] sug-

gested to recommend items that the user already knows and likes in order to gain users

trust on the recommendation system. Our earlier user study [3] also concluded that users

like to get personalized recommendations that take into consideration their development

preferences. Being motivated by these observations, in this thesis, we hypothesized that fil-

tering of recommendations by considering user’s preferences improves the overall accuracy

of the system. The user’s preferences are derived by analyzing his/her past development

history . Figure 1.5) shows how we crawled Yahoo! Pipes existing pipes catalog to search

Contributions 11

10.098& 20.987&
61.556&

165.784&

586.038&

0&

100&

200&

300&

400&

500&

600&

700&

10& 100& 1000&

Re
tr
ie
va
l)*

m
e)
[m

s]
)

Number)of)pa5erns)in)KB)

Connector&

Par&value&

Co9occurrence&

Mul;9component&

Total&

Recommendation types and times in response to an
addition of a new component to the canvas

Figure 1.4: Performance evaluation for the client-side pattern recommender

for users’ development histories. As shown in the figure, we first crawled all pipes in a

given application domain e.g., news related pipes, then for each of the crawled pipes we

extracted the author’s preference information i.e., number of modules/components and

data sources they have used in their pipes by crawling their development profile page

containing information about pipes they have developed. Totally, we collected develop-

ment profiles information for 441 unique Yahoo! Pipes users. The development profile for

each user contains two matrices, one of which captures the association between the users

(#441) and the modules (#51) and the other matrix contains the association between the

users (#441) and the data-sources (#4781). From these association metrics we derived

an implicit rating matrix for the users-modules and the users-data-sources. We identified

a high sparsity in the rating matrices; a user only uses a few of the modules/data-sources

available in the platform in all his/her pipes and that results in high sparsity in the user-

module/data-sources rating matrix. This phenomenon motivated us to implement the

alternating least square (ALS) algorithm [7], a well known matrix factorization technique

that efficiently handles implicit rating dataset with high sparsity. We then incorporated

the user preference based ranking of modules and data-sources as a filtering criteria for

finding top-k patterns from the retrieved result of our similarity based pattern retrieval

algorithm.

Empirical evaluation for calculating the accuracy of pattern recommender

algorithms. To evaluate the accuracy of our recommendation algorithms (with and with-

out preference based filtering), we followed the widely accepted recommendation system

evaluation metrics such as precision, recall and F1 metrics in our experimental setting.

To calculate these metrics we had to calculate the true positive, false positive and false

12 Thesis Summary

News related Pipes

user's development
history

details of a Pipe
authored by the user

modules used in the
Pipe design

detailed meta data of a pipe
authored by the userother metadata

sources used in the
Pipe design

Figure 1.5: Screenshot depicting the development profile information for a user in Yahoo! Pipes

negative metrics for our test results. If the expected modules were found in the top-k

list as returned by the recommendation engine then we marked the result as true pos-

itive (TP), if the expected module was not found in the recommended top-k list then

we marked the result as false positive (FP), and if the algorithm was not able to return

any recommendation for a step then we marked the result as false negative (FN). The

precision, recall and the F1 measures were calculated by using the standard formula as

described below.

precision =
TP

TP + FP

recall =
TP

TP + FN

F1 =
2*precision*recall

precision + recall

(1.1)

Contributions 13

Original mashup model in Yahoo! Pipes

subgraphs with varying size

A

CAC
E

CE

DED

A C AC
A C

AC
CE

E

AC
A

C CE

E D
ED

(1) (2)

(3)

A C

query Object expected
 recommendation

A C

query Object expected
 recommendation

retrieved patterns Top K (cp.C) = {B,C,F,G}
TP=1
FP=0
FN=0

E

retrieved patterns Top K (cp.C) = {M,N,F,G}
TP=0
FP=1
FN=0

A C

query Object expected
 recommendation

E D

retrieved patterns Top K (cp.C) = {}
TP=0
FP=0
FN=1

Decomposed into subgraphs

Step 1. for |obj.C|=1 Step 2. for |obj.C|=2 Step 3. for |obj.C|=3

C E
CE

E D
ED

CE
C E ED

D

Figure 1.6: Evaluation strategy for calculating the accuracy of our recommendation algorithms

--- |obj.c|=4

--- |obj.c|=3

--- |obj.c|=2

--- |obj.c|=1

algo. w/o
personalization

algo. with
personalization

Recall precision graph for the two variants of our
recommendation algorithm (k=10)

0.59%

0.48%

0.3%

0%

0.78%0.79%

0.72%

0.11%

0%

0.1%

0.2%

0.3%

0.4%

0.5%

0.6%

0.7%

0.8%

0% 0.1% 0.2% 0.3% 0.4% 0.5% 0.6% 0.7% 0.8% 0.9% 1%

pr
ec
is
io
n)

recall)

Figure 1.7: Accuracy measures for the top-10 recommendations by our algorithms

The details of the user preference based filtering algorithm and the empirical evaluation

tests are explained in the paper [19].

The strategy that we followed to perform the evaluation test is described in Figure

1.6. We decomposed a set of 100 pipes into subgraphs and then used them as query for

our recommendation algorithm. In this selection process for 100 test pipes, we also made

14 Thesis Summary

sure that we didn’t consider those pipes that were included for the pattern KB creation.

Based upon the retrieved results we calculated the precision, recall and F1 measures for

our algorithms. We used the same evaluation strategy for both of our recommendation

algorithms, with and without preference based filtering algorithm and the results of the

evaluations are shown in Figure 1.7. In all of our tests, the recommendation algorithm

variant that includes user preference based filtering approach outperformed the naive

version without personalization. This verified our claim that incorporating personalization

in the recommendation algorithm can improve accuracy of the overall system. The details

of this test setup and detailed evaluation results can be found in the paper [19].

1.5.4 Automated weaving of composition patterns

We don’t limit our system functionality to only recommending patterns that can be

applied to the current composition context, but we also help users in progressing their

development task by applying a selected pattern in the current model on behalf of the

user. We call this functionality automated weaving of composition patterns. Weaving

a given composition pattern into a partial mashup model is not straightforward and

requires a thorough analysis of the structure and context for both the pattern and the

partial mashup, in order to understand how to connect the pattern to the constructs

already present in the current composition model. In essence, weaving a pattern means

emulating developer interactions inside the modeling canvas, so as to connect a pattern

to the partial mashup.

We approached the problem of pattern weaving by first defining a basic weaving strat-

egy that consists of steps (mashup operations) required for weaving a composition pattern

type. For example weaving a parameter value pattern requires a mashup operation (as-

signing a parameter value to a parameter field of a component) to be performed. The

Basic weaving strategy is agnostic regarding the current composition context.

While applying a basic weaving strategy in the current composition context, we may

come across model conflict situations. For example, while applying the value to a param-

eter field of a component, we may come across a situation in which the selected parameter

field for the component already contains a value. In such a case we resolve the modeling

conflict with the help of a conflict resolution policy, which determines whether to override

an existing modeling construct (in this case the value for the parameter of the component)

or to keep it. After resolving all possible modeling conflicts, finally, a set of contextual

weaving instructions are generated which apply a pattern in the current composition con-

text. The first discussion about our automated weaving approach is discussed in the paper

[11], and a more detailed version of the related discussion is included in the paper [19].

Contributions 15

Interactive modeling environment in client browser

Event busKB loader

 cp

Recom-
mendation
 R

Query q

Patterns

Co
m

po
sit

io
n

pa
tte

rn
, u

se
rs

 ra
tin

gs

Pa
tte

rn
 u

sa
ge

 s
ta

tis
tic

s

User
selection

cp

Modeling
instructions
instr

Object-action-
recommend. mapping

Similarity
metrics

Ranking
algos

pm

Modeling action
<object,action>

pm

Modeling action
<object,action>

Modeling
instructions

instr

 object

Interactive modeling environment

Modeling canvas

Re
co

m
en

da
tio

n
pa

ne
l

Partial mashup
model

 pm

Event
interceptor

Mashup
operation
enactor

Client-side
knowledge base

Conflict
resolver

Weaving
instructor

Basic
strategy
selectorBasic

strategies

Conflict
res. policies Basic

strategy
Contextual
Strategy

<c
p,

ob
je

ct
>

Synchronization
of client side and
server side pattern
knowledge base

Pattern weaver

Pa
tte

rn
in

st
an

ce

cp
'

us
er

se

le
ct

io
n

cp

Recommendation
engine

pattern KBuser-ratings

Composition server

steps related to recommendation steps related to weaving

on
lin

e
st

ep
s

online steps offline steps

User
development

history

users dev.
profile creator

user implicit
rating calculator

pattern KBuser-ratings

user ratings matrix

Server-side
knowledge base

of
fli

ne
 s

te
ps

Figure 1.8: Functional architecture of the interactive pattern recommendation and automated

weaving approach

1.5.5 System design for our assisted mashup development platform

Figure 1.8 (adapted from the architecture diagram presented in [2]) details the internals

of our pattern recommender and weaving approach. In the server side the composition

pattern KB is managed. The development profiles for users are also created and stored

in the server side knowledge base. The server side knowledge and the client side KB get

synchronized at runtime and then on the recommendation algorithm queries the client

side knowledge base for the retrieval of the composition patterns and for the user profile

information. The recommendation and weaving logic resides in the client side. We also

16 Thesis Summary

Yahoo! Pipes
modeling canvas

Newly added component

Baya recommendation panel

Recommended
patterns

Details about
selected pattern

Component
toolbar

Figure 1.9: Screenshot of Baya: an assisted mashup platform as a service

distinguish between online and offline steps involved in our system.

Baya: Assisted mashup development as a service. To realize our interactive,

contextual pattern recommendation and automated weaving algorithms, we developed a

prototype tool named Baya [17]. Baya aims to seamlessly extend existing mashup or

composition instruments with advanced knowledge reuse capabilities. It targets both ex-

pert developers and beginners and aims to speed up the former and to enable the latter.

The design goals behind Baya can be summarized as follows: We didn’t want to develop

yet another mashup environment; so we opted for an extension of existing and working

solutions (e.g., Yahoo! Pipes, Apache Rave etc.). Baya is implemented as Mozilla Fire-

fox (http://mozilla.com/firefox) extension for Yahoo! Pipes, adding an interactive

recommendation panel to the modeling canvas. Figure 1.9 shows a screenshot of Baya in

action, to view a working demonstration of Baya’s assisted mashup development approach

one can refer to this screencast at http://www.youtube.com/watch?v=AL0i4ONCUmQ.

Extension of Baya for assisting widget-based mashup. In order to make the

Baya approach applicable to any browser-based mashup tool [12], we are working towards

http://mozilla.com/firefox
http://www.youtube.com/watch?v=AL0i4ONCUmQ

Contributions 17

Newly added widget

Recommended patterns

Rate the pattern

Weave
 the pattern

reacts to addition of

click and get details

Figure 1.10: Screen shot showing of Baya extension a.k.a workspace pattern recommender widget

in action

extending Baya’s recommendation and weaving algorithms for other mashup tools. In

the context of an European union project OMELETTE (http://www.ict-omelette.

eu/home), we implemented a pattern recommender widget (an extension of Baya) to

support W3C widget based mashup development in an open-source mashup platform

Apache Rave (http://rave.apache.org/). The pattern recommender (cf. Figure 1.10)

aids users of Apache Rave in building their mashups by reusing existing composition

knowledge. To understand better how we extended Baya’s pattern recommendation and

weaving algorithm in the pattern recommender widget implementation, we refer the reader

to [10] (page 26-31) and [18].

1.5.6 User studies and validation

Assessing the usability of Baya for end user development. To asses the effec-

tiveness of our assisted development approach, two user studies were performed during

the course of this research. The first user study was performed by us, with the help of

Amazon’s Mechanical Turk crowd sourcing platform (https://www.mturk.com/mturk/

welcome). We specifically tested whether Baya speeds up the development process, re-

duces the user interactions, and reduces thinking time during the development. Details

of these hypotheses are explained in [18]. We performed Welch’s t-test for equal sam-

http://www.ict-omelette.eu/home
http://www.ict-omelette.eu/home
http://rave.apache.org/
https://www.mturk.com/mturk/welcome
https://www.mturk.com/mturk/welcome

18 Thesis Summary

50
0

10
00

15
00

20
00

25
00

10
0

20
0

30
0

40
0

50
0

60
0

3
4

5
6

7
8

Control Group Test Group

D
ev

el
op

m
en

t t
im

e
in

 s
ec

on
ds

N
um

be
r o

f u
se

r i
nt

er
ac

tio
ns

Control Group Test Group Control Group Test Group

Th
in

ki
ng

 ti
m

e
(d

ev
. t

im
e

/ n
um

be
r

of
 in

te
ra

ct
io

ns
) i

n
se

co
nd

s

(a) Mean development time in
designing a pipe without and with Baya

(b) Mean number of user interactions in
designing a pipe without and with Baya

(c) Mean thinking time for designing
a pipe without and with Baya

50
0

10
00

15
00

 2

00
0

 2

50
0

10
0

20

0

30
0

40

0

50
0

60

0

3

4

5

6

7

8

Figure 1.11: Results for Baya’s usability validation test executed on the mechanical turk crowd-

sourcing platform with 30 participants split into a control and a test group

ple sizes and unequal variance on the evaluation results data (cf. Figure1.11) and that

could statistically confirm the viability of the first two hypotheses. In response to the

questionnaire that we asked users to fill in with feedbacks, the majority of the users (73%

of control group and the 80% of test group) confirm the benefits of such an interactive

recommendation utility in the end user development.

To cross-validate the result of our first user study another follow-up study was con-

ducted with our protype system by T-Systems http://www.t-systems-mms.com/ and

Huwaei http://www.huawei.com/en/ in the context of OMELETTE project. The aim

of that study was again to evaluate the usefulness of our assisted development approach in

an end-user mashup design scenario. The study was conducted in China and in Germany

and totally 22 participants took part in that study. The study result as shown in the

Figure 1.12 re-confirms the validity of our earlier assumption that Baya speeds up the

development (mean development time of 57 sec for the test group against 137 sec for the

control group). 67% of all users agreed that this feature was important or even essential

for a mashup environment. Few users also reported that Baya’s assistance helped them to

learn the usage of new widgets, which they were unaware of. These study results not only

backs our claims about the usefulness of Baya in end-user development paradigm, but

they also reveal the didactic value of our interactive step-by-step assistance mechanism.

Details of the study and the test results is explained in [18].

1.6 Structure of the thesis

Figure 1.13 describes the organization of chapters and contributions in this thesis. Pub-

lications as shown inside each box in the figure are structured by their interdependency.

http://www.t-systems-mms.com/
http://www.huawei.com/en/

Structure of the thesis 19
50

10
0

15
0

20
0

0
50

10
0

15
0

D
ev

el
op

m
en

t t
im

e
in

 s
ec

on
ds

Control Group Test Group

50

10

0

15

0

20

0

 Mean development time in extending a
workspace without and with pattern

recommender

(a) Results of user study conducted
in China

D
ev

el
op

m
en

t t
im

e
in

 s
ec

on
ds

50

10
0

15
0

Control Group Test Group

 Mean development time in extending a
workspace without and with pattern

recommender

(b) Results of user study conducted in
Germany

Figure 1.12: Results for usability validation test executed in China and in Germany to evaluate

the benefit of pattern recommender tool

Appendix A conveys the generic motivation for this research and introduces the idea

of interactive recommendation of composition knowledge. It also describes the theoreti-

cal foundation for our assisted development approach. In the paper in Appendix B, we

describe how with the help of a user study, we elicited requirements for the assisted de-

velopment platform. In the paper in Appendix C, we discuss types and structures for

each of the composition patterns that represent the reusable knowledge. In Appendix

D we discuss the algorithms behind our interactive recommendation approach with the

performance evaluation test. In Appendix E we show the architecture of our assisted

development platform and in Appendix F we explain our first prototype tool Baya that

realizes the interactive recommendation approach as discussed and elaborated in the previ-

ous Appendices. In Appendix H we first discuss about the automated weaving algorithms.

In Appendix G we proposed how we envision to support different browser-based mashup

tools with our pattern recommendation and weaving algorithms. To continue this thread,

in Appendix I we explain how we implemented our assisted mechanism for Apache Rave’s

mashup platform. This paper also discuss about a user study that is performed in China

and in Germany with target users to asses the usefulness of our approach in an end-user

development scenario. Finally Appendix J elaborates all our contributions (recommenda-

tion algorithm and weaving algorithm) in deeper details. It also shows different versions

of our recommendation algorithm with detailed empirical results. This also paper also re-

ports another user study that we performed on Mechanical Turk’s crowd-sourced platform

to assess the viability of three hypotheses behind our interactive pattern recommendation

20 Thesis Summary

approach.

How to read this thesis

Depending on the reader’s interest in details, we suggest three different ways of reading

these papers:

• The complete picture of the work done in this thesis and its evolution from the first

ideas to the final test of the algorithms, the lesson learned and the conclusion are

summarized in Chapter 1 and are described in all details in the papers attached as

appendices (A-J).

• The core contributions of the work are best described in publications [11; 15; 19].

• Implementation details for tools, which demonstrate the realization of the our inter-

active pattern recommendation algorithm and the automated weaving approach are

described in [10; 16].

1.7 Conclusion

1.7.1 Dissemination

During the course of this research we disseminated the interim results and the knowledge

gathered in several reputed international conferences and journals (cf. appendices A-J).

In terms of applications, we developed an open source tool Baya, as a Firefox extension

for Yahoo! Pipes. The datasets that we have collected for our experimentations (both the

pattern KB and the developer profiles in Yahoo! Pipes) is made available for the benefit of

larger research communities. In the context of an European Union project OMELETTE

(http://www.ict-omelette.eu/home), we used the results of our interactive pattern

based recommendation and automated weaving algorithms by implementing assistance

plugin tools for two actively open-source mashup platforms Apache Rave and MyCocktail.

This thesis also produces one bachelor thesis and one international recognition (winner for

Graduate Category in ACM Student Research Competition 2012 http://src.acm.org/

winners.html) for the work entitled “Assisting Mashup Development in Browser Based

Modeling Tool” [12].

1.7.2 Limitations and future work

We believe that this dissertation has initiated a new line of research in the field of assisted

end user development by reusing existing composition knowledge. However, similar to any

other work, our proposal has some limitations that we discuss in this section. Some of

these limitations can be handled by further analysis of the given methods or extending the

http://www.ict-omelette.eu/home
http://src.acm.org/winners.html
http://src.acm.org/winners.html

Conclusion 21

experimental study, while others are intrinsic in the design of our models and techniques,

and may be addressed by adopting different approaches and/or technical tools.

Some of the limitations that we have identified and are working toward addressing

them in our future works are listed below:

• Coverage of the pattern KB. As reported in Figure 1.7, the accuracy of our

recommendation algorithm falls down sharply once we go beyond the query object

size of 3. This is due to the low coverage of our pattern KB for patterns with size

more than 4. This is partly because while building the knowledge base for the initial

prototype system, we only considered a subset of pipes (tagged as “most popular”

pipes) as an input for the pattern mining algorithm, that we considered as the source

for the composition pattern. The high support value required for identifying multi-

component patterns with many components (more than 4) by the pattern mining

algorithm also contribute to this low coverage problem.

To address the pattern KB’s coverage issue, in our future work we are planning to

crawl the entire mashup repository of Yahoo! Pipes, which has several thousands

of pipes models available. We also wish to explore other sources for composition

pattern knowledge (e.g., knowledge contributed by domain experts) in the future

design of our system. As a step towards that, we are working towards defining

algorithms for finding expert users in a development platform like Yahoo! Pipes. By

analyzing these expert users’ mashup designs we can further identify knowledge for

our recommendation algorithm. This process is not straight-forward and has it’s own

research challenges. In our future work we are going to address them one-by-one.

We also want to cross-verify the effect of different sources of composition knowledge

(e.g., knowledge from the expert users vs knowledge mined from the repository) on

the quality of recommendations.

• Usability issues for the consumption of recommendations. Accepting/reject-

ing a recommendation as suggested by any recommendation system requires users to

understand the recommended pattern (details of what is recommended and why it

is recommended). In our tool we show users the details of a recommended patterns

in the form of a preview of a pattern and the associated meta data (e.g., how many

users used a pattern or liked a pattern). However, we believe, that to enhance the

usability and transparency of our recommendation approach, more work is required

in terms of representation of recommendations in the UI.

As a solution for this limitation, more work is required to understand the most user

friendly and intuitive representation for composition patterns inside the UI. However,

this is a highly tool-specific issue and, hence, requires different solutions for different

22 Thesis Summary

mashup environments. In addition to this, we are also working on improving the

usability of our recommendation system by providing more explanations (why a

pattern is suggested, and what would a pattern do in the current context) about

the suggested recommendations. We believe that an explanation along with each

recommended steps will increase the transparency of our recommendation system to

users.

• Limiting the novelty of recommendations. Personalization or preference-based

filtering of recommendations certainly increases the relevance of recommendations

to a user, but it also limits the novelty of recommendations (only preferred mod-

ules/data sources always appear in the top-k recommended list). This may limit the

usefulness and the didactic aspects of a recommendation system.

To address this issue, we are working on techniques to introduce diversity into rec-

ommendations. We hypothesize that a right balance of novelty and personalization

in recommendations can make our recommendation system more valuable to users.

• Scalability of the personalized recommendation algorithm. New users (for

whom the system doesn’t have the development preference information) of our as-

sisted development platform poses challenges to the personalized recommendation

algorithm. Since the system has no knowledge about the ratings for modules and

data-sources for such users, it can’t calculate the preference metrics for them. In

order to get their development preference information, the system is required to re-

execute the implicit-rating matrices calculation for all users. Re-doing this matrix

factorization step for a large dataset is an expensive process, and may hinder the

overall performance of our recommendation system.

To address the scalability issue of our personalized recommendation algorithm, in

our future work we will explore the applicability of incremental singular value decom-

position algorithm [20] and other state-of-the-art collaborative filtering techniques

in the context of our recommendation algorithm.

This dissertation presents our work in supporting the reuse of pattern-based composi-

tion knowledge for mashup development. Our study provides the theoretical foundation

of the assisted mashup development and introduces an efficient mechanism (interactive

recommendation of composition patterns and automated weaving of composition pat-

terns) to provide contextual development assistance to less skilled users. We designed

and implemented two research prototype tools that realize our interactive development

recommendation approach for two different mashup platforms. We performed thorough

performance and accuracy evaluation tests to demonstrate the efficiency of our recom-

Conclusion 23

mendation algorithm. We also reported the results of two evaluation tests which were

performed to assess the value of our approach for two different mashup tools and target

users. The results of the tests confirm the applicability and the usefulness of our ap-

proach in the mashup development domain. During this research, we learned that just

like recommendation systems in other domains, the knowledge (composition patterns)

is the key behind the usefulness for an assisted platform in the mashup development;

when the knowledge is recommended (interactivity, efficiency) and how it is recommended

(knowledge representation in the UI), determine the usefulness of an assisted development

approach to it’s users.

WESOA [13]

December
2010 Appendix A

Position paper on the idea of
interactive recommendation of
composition knowledge to assist
less skilled developers. The
concept was called Wisdom-
Aware Computing.

EuroPLoP [14]

July 2011 Appendix C
Analysis of the different types
of composition knowledge
patterns that can be
recommended. The approach
in the paper is accepted by the
pattern community.

IS-EUD [3]

June 2011 Appendix B

End-user study to assess the
viability of the recommendation idea
based on a conceptual design
(mockups). The work was done
together with the Human-Computer-
Interaction group in UNITN.

ICSOC [15]

December
2011 Appendix D

Pattern knowledge base plus
algorithms for recommending
composition patterns based on
exact and similarity search
techniques with performance
evaluation.

WWWa [2]

April 2012 Appendix E
Poster paper to publish the
integrated architecture for
pattern mining and
recommendation algorithms.

WWWb [17]

April 2012 Appendix F
Demo paper on running
prototype of recommendation
panel integrated into Yahoo!
Pipes. The tool is called
Baya.

Web Services Handbook -
in press [11]

2013 Appendix H
Book chapter which details
first the algorithms behind the
automated weaving
approach.

TWEB - to be submitted [19]

 2013 Appendix J

Detailed analysis of the
recommendation and weaving
algorithms by reporting the
empirical evaluation results.
Report of 2 user study results
demonstrating the usefulness of our
approach.

ICSE [12]

June 2012 Appendix G

WWWc - submitted [18]

2013 Appendix I

Extension of our interactive
pattern recommendation and
weaving algorithm for another
mashup language and tool.
Report of an user study result to
prove the correctness of our initial
hypotheses.

Flow of research explorations
during this thesis and
 their inter-connections

Discussion about different aspects
for assisting end-user development
in different browser-based
mashup tools. This work was
presented in 2012 ACM student
research competition

Figure 1.13: Timeline of scientific, peer-reviewed publications describing the major contributions

of this thesis and their interdependencies

Bibliography

[1] Cypher, Allen; Halbert, Daniel C.; Kurlander, David; Lieberman, Henry; Maulsby, David; Myers, Brad A.,

and Turransky, Alan, editors. Watch what I do: programming by demonstration. MIT Press, Cambridge,

MA, USA, 1993. ISBN 0-262-03213-9.

[2] Daniel, Florian; Rodriguez, Carlos; Roy Chowdhury, Soudip; Motahari Nezhad, Hamid R., and Casati,

Fabio. Discovery and reuse of composition knowledge for assisted mashup development. In Proceedings

of the 21st international conference companion on World Wide Web, WWW ’12 Companion, pages 493–

494, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1230-1. doi: 10.1145/2187980.2188093. URL

http://doi.acm.org/10.1145/2187980.2188093.

[3] De Angeli, Antonella; Battocchi, Alberto; Roy Chowdhury, Soudip; Rodŕıguez, Carlos; Daniel, Florian, and

Casati, Fabio. End-User Requirements for Wisdom-Aware EUD. In IS-EUD’11, pages 245–250, 2011.

[4] Deutch, Daniel; Greenshpan, Ohad, and Milo, Tova. Navigating in complex mashed-up applications. Proc.

VLDB Endow., 3(1-2):320–329, September 2010. ISSN 2150-8097. URL http://dl.acm.org/citation.cfm?

id=1920841.1920885.

[5] Gschwind, Thomas; Koehler, Jana, and Wong, Janette. Applying patterns during business process mod-

eling. In BPM’08, pages 4–19. Springer, 2008. ISBN 978-3-540-85757-0. doi: http://dx.doi.org/10.1007/

978-3-540-85758-7 4. URL http://dx.doi.org/10.1007/978-3-540-85758-7_4.

[6] Henneberger, Matthias; Heinrich, Bernd; Lautenbacher, Florian, and Bauer, Bernhard. Semantic-Based

Planning of Process Models. In Multikonferenz Wirtschaftsinformatik’08, 2008.

[7] Koren, Yehuda; Bell, Robert, and Volinsky, Chris. Matrix factorization techniques for recommender systems.

Computer, 42(8):30–37, August 2009. ISSN 0018-9162. doi: 10.1109/MC.2009.263. URL http://dx.doi.

org/10.1109/MC.2009.263.

[8] Mazanek, Steffen and Minas, Mark. Business Process Models as a Showcase for Syntax-Based Assistance in

Diagram Editors. In MODELS ’09, pages 322–336, 2009.

[9] Ngu, A.H.H.; Carlson, M.P.; Sheng, Q.Z., and young Paik, Hye. Semantic-based mashup of composite

applications. IEEE TSC, 3(1):2 –15, 2010. ISSN 1939-1374. doi: 10.1109/TSC.2010.8.

[10] OMELETTE Consortium, . D3.4 Interim MDP Prototype Implementation. Technical report,

http://www.ict-omelette.eu/c/document_library/get_file?p_l_id=48742&folderId=139741&name=

DLFE-10845.pdf, 2012.

[11] Rodŕıguez, Carlos; Roy Chowdhury, Soudip; Daniel, Florian; R. Motahari Nezhad, Hamid, and Casati, Fabio.

Assisted Mashup Development: On the Discovery and Recommendation of Mashup Composition Knowledge

– In Press, pages 683–708. Springer, 2013.

http://doi.acm.org/10.1145/2187980.2188093
http://dl.acm.org/citation.cfm?id=1920841.1920885
http://dl.acm.org/citation.cfm?id=1920841.1920885
http://dx.doi.org/10.1007/978-3-540-85758-7_4
http://dx.doi.org/10.1109/MC.2009.263
http://dx.doi.org/10.1109/MC.2009.263
http://www.ict-omelette.eu/c/document_library/get_file?p_l_id=48742&folderId=139741&name=DLFE-10845.pdf
http://www.ict-omelette.eu/c/document_library/get_file?p_l_id=48742&folderId=139741&name=DLFE-10845.pdf

26 Bibliography

[12] Roy Chowdhury, Soudip. Assisting end-user development in browser-based mashup tools. In ICSE, pages

1625–1627, 2012.

[13] Roy Chowdhury, Soudip; Rodŕıguez, Carlos; Daniel, Florian, and Casati, Fabio. Wisdom-aware computing:

On the interactive recommendation of composition knowledge. In WESOA’10, pages 144–155. Springer,

2010.

[14] Roy Chowdhury, Soudip; Birukou, Aliaksandr; Daniel, Florian, and Casati, Fabio. Composition patterns in

data flow based mashups. In Proceedings of EuroPLoP 2011, pages 27–28, 2011.

[15] Roy Chowdhury, Soudip; Daniel, Florian, and Casati, Fabio. Efficient, Interactive Recommendation of

Mashup Composition Knowledge. In ICSOC’11, pages 374–388, 2011.

[16] Roy Chowdhury, Soudip; Rodŕıguez, Carlos; Daniel, Florian, and Casati, Fabio. Baya: Assisted Mashup

Development as a Service. In WWW’12, 2012.

[17] Roy Chowdhury, Soudip; Rodŕıguez, Carlos; Daniel, Florian, and Casati, Fabio. Baya: assisted mashup

development as a service. In Proceedings of the 21st international conference companion on World Wide

Web, WWW ’12 Companion, pages 409–412, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1230-1.

doi: 10.1145/2187980.2188061. URL http://doi.acm.org/10.1145/2187980.2188061.

[18] Roy Chowdhury, Soudip; Chudnovskyy, Olexiy; Niederhausen, Matthias; Pietschmann, Stefan; Sharples,

Paul; Daniel, Florian, and Gaedke, Martin. Complementary assistance mechanisms for end user mashup

composition– submitted. In WWW ’ 13, 2013.

[19] Roy Chowdhury, Soudip; Daniel, Florian, and Casati, Fabio. Interactive recommendation and weaving of

mashup model patterns for assisted mashup development– to be submitted. In ACM Transactions on the

Web, 2013.

[20] Sarwar, Badrul; Karypis, George; Konstan, Joseph, and Riedl, John. Incremental singular value decompo-

sition algorithms for highly scalable recommender systems. In Fifth International Conference on Computer

and Information Science, pages 27–28, 2002.

[21] Shani, Guy and Gunawardana, Asela. Evaluating recommendation systems. In Recommender Systems

Handbook, pages 257–297. 2011.

[22] Van Der Aalst, W. M. P.; Ter Hofstede, A. H. M.; Kiepuszewski, B., and Barros, A. P. Workflow patterns.

Distrib. Parallel Databases, 14:5–51, July 2003. ISSN 0926-8782.

[23] Wong, Jeffrey and Hong, Jason I. Making mashups with marmite: towards end-user programming for the web.

In CHI’07, pages 1435–1444. ISBN 978-1-59593-593-9. doi: http://doi.acm.org/10.1145/1240624.1240842.

URL http://doi.acm.org/10.1145/1240624.1240842.

http://doi.acm.org/10.1145/2187980.2188061
http://doi.acm.org/10.1145/1240624.1240842

Appendix A

Wisdom-Aware Computing: On the

Interactive Recommendation of

Composition Knowledge

Soudip Roy Chowdhury, Carlos Rodrguez, Florian Daniel and Fabio Casati. Wisdom-Aware Com-

puting: On the Interactive Recommendation of Composition Knowledge. Proceedings of WESOA

2010, December 2010, Springer.

Wisdom-Aware Computing: On the Interactive
Recommendation of Composition Knowledge

Soudip Roy Chowdhury, Carlos Rodríguez, Florian Daniel and Fabio Casati
University of Trento, Via Sommarive 14, 38123 Povo (TN), Italy

{rchowdhury,crodriguez,daniel,casati}@disi.unitn.it

Abstract. We propose to enable and facilitate the development of service-based
development by exploiting community composition knowledge, i.e., knowledge
that can be harvested from existing, successful mashups or service composi-
tions defined by other and possibly more skilled developers (the community or
crowd) in a same domain. Such knowledge can be used to assist less skilled de-
velopers in defining a composition they need, allowing them to go beyond their
individual capabilities. The assistance comes in the form of interactive advice,
as we aim at supporting developers while they are defining their composition
logic, and it adjusts to the skill level of the developer. In this paper we specifi-
cally focus on the case of process-oriented, mashup-like applications, yet the
proposed concepts and approach can be generalized and also applied to generic
algorithms and procedures.

1 Introduction

Although each of us develops and executes various procedures in our daily life (ex-
amples range from cooking recipes to low-level programming code), today very little
is done to support others, possibly less skilled developers (or, in the extreme case,
even end users) in developing their own. Basically, there are two main approaches to
enable less skilled people to “develop”: either development is eased by simplifying it
(e.g., by limiting the expressive power of a development language) or it is facilitated
by reusing knowledge (e.g., by copying and pasting from existing algorithms).

Among the simplification approaches, the workflow and BPM community was
one of the first to claim that the abstraction of business processes into tasks and con-
trol flows would allow also the less skilled users to define own processes, however
with little success. Then, with the advent of web services and the service-oriented
architecture (SOA), the web service community substituted tasks with services, yet it
also didn’t succeed in enabling less skilled developers to compose services. Recently,
web mashups added user interfaces to the composition problem and again claimed to
target also end users, but mashup development is still a challenge for skilled develop-
ers. While these attempts were aimed at simplifying technologies, the human com-
puter interaction community has researched on end user development approaching the
problem from the user interface perspective. The result is simple applications that are
specific to a very limited domain, e.g., an interactive game for children, with typically
little support for more complex applications.

As for what regards capturing and reusing knowledge, in IT reuse typically
comes in the form of program libraries, services, or program templates (such as gener-
ics in Java or process templates in workflows). In essence, what is done today is either
providing building blocks that can be composed to achieve a goal, or providing the
entire composition (the algorithm – possibly made generic if templates are used),
which may or may not suit a developer’s needs. In the nineties and early 2000s, AI
planning [1] and automated, goal-oriented compositions (e.g., as in [2]) became popu-
lar in research. A typical goal there is to derive a service composition from a given
goal and a set of components and composition rules. Despite the large body of inter-
esting research, this thread failed to produce widely applicable results, likely because
the goal is very ambitious and because assumptions on the semantic richness and
consistency of component descriptions are rarely met in practice. Other attempts to
extract knowledge are, for example, oriented at identifying social networks of people
[3] or at providing rankings and recommendations of objects, from web pages (Goo-
gle’s Pagerank) to goods (Amazon’s recommendations). An alternative approach is
followed by expert recommender systems [4], which, instead of identifying knowl-
edge, aim at identifying knowledge holders (the experts), based on their code produc-
tion and social involvement.

In this paper, we describe WIRE, a WIsdom-awaRE development environment we
are currently developing in order to enable less skilled developers to perform also
complex development tasks. We particularly target process-oriented, mashup-like
applications, whose development and execution can be provided as a service via the
Web and whose internals are characterized by relatively simple composition logic and
relatively complex tasks or components. This class of programs seems to provide both
the benefit of (relative) simplicity and a sufficient information base (thanks to the
reuse of components) to learn and reuse programming/service composition knowl-
edge. The idea is to learn from existing compositions (or, in general, computations)
and to provide the learned knowledge in form of interactive advice to developers
while they are composing their own application in a visual editor. The aim is both to
allow developers to go beyond their own development capabilities and to speed up the
overall development process, joining the benefits of both simplification and reuse.

Next, we discuss a state of the art composition scenario and we show that it is eve-
rything but trivial. In Section 3, we discuss the state of the art in assisted composition.
In Section 4 and 5, we investigate the idea of composition advices and provide our
first implementation ideas, respectively. Then we conclude the paper and outline our
future work.

2 Example Scenario and Research Challenges

In order to better understand the problem we want to address, let’s have a look at how
a mashup is, for instance, composed in Yahoo! Pipes (http://pipes.yahoo.com/pipes/),
one of the most well-known mashup platforms as of today. Let’s assume we want to
develop a simple pipe that sources a set of news from Google News, filters them ac-
cording to a predefined filter condition (in our case, we want to search for news on
products and services by a given vendor), and locates them on a Yahoo! Map.

Figure 1 Implementation of the example scenario in Yahoo! Pipes

The pipe that implements the required feature is illustrated in Figure 1. It is com-
posed of five components: The URL Builder is needed to set up the remote Geo
Names service, which takes a news RSS feed as an input, analyzes its content, and
inserts geo-coordinates, i.e., longitude and latitude, into each news item (where possi-
ble). Doing so requires setting some parameters: Base=http://ws.geonames.org, Path
elements=rssToGeoRSS, and Query parameters=FeedUrl:news.google.com/news?
topic=t&output=rss&ned=us. The so created URL is fed into the Fetch Feed compo-
nent, which loads the geo-enriched news feed. In order to filter out the news items we
are really interested in, we need to use the Filter component, which requires the set-
ting of proper filter conditions via the Rules input field. Feeding the filtered feed into
the Location Extractor component causes Pipes to plot the news items on a Yahoo!
Map. Finally, the Pipe Output component specifies the end of the pipe.

If we analyze the development steps above, we can easily understand that develop-
ing even such a simple composition is out of the reach of people without program-
ming knowledge. Understanding which components are needed and how they are
used is neither trivial nor intuitive. The URL Builder, for example, requires the setting
of some complex parameters. Then, components need to be suitably connected, in
order to support the data flow from one component to another, and output parameters
must be mapped to input parameters. But more importantly, plotting news onto a map
requires knowing that this can be done by first enriching a feed with geo-coordinates,
then fetching the actual feed, and only then the map is ready to plot the items.

Enabling non-expert developers to compose a pipe like the above requires telling
(or teaching) them the necessary knowledge. In WIRE, we aim to do so by providing
non-expert developers with interactive development advices for composition, inside

an assisted development environment. We want to obtain the knowledge to provide
advices by extracting, abstracting, and reusing compositional knowledge from exist-
ing compositions (in the scenario above, pipes) that contain community knowledge,
best practices, and proven patterns. That is, in WIRE we aim at bringing the wisdom of
the crowd (possibly even a small crowd if we are reusing knowledge within a com-
pany) in defining compositions when they are both defined by an individual (where
the crowd supports an individual) or by a community (where the crowd supports so-
cial computing, i.e., itself in defining its own algorithms). The final goal is to move
towards a new frontier of knowledge reuse, i.e., reuse of computational knowledge.

Doing so requires approaching a set of challenges that are non-trivial:
1. First of all, identifying the types of advices that can be given and the right times

when they can be given: depending on the complexity and expressive power of
the composition language, there can be a huge variety of possible advices. Un-
derstanding which of them are useful is crucial to limit complexity.

2. Discovering computational knowledge: how do we harvest development
knowledge from the crowd, that is, from a set of existing compositions?
Knowledge may come in a variety of different forms: component or service
compatibilities, data mappings, co-occurrence of components, design patterns,
evolution operations, and so on.

3. Representing and storing knowledge: once identified, how do we represent and
store knowledge in a way that allows easy querying and retrieval for reuse?

4. Searching and retrieving knowledge: given a partial program specification un-
der development, how do we enable the querying of the knowledge space and
the identification of the most suitable and useful advice to provide to the devel-
oper, in order to really assist him?

5. Reusing knowledge: given an advice for development, how do we (re)use the
identified knowledge in the program under development? We need to be able to
“weave” it into the partial specification in a way that is correct and executable,
so as to provide concrete benefits to the developer.

In this paper, we specifically focus on the first challenge and we provide our first
ideas on the second challenge and on the assisted development environment.

3 State of the Art

In literature, there are approaches that aim at similar goals as WIRE, yet they mainly
focus on the retrieval and reuse of composition knowledge. In [6], for instance, mash-
lets (the elements to be composed) are represented via their inputs and outputs, and
glue patterns are represented as graphs of connections among them; reuse comes in
the form of auto-completion of missing components and connections, selected by the
user from a ranked list of top-k recommendations obtained starting from the mashlets
used in the mashup. In [8], light-weight semantic annotations for services, feeds, and
data flows are used to support a text-based search for data mashups, which are actu-
ally generated in an automated, goal-oriented fashion using AI planning (the search
tags are the goals); generated data processing pipes can be used as is or further edited.
The approach in [9] semantically annotates portlets, web apps, widgets, or Java beans

and supports the search for functionally equivalent or matching components; reuse is
supported by a semantics-aided, automated connection of components. Also the ap-
proach in [10] is based on a simple, semantic description of information sources
(name, formal inputs [allowed ones], actual inputs [outputs consumed from other
sources], outputs) and mashups (compositions of information sources), which can be
queried with a partial mashup specification in order identify goals based on their
likelihood to appear in the final mashup; goals are fed to a semantic matcher and an
AI planner, which complete the partial mashup. This last approach is the only one that
also automatically discovers some form of knowledge in terms of popularity of out-
puts in existing mashup specifications (used to compute the likelihoods of goals).

In the context of business process modeling, there are also some works with similar
goals as ours. For instance, in [7], the authors more specifically focus on business
processes represented as Petri nets with textual descriptions, which are processed
(also leveraging WordNet) to derive a set of descriptive tags that can be used for
search of processes or parts thereof; reuse is supported via copy and paste of results
into the modeling canvas. The work presented in [13] proposes an approach for sup-
porting process modeling through object-sensitive action patterns, where these pat-
terns are derived from a repository of process models using techniques from associa-
tion rule learning, taking into consideration not only actions (tasks), but also the busi-
ness objects to which these actions are related. Finally, [14] presents a model for the
reuse data mining processes by extending the CRISP-DM process [15]. The proposed
model aims at including data mining process patterns into CRISP-DM and to guide
the specialization and application of such patterns to concrete processes, rather than
actually exploiting the community knowledge.

In general, the discovery of community composition knowledge is not ap-
proached by the works above (or they do it in a limited way, e.g., by deriving only
behavioral patterns from process definitions). Typically, they start from an annotated
representation of mashups and components and query them for functional compatibil-
ities and data mappings, improving the quality of search results via semantics, which
are explicit and predefined. WIRE, instead, specifically focuses on the elicitation and
collection of crowd wisdom, i.e., composition knowledge that derives from the ways
other people have solved similar composition problems in the past and that has a
significant support in terms of number of times it has been adopted. This means that
in order to create knowledge for WIRE, we do not need any expert developer or do-
main specialist that writes and maintains explicit composition rules or logics; knowl-
edge is instead harvested from how people compose their very own applications,
without requiring them to provide additional meta-data or descriptions (which typi-
cally doesn’t work in practice).

4 Wisdom-Aware Development: Concepts and Principles

Identifying which advices can be provided and which advices do indeed have the
potential to help less skilled developers to perform complex development tasks re-
quires, first of all, understanding the expressive power of the composition language at
hand. We approach this task next. Then we focus on the advices.

4.1 Expressiveness of the Composition Language

Let us consider again Yahoo! Pipes. The platform has a very advanced and pleasant
user interface for drag-and-drop development of data mashups and supports the com-
position of also relatively complex processing logics. Yet, the strong point of Pipes is
its data flow based composition paradigm, which is very effective and requires only a
limited set of modeling constructs. As already explained in the introduction, con-
straining the expressive power of composition languages is one of the techniques to
simplify development, and Pipes shares this characteristic with most of today’s
mashup platforms.

Figure 2 A meta-model for Yahoo! Pipes’ composition language

In order to better understand the expressiveness of Yahoo! Pipes, in Figure 2 we
derived a meta-model for its composition language. A Pipe is composed of compo-
nents and connectors. Components have a name and a description and may be
grouped into categories (e.g., source components, user input components, etc.). Each
pipe contains always one Pipe Output component, i.e., a special component that de-
notes the end of data flow logic or the end of the application. A component may be
embedded into another component; for example components (except user inputs and
operators) can be embedded inside a Loop Operator component. Components may
also have a set of parameters. A Parameter has a name, a type, and may have a value
assigned to it. There are basically three types of parameters: input parameters (accept
data flows attributes), output parameters (produce data flow attributes), and configu-
ration parameters (are manually set by the developer). For instance, in our example in
Section 2, the URL parameter of the Fetch Feed component is an input parameter; the
longitude and latitude attributes of the RSS feed fetched by the Fetch Feed compo-
nent are output parameters; and the Base parameter of the URL Builder component is
an example of configuration parameter.

Data flows in Pipes are modeled via dedicated connectors. A Connector propagates
output parameters of one component (indicated in Figure 2 by the from relationship)
to either another component or to an individual input field of another component. If a
connector is connected to a whole component (e.g., in the case of the connector from

the Fetch Feed component to the Filter component in Figure 1), all attributes of the
RSS item flowing through the connector can be used to set the values of the target
component’s input parameters. If a connector is connected only to a single input pa-
rameter, the data flow’s attributes are available only to set the value of the target input
parameter. Input parameters are of two types: either they are fixed inputs, for which
there are predefined default mappings, or they are free inputs, for which the user can
provide a value or choose which flow attribute to use. That is, for free inputs it is
possible to specify a simple attribute-parameter data mapping logic.

Figure 2 shows that Yahoo! Pipes’ meta-model is indeed very simple: only 10
concepts suffice to model its composition features. Of course, the focus of Pipes is on
data mashups, and there is no need for complex web services or user interfaces, two
features that are instead present in our own mashup platform, i.e., mashArt [5]. Yet,
despite these two additions, mashArt’s meta-model only requires 13 concepts. If in-
stead we look at the BPMN modeling notation for business processes [11], we already
need more than 20 concepts to characterize its expressive power, and the meta-model
of BPEL [12] has almost 60 concepts! Of course, the higher the complexity of the
language, the more difficult it is to identify and reuse composition knowledge.

4.2 Advising Composition Knowledge

Given the meta-model of the composition language for which we want to provide
composition advices, it is possible to identify which concrete compositional knowl-
edge can be extracted from existing compositions (e.g., pipes). The gray boxes in the
conceptual model in Figure 3 illustrate the result of our analysis. The figure identifies
the key entities and relationships needed to provide composition advices.

An Advice provides composition knowledge in form of composition patterns. An
advice can be to complete a given pattern (given it’s partial implementation in the
modeling canvas) or to substitute a pattern with a similar one, or the advice can high-
light compatible elements in the modeling canvas or filter and rank advices.

Patterns represent the actual recommendation that we deliver to the user. They can
be of five types (all these patterns can be identified in the model in Figure 3):
• Parameter Value Patterns: Possible values for a given parameter. For instance,

in the URL Builder component the Base parameter value in a pattern can be set
to “http://ws.geonames.org”, while the Path elements parameter value can be
“rssToGeoRSS”, and feedUrl can be “news.google.com/news?topic=t&output
=rss&ned=us”, as shown in our example scenario. Alternatively, we can have
the URL Builder component with the Base parameter set to “news.google.
com/news” and the Query parameters set with different values.

• Component Association Patterns: Co-occurrence patterns for pairs of compo-
nents. For instance, in our scenario, whenever a user drags and drops the URL
Builder on the design canvas, a possible advice derived from a component as-
sociation pattern can be to include in the composition the Fetch Feed compo-
nent and connect it to the URL Builder.

• Connector Patterns: Component-component or component-input parameter
patterns. This pattern captures the dataflow logic, i.e., how components are

connected via connector elements. For example, URL Builder – connector-
Fetch Feed is a connector pattern in our example scenario.

• Data Mapping Patterns: Associations of outputs to inputs. In Figure 1, for in-
stance, we map the description, title, and y:title attributes of the fetched feed to
the first input field of the first, second, and third rule, respectively, telling the
Filter component how we map the individual attributes in input to the individ-
ual, free input parameters of the component.

• Complex Patterns: Partial compositions consisting of multiple components,
connectors, and parameter settings. In our example scenario, different combi-
nations of components and connectors, having their parameter values set and
with proper data mappings, as a part and as a whole represent complex pat-
terns. For example, the configuration URL Builder – Fetch Feed – Filter – Lo-
cation Extractor, along with their settings, represents a complex pattern.

Figure 3 Conceptual model of WIRE’s advice approach. Gray entities model the ingredients
for advices; white boxes model the advice triggering logic inside the design environment.

An Advice provides composition knowledge in form of composition patterns. An
advice can be to complete a given pattern (given it’s partial implementation in the
modeling canvas) or to substitute a pattern with a similar one, or the advice can high-
light compatible elements in the modeling canvas or filter and rank advices.

Patterns represent the actual recommendation that we would like to deliver to the
user. They can be of five different types: Complex Patterns (partial compositions
possibly consisting of multiple components, connectors, and parameter settings),
Parameter Value Patterns (possible values for a given parameter), Component Asso-
ciation Patterns (co-occurrence patterns for pairs of components), Connector Patterns
(component-component or component-input parameter patterns), and Data Mapping
Patterns (associations of outputs to inputs).

Now, let us discuss the “white part” of the model. This part represents the entities
that jointly define the conditions under which advices can be triggered. A Trigger for
an advice is defined by an object, an action of the user in the modeling canvas, and
the state of the current composition, i.e., the partial composition in the modeling can-

vas. This association can be thought of as a triplet that defines the triggering condi-
tion. The Objects a user may operate are Composition Fragments (e.g., a selection of
a subset of the pipe in the canvas), individual Components, Connectors, or Parame-
ters (by interacting with the respective graphical input fields). The Action represents
the action that the user may perform on an object during composition. We identify
seven actions: Select (e.g., a composition fragment or a connector), Drag (e.g., a
component or a connector endpoint), Drop, Connect, Fill (a parameter value), Delete,
and Embed (one component into another). Finally, the Partial Composition represents
the status of the current overall composition.

While the object therefore identifies which advice may be of interest to the user,
the action decides when the advice can be given, and the state filters out advices that
are not compatible with the current partial composition (e.g., if the Location Extractor
component has already been used, recommending its use becomes useless).

Regarding the model in Figure 3, not all associations may be needed in practice.
For instance, not all components are compatible with the embed action. Yet, the
model identifies precisely which advices can be given and when.

5 The WIRE Platform

Figure 4 illustrates the high-level architecture of the assisted development environ-
ment with which we aim at supporting wisdom-aware development according to the
model described in the previous section: developers can design their applications in a
wisdom-aware development environment, which is composed of an interactive re-
commender (for development advice) and an offline recommender as well as the wis-
dom-aware editor implementing the interactive development paradigm. Compositions
or mashups are stored in a compositions repository and can be executed in a dedicated
runtime environment, which generates execution data. Compositions and execution
data are the input for the knowledge/advice extractor, which finds the repeated and
useful patterns in them and stores them as development and evolution advice in the
advice repository. Then, the recommenders provide them as interactive advices
through its query interface upon the current context and triggers of the user’s devel-
opment environment. Here, we specifically focused on development advices related to
composition; we will approach evolution advices in our future work (evolution ad-
vices will, for instance, take into account performance criteria or evolutions applied
by developers over time on their own mashups).

We realize that each domain will have suitable languages and execution engines,
such as a mashup engine or a scientific workflow engine. Our goal is not to compete
with these, but to define mechanism to “WIRE” these languages and tools with the
ability to extract knowledge and provide advice. For this reason, in this paper we
started with studying the case of Yahoo! Pipes, which is well known and allows us to
easily explain our ideas. We however intend to apply the wisdom-aware development
paradigm to our own mashup editor, mashArt [5], which features a universal compo-
sition paradigm user interface components, application logic, and data web services, a
development paradigm that is similar in complexity to that of Pipes.

Figure 4 High-level architecture of the envisioned system for wisdom-aware development

As for the reuse of knowledge, the WIRE approach is not based on semantic an-
notations, matching, or AI planning techniques, nor do we aim at automated or goal-
driven composition or at identifying semantic similarity among services. We also do
not aim at having developers tag components or add metadata to let others better
reuse services, processes, or fragments. In other words, we aim at collecting knowl-
edge implicitly, as we believe that otherwise we would face an easier wisdom extrac-
tion problem but end up with a solution that in practice does not work because people
do not bother to add the necessary metadata. WIRE will rather leverage on statistical
data analysis techniques and data mining as means to extract knowledge from the
available information space. To do so, we propose the following core steps:

1. Cleaning, integration, and transformation: We take as input previous composi-
tions and execution data and prepare them for the analysis.

2. Statistical data analysis and data mining: On the resulting data, we apply statis-
tical data analysis and data mining techniques, which may include mining of
frequent patterns, association rules, correlations, classification and cluster analy-
sis. The results of this step are used to create the composition patterns.

3. Evaluation and ranking of advices (knowledge): Once we have discovered the
potential advices, we evaluate and rank them using standard interestingness
measures (e.g., support and confidence) and ranking algorithms.

4. Presentation of advices: The advices are presented to the user through intuitive
visual metaphors that are suitable to the context and purpose of the advice.

5. Gathering of user feedback: The popularity of advices is gathered and measured
in order to better rank them.

Among the techniques we are applying for the discovery tasks, we are specifically
leveraging on data mining approaches, such as frequent itemset mining, association
rules learning, sequential pattern mining, graph mining, and link mining. Each of
these techniques can be used to discover a different type of advice:
• Frequent itemset mining: The objective of this technique is to find the co-

occurrence of items in a dataset of transactions. The co-occurrence is considered
“frequent” whenever its support equals or exceeds a given threshold. This tech-
nique can be used as a support for discovering any of the advices introduced be-
fore. For instance, in the case of discovering Component Association Patterns
we can this technique.

Runtime environment
for WIRE applicationsCompositions

Knowledge/advice
extractor

Offline recommender

Execution data

Interactive
recommender

Wisdom-aware editor
Development advices

Evolution advice Evolution advices

Wisdom-aware development environment Advice repository
Trigger (object,action,state)

Development
advice

Q
ue

ry

in
te

rfa
ce

Trigger

Advice

Mashup ID

Advice

• Association rules: This technique aims at finding rules of the form A→B, where
A and B are disjoint sets of items. This technique can be applied to help in the
discovery of any of the proposed advices. For instance, in the case of the Pa-
rameter Value Pattern, given the value of two parameters of a component, we
can find an association rule that suggests us the value for a third parameter.

• Sequential pattern mining: Given a dataset of sequences, the objective of se-
quential pattern mining is to find all sequences that have a support equal or
greater than a given threshold. This technique can be applied to discover Com-
plex Patterns, Component Association Patterns, and Connector Patterns. For in-
stance, in the case of the Connector Pattern, we can use this technique to extract
patterns that can be then used for suggesting connectors among components
placed on the design canvas.

• Graph mining: given a set of graphs, the goal of graph mining is to find all sub-
graphs such that their support is equal or greater than a given threshold. For our
purpose, we can use graph mining for discovering Complex Patterns and Con-
nector Patterns. For instance, for Complex Patterns we can suggest a list of ex-
isting ready compositions based on the partial composition the user has in the
canvas, whenever this partial composition is deemed as frequent.

• Link mining: rather than a technique, link mining refers to a set of techniques for
mining data sets where objects are linked with rich structures. Link mining can
be applied to support the discovery of any of the proposed advices. For example,
in the case of Data Mapping Patterns, we can discover patterns for mapping the
parameters of two components, based on the types these parameters.

Once community composition knowledge has been identified, we store the ex-
tracted knowledge in the advice repository in the form of directed graphs. In our ad-
vice repository, elements in the patterns, e.g., a component or a connector, are repre-
sented as nodes of the graph, and relationships among them, e.g., a component “has” a
parameter, are represented as edges between those nodes. We also store a set of rules
in our advice repository, which represent the trigger conditions under which a specific
knowledge can be provided as an advice. Based upon this information, through our
query interface we can match knowledge with the current composition context and
retrieves relevant advices from the advice repository. Retrieved advices are filtered,
ranked, and delivered based on user profile data (e.g., the programming expertise of
the user or his/her preferences over advice types).

6 Conclusion

In this paper we propose the idea of wisdom-aware computing, a computing paradigm
that aims at reusing community composition knowledge (the wisdom) to provide inter-
active development advice to less skilled developers. If successful, WIRE can extend
the “developer base” in each domain where reuse of algorithmic knowledge is possi-
ble and it can facilitate progressive learning and knowledge transfer.

Unlike other approaches in literature, which typically focus on structural and se-
mantic similarities, we specifically focus on the elicitation of composition knowledge
that derives from the expertise of people and that is expressed in the compositions

they develop. If, for instance, two components have been used together successfully
multiple times, very likely their joint use is both syntactically and semantically mean-
ingful. There is no need to further model complex ontologies or composition rules.

In order to provide identified patterns with the necessary semantics, we advocate
the application of the WIRE paradigm to composition environments that focus on
specific domains. Inside a given domain, component names are self-explaining and
patterns can easily be understood. In the Omelette (http://www.ict-omelette.eu/) and
the LiquidPub (http://liquidpub.org/) projects, we are, for instance, working on two
domain-specific mashup platforms for telco and research evaluation, respectively.

For illustration purposes, in this paper we used Yahoo! Pipes as reference mashup
platform, as Pipes is very similar in complexity to our own mashArt platform [5] but
better known. In order to have access to the compositions that actually hold the
knowledge we want to harvest, we will of course apply WIRE to mashArt.

Acknowledgements: This work was supported by funds from the European Commis-
sion (project OMELETTE, contract no. 257635).

References

1. H. Geffner. Perspectives on artificial intelligence planning. AAAI’02, pp.1013-1023.
2. D. Roman, J. de Bruijn, A. Mocan, H. Lausen, J. Domingue, C. Bussler, D. Fensel. WWW:

WSMO, WSML, and WSMX in a Nutshell, ASWC’06, pp. 516-522.
3. A. Koschmider, M. Song, H.A. Reijers. Social Software for Modeling Business Processes.

BPM’08 Workshops, pp. 642-653.
4. T. Reichling, M. Veith, V. Wulf. Expert Recommender: Designing for a Network Organi-

zation. Computer Supported Cooperative Work, vol. 16, no. 4-5, pp. 431-465, Oct. 2007.
5. F. Daniel, F. Casati, B. Benatallah, M.-C. Shan. Hosted Universal Composition: Models,

Languages and Infrastructure in mashArt. ER’09, pp. 428-443.
6. O. Greenshpan, T. Milo, N. Polyzotis. Autocompletion for mashups. VLDB’09, pp.538-549.
7. T. Hornung, A. Koschmider, G. Lausen. Rommendation Based Process Modeling Support:

Method and User Experience. ER’08, pp. 265-278.
8. A.V. Riabov, E. Bouillet, M.D. Feblowitz, Z. Liu, A. Ranganathan. Wishful Search: Inter-

active Composition of Data Mashups. WWW’08, pp. 775-784.
9. A.H.H. Ngu, M. P. Carlson, Q.Z. Sheng. Semantic-Based Mashup of Composite Applica-

tions. IEEE Transactions on Services Computing, vol. 3, no. 1, Jan-Mar 2010.
10. H. Elmeleegy, A. Ivan, R. Akkiraju, R. Goodwin. MashupAdvisor: A Recommendation

Tool for Mashup Development. ICWS’08, pp. 337-344.
11. OMG. Business Process Model and Notation (BPMN) - Version 1.2, January 2009. [On-

line] http://www.omg.org/spec/BPMN/1.2
12. OASIS. Web Services Business Process Execution Language Version 2.0, April 2007.

[Online]. http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
13. S. Smirnov, M. Weidlich, J. Mendling, M. Weske. Object-Sensitive Action Patterns in

Process Model Repositories. BPM’10 Workshops, NJ, USA, September 2010.
14. D. Wegener, S. Rueping. On Reusing Data Mining in Business Processes – A Pattern-based

Approach. BPM’10 Workshops, NJ, USA, September 2010.
15. C. Shearer. The CRISP-DM model: the new blueprint for data mining. Journal of Data

Warehousing, Vol. 5, Nr. 4, pp. 13–22, 2000.

40 Wisdom-Aware Computing: On the Interactive Recommendation of Composition Knowledge

Appendix B

End-user requirements for

wisdom-aware EUD

Long version of the paper: Antonella De Angeli, Alberto Battocchi, Soudip Roy Chowdhury,

Carlos Rodriguez, Florian Daniel, Fabio Casati. End-User Requirements for Wisdom-Aware EUD.

Proceedings of IS-EUD 2011, June 2011, Pages 245-250.

Conceptual Design and Evaluation of WIRE:
A Wisdom-Aware EUD Tool

Antonella De Angeli, Alberto Battocchi, Soudip Roy Chowdhury, Carlos Rodriguez,
Florian Daniel, Fabio Casati

Department of Information Engineering and Computer Science

University of Trento
Via Sommarive, 14 – 38123 Povo, Trento (Italy)

{antonella.deangeli, alberto.battocchi, soudip.roychowdhury, carlos.rodriguez, florian.daniel,
fabio.casati}@unitn.it

Abstract. This paper presents the evaluation of the conceptual design of WIRE,
a EUD tool for service-based applications. WIRE exploits community composi-
tion knowledge harvested from existing programs defined by other developers
in the same domain. Such knowledge can assist less skilled developers in defin-
ing the composition they need, allowing them to go beyond their individual ca-
pabilities. The assistance comes in the form of interactive contextual advices
proposed during the definition of composition logic. This idea was evaluated
with 10 semi-structured interviews with University accountants. A rich set of
information was elicited by means of several probes, including examples of
contextual helps, commercial EUD tools, and scenarios in the form of positive
and negative user stories. Results informed the definition of a set of require-
ments for WIRE, and fostered a critical reflection on possibilities and limita-
tions of the general framework of EUD.

Keywords: Contextual help; EUD requirements; Wisdom-aware development;
Interactive Advice; Mashups.

1 Introduction

Although the requirement for ‘support and help’ clearly emerges from user research
on EUD for web services [1, 2], little is available to satisfy this need. There are cur-
rently two main approaches to enable less skilled users to develop programs: devel-
opment can be eased by simplifying it (e.g., limiting the expressive power of a pro-
gramming language) or reusing knowledge (e.g., copying and pasting from existing
algorithms). Among the simplification approaches, the workflow and Business Proc-
ess Management (BPM) community was one of the first to propose that the abstrac-
tion of business processes into tasks and control flows would allow also less skilled
users to define their own processes. Yet, according to our opinion, this approach
achieved little success and modeling still requires training and knowledge. The advent
of the service-oriented architecture (SOA) substituted tasks with services, yet compo-
sition is still a challenging task even for expert developers [1, 2]. The reuse approach

is implemented by program libraries, services, or templates (such as generics in Java
or process templates in workflows). It provides building blocks that can be composed
to achieve a goal, or the entire composition (the algorithm – possibly made generic if
templates are used), which may or may not suit a developer’s needs.

This paper presents the conceptual evaluation of WIRE, a WIsdom-awaRE devel-
opment environment for exploiting the benefits of simplification and reuse. WIRE
targets process-oriented, mashup-like applications, whose development and execution
can be provided as a service via the Web and that are characterized by relatively sim-
ple composition logic and complex tasks or components. This class of programs pro-
vides the benefit of (relative) simplicity and a sufficient information base (the compo-
nents) to learn and reuse composition knowledge. The idea is to learn from existing
compositions (or, in general, computations) and provide this knowledge in the form of
interactive advices to developers while they compose applications. The paper is orga-
nized as follows: Section 2 summarizes current approaches to assist users in devel-
opment tasks; Section 3 introduces WIRE; Section 4 describes the evaluation and
Section 5 concludes presenting implications for contextual help for EUD.

2 State of the Art

Several approaches are available to assist users in development tasks. In Program-
ming by Demonstration [3], users are given examples of the process to be automated
and based upon these examples the system auto-completes the remaining part of the
process. Pattern-based Development [4] relies on a library of predefined patterns that
represents good development practices. Goal-oriented approaches [5] assist develop-
ers by recommending plans that stem from user-specified goals. In semantic-based
approaches [6], development ingredients are annotated to generate recommendations
based on semantic matching and similarity techniques. Knowledge-discovery ap-
proaches [7] exploit a repository of previously developed applications in order to
derive patterns that capture the steps performed solving similar problems in the past.
All these approaches provide recommendations based upon explicit user inputs in the
form of text queries, goals or partial application specification that convey the user
intention. However, interactive recommendation systems can be improved by taking
into consideration the composition status and the actions performed by users during
development, as well as their preferences and skills, which is something that is not
fully addressed by current approaches. Moreover, most of these approaches provide
recommendations in the form of auto-completion, which has the limitation of masking
the intermediate steps from the user, which in turn, results in loosing the control over
the development.

In WIRE, we aim at discovering compositional knowledge by observing what other
users have done in previous composite applications (i.e., applications that combine
data, services and user-interfaces from multiple and possibly heterogeneous sources).
We aim at delivering this knowledge in the form of interactive assistance, retrieved,
filtered and ranked based upon context, user preferences and skills.

3 WIRE

To illustrate the challenges users face when using mashup environments, let us con-
sider a typical scenario with Yahoo! Pipes1, a composition environment that is cur-
rently presented on-line with words like ‘intuitive’ and statements like ‘learn to build
your own pipe in a few minutes’.

John is a soccer fan and an active blogger. He uses his blog to post latest news, ar-
ticles, videos and updates from media sources and to discuss them with his friends.
Keeping his blog updated requires a lot of manual work, such as content aggregation,
filtering, and publishing. To automate it, John decides to use Yahoo! Pipes to build a
simple pipe that: (1) sources a set of news feeds; (2) includes only the content related
to soccer; (3) lists the news with their titles, and; (4) aggregates similar news from
different sources under the same title. The pipe that implements the required feature is
illustrated in Fig. 1. It is composed of five components. Fetch Feed gets the news
from the publishing website (e.g., feed://rss.soccernet.com/c/668/f/8493/index. rss).
Fetch Page, embedded inside the Loop component, fetches the page content from the
feed output and extracts the content specified by ‘Cut Content From and to’ field. The
Unique component merges the content of similar news, based upon their title
(item.title) and groups them. Finally, Pipe Output represents the end of the pipe.

1 http://pipes.yahoo.com/pipes/

Fig. 1. Implementation of the example scenario in Yahoo! Pipes.

The example shows that this apparently simple application involves development
knowledge that goes beyond what typical end users have [8]. It requires knowledge
about programming models (e.g., how to use components, connectors and data flows),
conventions or standards (e.g., the structure of URLs), or simply about the right ter-
minology. The intuition in WIRE is that this knowledge can be captured by patterns
and reused as advices, to assist end users in their task. WIRE aims to leverage on the
wisdom of the crowd for discovering and reusing computational knowledge. In [9] we
introduced a detailed conceptual model of WIRE, which we summarize here for the
better understanding of the ideas it encompasses. The conceptual model of WIRE can
be divided into two parts: (1) the composition advices (the types of composition
knowledge patterns) and (2) the triggering logic (when to deliver a given advice).
Advices represent development recommendations, they can be of four types: Complete
(e.g., a pipe with a missing connector), Substitute (e.g., a component in a pipe), High-
light (e.g., a connector between two components) or Filter out (e.g., a component
from a pipe). Advices provide recommendations in the form of patterns, such as Pa-
rameter Value patterns (i.e., possible values for the parameter of a component), Com-
ponent Association patterns (i.e., which components frequently appear together in a
composition), Connector patterns (i.e., possible connections between components),
Data Mapping patterns (i.e., mapping between input and output), or Complex patterns
(i.e., a combination of the previous patterns). As for the triggering logic, a Trigger can
be regarded as a triplet that consists of an Action, an Object and a Partial Composi-
tion. An Action represents what the user is doing, an Object represents the element on
which the action is performed, and the Partial Composition represents the context for
giving the advice. An Action can be further specialized as Select (a connector), Drag
and Drop (a component from a component library), Connect (two components), Fill
in (a parameter), Delete (a component), and Embed (a component into another). Fi-
nally, an Object can be a Connector, Component, Parameter, or Composition Frag-
ment.

Fig. 2 presents the high level architecture that we envision for WIRE [9]. Develop-
ment takes place in the wisdom-aware environment, where users can interact with a
wisdom-aware editor for developing their applications. While a user builds his com-
position, a trigger may be fired based upon the actions that the user is performing in
the editor. The triggering condition (object, action, partial composition) is sent to the
Interactive recommender, which queries the Advice repository for a development

Fig. 2. High-level architecture of the wisdom-aware development (reported in [9]).

advice that matches the triggering condition. The advice is then sent back to the Wis-
dom-aware editor. The Advice repository is filled with composition patterns by the
Knowledge/Advice extractor. It takes as input a repository of existing Compositions
and leverages on data mining and statistical data analysis techniques to discover and
harvest the patterns discussed previously. The retrieved advices are filtered, ranked,
and delivered based on user profile data (e.g., the programming expertise of the user
or his/her preferences over advice types). We omit the explanation of the Offline
recommender, as such is less related to the object of this paper.

In summary, the aim of WIRE is to develop an environment that allows end users
to build their own composite applications. While we have used Yahoo! Pipes to draw
our examples, our goal is to apply the WIRE approach to our own mashup platform
[10]. In what regards the reuse of knowledge, we do not base our approach on seman-
tic content and technologies, artificial intelligence planning, or automated goal-driven
composition. Instead, we aim at leveraging on the expertise of users expressed
through what they do in practice (i.e., composing applications) and that is expressed
in their compositions or mashups.

4 Evaluation

An evaluation of the conceptual design of WIRE was run in order to address benefits
and limitations of the proposal at a very early phase of the design. The evaluation was
conducted by means of semi-structured interviews.

4.1 Method

Participants. The interview was administered to 10 accountants (7 F, 3 M; mean age
= 37,2 years of age), all of which were employees of the administration of a local
university. No specific inclusion criteria were applied to the sample. None of the
participants had a background in computer science. The choice of involving adminis-
trative accountants in the evaluation was motivated by the fact that they are non-
technical users and that they represent the potential real targets of the system.

Procedure. Interviews were administered in a quiet room, in which only the partici-
pant and the experimenter were present, and were audio recorded for successive an-
alysis. No time restrictions were applied and participants were informed that they had
the right to withdraw at any time or avoid answering any of the questions. Participa-
tion to the interview, which lasted approximately one hour, was rewarded with a
voucher of 15 Euro that could be spent on an online bookstore. The interview was
divided in four sections.

Section A: IT knowledge with specific reference to SOA. This section aimed to under-
stand the level of expertise that our sample had with computer systems, their use of
computers during day-to-day work activities, the kind of software they mainly work
with, and the level of acquaintance with web-services and mash-up application.

Moreover, we wanted to understand if and how participants were used to describe
their work processes through graphical representations.

Section B: Automatization of repetitive and complex tasks. This section aimed at
understanding which daily activities participants considered as repetitive or complex
and which were the strategies or instruments, if any, that they used to reduce the
workload deriving from repetitiveness or complexity. Then, participants were shown
an example of automation of workflow created using Automator, an application
developed by Apple for Mac OSX that allows implementation of workflows through
the creation of batches of tasks. Tasks can be grouped into batches through drag-and-
drop of action elements to a workflow space. After seeing the example of automation
of the workflow, participants were asked two more questions, which are reported in
Table 1.

Table 1. Questions included in Section B/2 of the Interview.

B/2 General questions regarding automatization of repetitive and complex tasks.
B.7 Can you please provide your comments about the application and the procedure of automatization

you have just seen?
B.8 Imagine you have a strict deadline. In this case would you prefer to invest some of your time in

the process of automatization of the tasks you are dealing with or would you follow a manual
procedure, even if facing the risk of missing the deadline and making errors?

Section C: Computer-provided Help and advice. Section C targeted the difficulties
that may emerge while using computers during day-to-day work activities and the
strategies that people use for overcoming them. This section also aimed at
understanding the attitude of participant towards computer-provided help and advice,
with particular focus on automatic/contextual modalities that are commonly used to
provide them. Section C was divided into two parts: part one (Tab. 2) contains three
questions about difficulties and strategies to overcome them, and preference towards
either automatic/contextual or on demand modalities for providing help and advice.

Table 2. Questions included in Section C/1 of the Interview.

C/1 Questions about computer-provided help and advice

C.1 (a) What kind of difficulties do you encounter while using computers during your habitual work
activity? (b) How did you overcome these difficulties? (c) Where/how did you find help?

C.2 Which is the most effective help strategy among the one you reported?

C.3 Currently there are two main ways through which software provide help or advice to users: 1)
following a request by the user (e.g. the user opens the “Help” menu); 2) Automatically (by in-
terpreting the actions performed by users and guessing their objectives). Which of the two ways
do you prefer? Why?

After answering the first set of questions, participants were shown a slideshow con-
taining examples of automatic computer-provided help or advice. The presentation
included: 1) Automatic word completion in the Google search box; 2) Automatic
friend suggestion in Facebook; 3) Automatic book suggestions in Amazon (i.e. “fre-

quently bought together”, or “customers who bought this item also bought”); 4) The
function offered by web browsers that allows to automatically save passwords; 5)
Pop-up reminder windows on calendars; 6) The related videos sidebar on YouTube.
Participants were invited to comment each examples and were probed by three ques-
tions that related to advantages and drawbacks of each example, technical understand-
ing on how the advice was created and perceived utility.

Section D: WIRE. Section D aimed at collecting opinions and suggestions about
WIRE. We provided interviewees with a plus and a minus scenario reporting of an
accountant who is using WIRE for automatizing the process of management of travel
reimbursement. Following the methodology described in [11], both scenarios
described the effects on work practices, which would be brought forward by WIRE on
a new user. These effects were taken to the positive or negative extreme, to help users
to think by themselves what consequences the new approach could have in their work
practice. In the Positive Scenario, the accountant had a successful experience using
WIRE, which helped him to save time and speed up repetitive work. So he decided to
use it in the future and to share his work with other colleagues. In the Negative
Scenario, the accountant encountered serious difficulties and eventually decided to go
back to his traditional procedures for carrying out his work. Scenarios were presented
with a counterbalanced order, meaning that five participants read the negative
scenario first and the other five participants read the positive one first. The two
scenarios are reported in the Appendix. After reading the two scenarios, interviewees
were asked some specific questions about WIRE (Table 3).

Table 3. Questions included in Section D of the Interview.

D Questions about the WIRE system

D.1 Do you think you would be interested in using WIRE?

D.2 Which advantages do you see in using this approach?

D.3 And what disadvantage do you see?

D.4 Within WIRE, advice and helps are created on the basis of behaviour and hints provided by
people who previously used the system. Do you think that this kind of help is efficient in meeting
your needs?

D.5 Would you prefer to have the advice automatically displayed or to receive them on request?

D.6 Would you like the system to inform you before doing tasks or during the task?

4.2 Results

Results are reported in different sections according to the thematic area addressed in
the interview.

Sample Description. Almost all the participants learned to use a computer by them-
selves, through use at home and on the work place. Only 2 out of the 10 participants

attended specific courses that were aimed at providing the required knowledge on
computer use for obtaining the European Computer Driving License (ECDL) certifi-
cate. Yet, participants in general reported considering their computer skills as good
enough for dealing with the activities required by their job responsibilities. They
mainly used programs for the productivity, in particular Microsoft® Office™, plat-
forms for accountancy, e-mail clients and various web browsers. One of the partici-
pants had an education in electrical engineering.

IT knowledge with specific reference to SOA. The most part of the interviewees did
not know what web services are, but all of them tried to provide an explanation about
what they could be. Their definitions tended to encompass practical functionalities
related to the meaning of the word ‘service’ in real life showing almost no under-
standing of the software engineering definition of the concept. Definitions provided
by users varied from websites for online banking, shopping, or music download, to
web-based shared documents (e.g. Google Docs), to instruments for supporting col-
laboration (e.g. Doodle), or software that help people to improve their navigation
skills. None of the participant could provide a definition of mashup applications.

Only three participants reported to draw flowcharts to represent their work proc-
esses, while other two usually draw Gantt diagrams. These diagrams were usually
initially sketched using pen and paper and then converted into electronic files using
specific software or web-based applications for project management, or Microsoft®
Excel™. One participant reported that he usually draws diagrams for describing the
results of a process, rather than for planning it. Two participants declared that they
have never used diagrams or any type of cognitive artifacts to describe their work.

Automatization of repetitive and complex tasks. All but one of the interviewees
could readily report few examples of activities they deal with on a daily basis that
they defined as repetitive. Three of the participants explicitly reported that the job of
accountants is repetitive in general. The activities that were more frequently described
as repetitive consisted in entering data in pre-formatted forms or tables or dealing
with paperwork where only few details had to be changed from case to case. Some of
the reported activities consisted of long sequences of tasks that were connected by
temporal (e.g. you can start task B only after completing task A) or logical (e.g. if task
A gives as result X, then continue with task B, otherwise do task C) dependencies.
Participants reported that, although some activities were repetitive, they still required
a certain level of expertise and that the experience of accountants was a central factor
for having things done correctly:

[P1: “In general, the most part of administrative work is repetitive,
but we know where we can find the information we need…”].
[P3: “In administrative jobs all the procedures are quite repetitive
[…] anyway some kind of attitudes and experience is required…”].

Five of the interviewees reported that, in the course of their work experience, they
developed a set of strategies for speeding up repetitive tasks, making them less bor-

ing, and reducing the amount of errors that can derive from the loss of attention that
sometimes is connected to repetitiveness.

[P3: “Everyone finds his/her ways to organize these processes by
creating sets of "personal routines."].
[P6: “I created my personal strategies, procedures for speeding up
the process and for avoiding errors that can occur when you are
tired or in a hurry.”].

These strategies usually consisted in the way a particular activity is subdivided or
managed and differed from person to person. None of the participants reported any
strategies that emerged from collaboration with colleagues or from instruction pro-
vided by supervisors/heads. Participants also talked about a number of software tools
that were developed for facilitating administrative work. Some of these tools (e.g.
Word™ or Excel™ templates, checklists) were developed directly by users and ap-
peared to be shaped on the individual need and personal preferences of the users and
their practices. Other tools appeared to respond more to needs at a “office level” – as
opposed to “individual level” - (e.g. databases, shared documents or calendars, web-
based applications) and were developed either by accountants that had a better knowl-
edge of computer systems or by software engineers. These strategies and tools were
perceived as facilitating work because they were effective in reducing or optimizing
the amount of time that activities require, maintaining organization and priorities
among tasks, and reducing the number of errors.

When asked if they ever tried to develop some simple programs for automatizing
activities that are made by sequences of simple tasks, only two participants responded
positively. In one case (P9), the participant wrote a meta-code for an application for
the management of exams, which was then implemented by a technical developer; in
the second case (P4), the participant reported about a database she developed using
Microsoft® Access™ and that was then re-implemented by the system operators of the
Department of Computer Science with the purpose of augmenting and customizing its
functionalities. In both cases results were reported as being extremely satisfactory.
The most part of the interviewees, though, never tried to design software beyond the
ready-to-use functionalities of the software they use, and explained this as part of
their lack of software engineering skills.

Before seeing the example of automatization of the workflow implemented using
Apple Automator, participants were asked how they would have performed the same
sequence of tasks in the case this activity had to be performed every day. None of the
participants suggested a solution that included automatization of any of the steps.
However, after seeing the Automator example, all the participants reported that such
software would be of great help in their everyday work:

[P2: “A software like this seems useful; I would spend some time to
learn how to use it; having quick positive results would be a good
motivation for its future use; if first results are not good I would ask
help to a system operator”.].
[P10: “This program would be very useful to solve problems that
usually take a lot of time”.].

When asked if they would prefer to automatize an activity using software similar to
Automator or to maintain their usual manual procedure in the case of an urgent up-
coming deadline, seven out of ten of the interviewees declared that they would prefer
to try to automatize the process. However, they put forward some conditions that
would be crucial for motivating them to choose automatization: 1) the automated
procedure should guarantee to be effective, ready-to-use and safe; and 2) the support
of technicians should be available during the process of automatization.

Help and Advice. Understanding how people usually look for and receive help,
advice and solutions to problems that may occur while using computers at work is an
important question if we want to develop new forms of computer-provided help and
suggestions to users. Asking help to colleagues and system operators represented the
first option for half of the interviewees. The person to whom they asked for help was
usually chosen on the basis of his/her level of expertise in the specific domain in
which the problem fell into. Also the level of friendship or acquaintanceship played
an important role in the choice of the person. Google represented the first choice of
help for four of the participants and the second choice for those participants who
could not find a solution to their problems by asking colleagues or system operators.
Participants reported using online help and Help menus rarely, and this was the first
choice only for 1 interviewee. Advantages and Drawbacks of each of the methods
reported by participants are described in Table 4.

Table 4. Advantages and drawbacks of methods for asking help reported by interviewees.

Strategy Advantages Drawbacks
Asking colleagues /
system operators

Quick and correct answer without
wasting time looking elsewhere

Colleagues and system operators are
not always present.
If expert people always solve prob-
lems, you never learn how to solve
them by yourself.

Look up solution in
Google

Offers quick solutions without
bothering other people (especially
for simple problems).

-

Online help /
help menu

Offer more complete reference. It is difficult to understand.
It makes you waste time.
Require precise queries.

When asked which one was the most effective way for receiving help, among the

options they reported, eight participants indicated colleagues and technicians. Their
choice was motivated by the fact that technicians are very professional and helpful,
and that providing support is part of their job. One participant indicated Google as the
best source of information “because you can use it at any time, also when you are at
home” (P10). One interviewee indicated paper manuals (when not in a hurry) and the
Help menu (when time is short) as the most effective methods, because “they provide
very complete information” (P7).

When asked which method for providing help and advice they preferred between
automatic/contextual help and help on demand, seven participants reported that they
prefer automatic/contextual help, but two of them also specified that this method
works better for new or simple applications, while for more complex or well estab-

lished procedures they would prefer help on demand. One participant provided an
interesting observation about the function of automatic/contextual help:

[P10: “Automatic/contextual help has a double function: it appears
when you need help and reminds you of potential errors; help on
demand covers only the first function”.].

Only 2 of the participants declared preferring help on demand for all their activities
because automatic/contextual help can be a source of distraction and provide unneces-
sary hints. Participants also suggested that the automatic/help function should be
customizable in order to be really useful:

[P9: “I prefer the automatic help because it makes me waste less
time and spots out errors, but I should be able to deactivate it if I
don't need it”.].

 Participants where shown some examples of contextual help and asked to com-
ment on their effectiveness and usefulness. The function of automatic word comple-
tion by Google was considered very useful by all the participants. They reported that
this function helped them in typing queries more quickly and without spelling errors,
and that it also provided useful suggestions for other topics that are related to the
desired keywords. The Automatic friend suggestion in Facebook was considered help-
ful by only five of the interviewees. However, this function was perceived as too
intrusive in people’s personal life and some participants declared that they preferred
to manually look up for and add their new friends. Five of the participants declared to
use the functions that suggest book titles in Amazon (i.e. “frequently bought to-
gether”, or “customers who bought this item also bought”) and to find it very useful
for finding new books they did not heard of before. Two participants reported that
they did not use this function but that they found it potentially useful; three partici-
pants reported to be annoyed by this function: they do not like the idea of using a
system that interprets their taste for commercial purposes and that “restricts, instead
of expanding, the field of search” (P4). The possibility of automatically saving pass-
words was considered useful by six of the ten interviewees but two of them also re-
ported the concern that it can be dangerous for security of sensitive data, which is the
main reason for four participants not to use it. Willingness to use such function
heavily depends on the level of trust that people have on technology, especially when
dealing with sensitive data. Five of the participants reported to use on a daily basis
the function of Google Calendar that reminds of approaching meetings or commit-
ments. The related videos sidebar featured in YouTube was considered very useful by
nine of the interviewees; these suggestions were considered relevant, inspirational,
and helpful for discovering new things.

When asked to formulate their “theories” about how the suggestions were gener-
ated in services like Google, Amazon, Facebook and YouTube, all the participants
reported that they are created on the basis of the inserted keywords; one participant
also made a distinction between general, or simple, and particular, or complex, sug-
gestions:

[P8: “For simple queries, the system works on simple analogies
with the inserted keywords; for more complex issues, the system

does a matching with your personal characteristics (provided while
registering to a service)”.].

 When asked if these suggestions are effective in meeting personal taste and needs,
five participants responded positively but two of them also specified that these sys-
tems work well only in the case of “objective” suggestions, where the system does not
make hypotheses about the user’s personality (e.g. in YouTube). Suggestions are
considered to be less accurate when they try to enter users’ private space (e.g. in Face-
book):

[P4: “The suggestions are good when referring to "objects"; when
they try to catch my personality, they are not effective”.].
[P10: “Suggestions work well for simple things (Amazon, YouTube),
but when they try to get more personal, then they are less accu-
rate”.].

WIRE. Participants provided very useful information about their attitude toward
WIRE. When reading the positive scenario, participants recognized several
similarities with their work practices and perceived the system as potentially very
useful:

[P2: “The accountant described in the scenario is very enthusiastic,
I also would be like that if I had the right instruments and a good
training; WIRE helps in keeping a structure of the work”.].
[P10: “Awesome! This is exactly what a system should do to help
people”.].

Two participants expressed a common concern about the introduction of such sys-
tem into their common work practices and suggested that, in order to benefit of its
potentialities, the use of WIRE should totally replace previous practices, without
leaving space for overlapping of the two methodologies:

[P3: “I am not sure about the way the accountant shares his experi-
ence, few colleagues do that, sharing should be forced from
above”.].
[P10: “One weakness could be the difficulty in recreating a process
ex-post (after it actually occurred): software are less flexible than
people; a software like this should force people to use it: if people
are given the chance to use alternative ways in parallel, then things
can become complicated”.].

The Negative Scenario was also perceived as very plausible as it described well fears
and frustrations that may emerge when something goes wrong while using computers,
especially when dealing with new systems or procedures. Some interesting observa-
tions were provided by interviewees about the importance of a system that is well
designed and thoroughly tested before being introduced into the work practice:

[P7: “I gave for granted that this technology was previously tested
and approved by the central administration office. If I don't entirely
trust it, I would prefer to perform some manual cross-checks. In the

case of dealing with sensitive or financial matters, I would trust the
system only if I am 100% sure that it is effective and functional”.].
[P9: “This scenario shows a case in which something went wrong
on the technical side; things go wrong when technology is not well
designed”.].

Participants were asked if they would be interested in using WIRE. Nine of the
interviewees responded very positively and one was openly sceptical about the new
system, adding that “using WIRE would take the same time it takes doing the proced-
ure manually” (P1). Anyway, a period of formal training was indicated by two par-
ticipants as a fundamental prerequisite for the adoption of WIRE:

[P3: “I would use it only after receiving a very good training and if
it is not too complicated”.].
[P10: “It is very important to invest some time to learn new instru-
ments”.].

Participants indicated better organization of work, optimization of time, reduction
of errors, and sharing of procedures and methodologies with colleagues as the most
relevant benefits connected with the use of WIRE. The risk of a loss of control over
work processes, in the case that these were entirely completed in an automatic way,
was indicated as the major potential drawback of the system:

[P4: “I would like to keep track of each step of the process; if every-
thing is made automatically, the users misses the logic that stays
behind the process”.].
[P6: “If the procedure is too automatic, if I do some mistake in in-
serting values, then I will not be able to correct my mistakes. Users
must be always aware of what they are doing, with a system that is
too automatic, some people could get distracted”.].

All the participants reported that the kind of help and suggestion that WIRE pro-
vided in the scenarios would be effective in meeting their personal needs, as the con-
tents of the help message was created on the basis of past experience of colleagues
that share the same work procedures and possibly the same difficulties:

[P6: “I think that suggestions are useful because they are based on
well established and shared experiences”.].
[P9: “If suggestions come from people of the same area, who share
the same problems I have, then I think that these suggestions are
valid”.].

All the interviewees reported that the help that they would be effective in support-
ing their work; two of them added that the possibility of personalizing the way sug-
gestions are provided would be a very important feature in order to make help mes-
sages really effective. Eight out of the ten participants reported preferring auto-
matic/contextual help to help on demand in the case of an application like WIRE.
Two participants motivated this choice by adding that automatic help can remind
users about steps that they maybe would forget.

Help messages provided during the task were preferred to messages provided be-
fore the task by nine of the interviewees. One participant suggested that the two mo-
dalities could be combined:

[P8: “I can see the two modalities as complementary. At the begin-
ning of the activity the system asks what your needs are in general;
during the activity, pop-up windows provide you solutions when the
system feels that you are stuck”.].

5 Conclusion

Consistently with [1] and [2], our study showed that people who do not have a spe-
cific background in computer science or software engineering know very little about
SOA and web-services. They tend to define web-services following the mental model
which they have consolidated in real life, as that of a third party which does some-
thing on their behalf. In this view, web services are perceived as something that pro-
vides assistance to perform actions on-line: they can be any type of software, from on-
line banking to search engines, or Google documents. Participants were not aware of
any technical detail about the meaning that the word has assumed in software engi-
neering, nor of the possibility of using services to build or personalize their applica-
tions. These results challenge the emerging idea of SOA as a simple panacea to open
software engineering to end-users, and call for more research into innovative meta-
phors to make SOA concepts and tools available to a larger population of non-
technical users.

The interviews highlighted the fact that software are still perceived as tools to be
used “as they are”, and that customization of their functionalities is an option that
usually accountants do not consider. The main barriers to EUD uptake were identified
as ‘concerns over reliability and security of the resulting artifact’, ‘need for control’,
‘need for help’, and ‘organizational barriers’. A clear tension between the require-
ments for simplicity and user control emerged. If on the one hand, the fact that build-
ing blocks were available to be easily combined by the users was considered an im-
portant advance over their previous experience with programming tasks, people de-
clared to be reluctant to set-up fully automated systems to support their work, because
of their apprehension of loosing control over the intermediate steps. Component-
based programming was perceived as risky, because the user did not have direct con-
trol over the procedures implemented in each component. These results suggest the
importance of developing a transparent system in which the users can keep a high
level of control and monitoring over the processes they are dealing with.

End-users acknowledged that the idea of WIRE of providing assistance derived
from the experience of colleagues working in a similar context had potential. How-
ever, issues of trust, timing and usefulness of the advice still remained important.
During the design of WIRE we will need to find new strategies to make transparent
how the advice was generated in the form of trust seal, particularly important when
people deals with sensitive and financial issues. Personalization of procedures is also
a desired feature: the system should be able to take into account the strategies that
people used to optimize their work practices during the past. Giving users the func-

tionality that their expertise is taken into consideration while developing new practice
is likely to facilitate the adoption by end users of a new system.
Finally, our data provide support to the proposal of collaborative tailoring, discussed
in [12], as often participants mentioned that their willingness to engage in EUD was
mediated by having support from other people and technical help easily available to
them. This help was meant not only to alleviate some of the technical difficulties they
had to face during development but also to take the responsibility out of their hands,
making them less accountable in case of software failures. Issues related to organiza-
tional regulations and corporate processes also emerged as barriers to EUD uptake, as
people often mentioned the need to have unambiguous approval from their manager
as a fundamental step towards making them willing to explore new techniques and
tools to automatise their work practices.

Acknowledgments. This work was partially supported by funds from the European
Commission (project OMELETTE, contract no. 257635; project SERVFACE, con-
tract no. 216699).

References

1. Namoun, A., Nestler, T., De Angeli, A.: Conceptual and Usability Issues in the Compos-
able Web of Software Services. In: Daniel, F. and Facca, F.M. (eds.) Current Trends in
Web Engineering - 10th International Conference on Web Engineering ICWE 2010 Work-
shops, Revised Selected Papers. LNCS, vol. 6385, pp. 396-407, Springer, Heidelberg
(2010)

2. Namoun A., Nestler T., De Angeli, A.: Service Composition for Non Programmers: Pros-
pects, Problems, and Design Recommendations. In: 8th IEEE European Conference on Web
Services ECOWS (2010)

3. Cypher, I., Halbert, D.C., Kurlander, D., Lieberman, H., Maulsby, D., Myers, B.A.,
Turransky, A. (eds.): Watch what I do: Programming by Demonstration. MIT Press, Cam-
bridge, MA, USA (1993)

2. Van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow
Patterns. Distributed and Parallel Databases. 14(3), 5--51 (July2003)

3. Henneberger, M., Heinrich, B., Lautenbacher, F., Bauer, B.: Semantic-based Planning
Process Models. In: MKWI’08, Munich, Germany (2008)

4. Ngu, A., Carlson, M., Sheng, Q., Paik, H.: Semantic-Based Mashup of Composite Applica-
tions. IEEE Transactions on Services Computing. 3(1), 2--15 (2010)

5. Greenshpan, O., Milo, T., Polyzotis, N.: Autocompletion for Mashups. In: Proc. VLDB
Endow. 2, no. 1, pp. 538-549 (2009)

6. Yue, K.: Experience on mashup development with end user programming environment.
Journal of Information Systems Education. 21(1), 111--119 (2010)

7. Roy Chowdhury, S., Rodríguez, C., Daniel, F., Casati, F.: Wisdom-Aware Computing: On
the Interactive Recommendation of Composition Knowledge. In: Proceedings of WESOA
2010, Springer (2010)

8. Daniel, F., Casati, F., Benatallah, B., Shan, M.-C.: Hosted Universal Composition: Models,
Languages and Infrastructure. In mashArt. ER’09, pp. 428-443, (2009)

11. Bødker, S.: Scenarios in user-centred design - setting the stage for reflection and action.
Interacting with Computers. 13, 61--75 (2000)

12. Wulf, V., Pipek, V., and Won, M.: Component-based tailorability: enabling highly flexible
software applications, International Journal of Human-Computer Studies. 66(1), 1--22
(2008)

Appendix: The Scenarios

Introduction (common to both scenarios). Alberto is an accountant at the University of Trento: one of his
duties is the reimbursement of travel expenses. This is a sensitive and time-consuming work which requires
several repetitive tasks (e.g., checking staff profile, projects details, financial reports and regulations,
obtaining proper authorization), which Alberto performs manually. He was told that the university recently
bought a web-tool called WIRE, which can help him to make repetitive tasks automatic. Although he has
never done any type of development before, he is curious to try. A short on-line video shows him that
WIRE works by connecting activities. WIRE provides a set of activities similar to the paperwork Alberto is
familiar with; a composition area where these activities can be assembled; and a set of contextual advices
generated according to the actions of the user.

Positive Scenario. Alberto starts designing an application for the reimbursement process. He knows from
his daily experience that the process starts with a request, so he searches for this activity. He finds an
activity called Reimbursement request and, after reading its description, he places it in the composition
area. Then, he selects the Get trip document activity and at that point an automatic advice suggests him to
take also the Translator and the Currency Converter activities. Alberto knows that the advice is right
because he deals with many travels in foreigner countries. He thus accepts the advice and WIRE automati-
cally places the two activities on the composition area adding the necessary connections to the other activi-
ties. Alberto progresses the design choosing all activities needed and WIRE help him suggesting how to
connect them. Once Alberto thinks he has finished, WIRE proposes to add the activity Check Authorization
in a specific point of the workflow. He remembers that this task is mandatory and needs to be performed
early, so he gladly accepts the advice and the system automatically update the configuration. Now Alberto
decides to share the application with all his colleagues: he clicks on the link Publish and the application is
automatically posted on the Intranet.

Negative Scenario. The first impression that Alberto has is mixed. WIRE provides a large number of
activities that certainly will include those he needs but it is difficult to understand what they do and how to
use them. Alberto fears that learning will take quite some time. However, he decides to give it a try and
starts designing an application. He knows from his daily experience that the process starts with a request, so
he searches for this activity. He spends some time to find an activity called Reimbursement request and he
places it in the composition area. Then, he selects the Get trip document activity and at that point an auto-
matic advice suggests him to take also Translator and Currency Converter. Alberto does not need these
activities as the application he wants to build is only for national trip. He finds the advice annoying, as he
knows exactly which activities are involved in his job and was distracted by the unnecessary suggestion,
which took time to be understood. Alberto progresses the design choosing all activities he needs but then he
feels unsure on how to connect them. The system however does not have any advice on the problem. Al-
berto is not sure about the correctness of the application he created. He is worried about the fact that it will
handle money and sensitive information of which he is responsible for. He misses the level of control that
he feels while processing his task manually one after the other so he goes back to the traditional work.

58 End-user requirements for wisdom-aware EUD

Appendix C

Composition Patterns in Data Flow

Based Mashups

Soudip Roy Chowdhury, Aliaksandr Birukou, Florian Daniel, Fabio Casati. Composition Patterns

in Data Flow Based Mashups. Proceedings of EuroPLoP 2011, 2011.

Composition Patterns in Data Flow Based Mashups
Soudip Roy Chowdhury, Aliaksandr Birukou, Florian Daniel, and Fabio Casati

University of Trento, Via Sommarive 5, 38123 Povo (TN), Italy
{rchowdhury,birukou,daniel,casati}@disi.unitn.it

ABSTRACT
Recently, mashup tools have emerged as popular end-user
development platform. Composition languages used in mashup
tools provide ways (drag-and-drop based visual metaphor for
programming) to integrate data from multiple data sources in
order to develop situational applications. However this
integration task often requires substantial technical expertise from
the developers in order to use basic composition blocks properly
in their composition logic. Reusing of existing composition
knowledge is one of the possible solutions to ease mashup
development process. This reusable composition knowledge can
be harvested from composition patterns that have occurred
frequently in previously developed mashup. In order to
understand composition patterns in mashups, particularly in data
flow based mashups, in this paper, we have analyzed the
composition language used by one of the most popular data-flow
based mashup tools, Yahoo! Pipes. Based upon our analysis we
have identified six composition patterns, which represent most
commonly used composition steps during mashup application
development. To prove the generality of the identified patterns in
data-flow based mashup composition languages, we have further
shown the applicability of our composition patterns in several
other popular data-flow based mashup tools.

Keywords
composition pattern, mashup, data mining, end-user development

1. INTRODUCTION
Recent efforts in end-user development (EUD) focus on enabling
domain experts, i.e. business experts who are not typically IT
experts to participate in the application development process.
Mashup development [6] is particularly in-line with this EUD
methodology. Mashup development is conceptualized with a view
that domain experts could develop “situational application” to
cater their immediate business needs without having IT experts in
the development loop. Development supports (e.g. visual
metaphors like dragging, dropping and connecting visual
components instead of writing programs etc.) are provided by the
development environment to ease the development process.
However these supports are still not sufficient to ease EUD.
Developing an application using these development environments
requires end-users either to tailor the existing solutions or to
create a new solution as per the new requirements. This task
involves understanding and defining the complex data flow logic
between the components in an application [5]; although this is not
a typical skill that an end-user possesses.

The use of the patterns to capture the frequently occurring
development styles and insights in computer/software systems
design [7,8] is not a new idea. In our approach, we explore the
mashup development scenario to identify the potential mashup
development patterns, which can be useful to the developers
(novice or expert) while defining their composition correctly. We
also think that mashup platform providers will benefit from our

analysis. This analysis of patterns will help them to understand the
mashup composition paradigms in a better way. This will also
help them to identify what are the functionalities they could
provide in the composition language in order to support end-user
development. In this paper we have restricted our analysis only to
data-flow based mashup composition logic. The patterns, which
are discussed in this paper, may not be readily applicable to other
composition languages (e.g. control flow based) and may require
further refactoring.

Michael Ogrinz et al. [2] have identified 34 different types of
mashup patterns classified mainly into 5 main categories for data-
flow based applications. The patterns, as presented in this paper,
are derived by analyzing the functional and structural aspects of
enterprise mashup applications. In our approach, as described in
[1], we, however, want to explore the composition patterns in
mashups, which are derived by analyzing the frequently occurring
development steps (mashup composition models) in existing
mashup applications.

The pattern descriptions in this paper are targeted at both novice
and experienced mashup application developers. Novices may
choose to treat these patterns as suggestions to be tried and to be
applied in their applications. Whereas, experts can use these
patterns definitions as a form of checklist, in order to identify
them in their application definitions. Experts can further store the
definition of the identified composition-pattern in a repository
(composition knowledge base) in order to make them reusable by
the end-users (domain experts, non-technical users) during their
development tasks.

The structure of this paper is as follows; in the next section we
explain the development steps that a developer has to follow in
order to develop a simple application in a data flow based mashup
tool like Yahoo! Pipes. Based upon the scenario, we analyze the
mashup composition paradigm and introduce the composition
patterns in section 3. In section 4, we show our effort to apply the
identified patterns of section 3 in other data mashup platforms. In
Section 5, we finally conclude our discussion with possible future
work directions.

2. EXAMPLE SCENARIO
In this section, with the help of a use-case implementation
scenario in Yahoo! Pipes, we have tried to explain the
composition steps that a developer has to follow while developing
a mashup application in a tool like Yahoo! Pipes. The example
scenario is described as follow:
Carlos is a sports lover and an active blogger. He uses his
personal blog to post sports related latest news, articles, videos
and updates from different media sources like ESPN sports.
Keeping his blog updated with the latest news, requires him to do
lot of manual works like content aggregation, filtering and
publishing etc. To automate this repetitive and time-consuming
job, Carlos intends to use Yahoo! Pipes mashup environment and
composition language to create an application, that fetches news
feed from ESPN sports, extracts only the content related to soccer

news, lists the news with their corresponding headlines and
aggregates similar news under the same headline for better
readability purpose.

Figure 1 Implementation of the example scenario in Yahoo!

Pipes.

The pipe that implements the required feature is illustrated in
Figure 1. It is composed of five components: The Fetch Feed is
required to get the news article from the publishing website as
mentioned by its URL parameter. The URL address for ESPN
news is feed://rss.soccernet.com/c/668/f/8493/index.rss. The next
component is a container Loop, which embeds another component
Fetch Page inside it. Fetch Page Component retrieves the
selective page content (Cut content from parameter is used as a
content selection criteria over the HTML content of the page)
from the links as mentioned in item.link field of the output coming
out of Fetch Feed component. Loop component runs over every
feed item and invokes the Fetch Page component. It also assigns
the output of the Fetch Page component to the item.description
field. Unique component is used for merging the content of the
similar news, based upon their title description (item.title).
Finally, the Pipe Output component specifies the end of the pipe.

3. COMPOSTION PATTERNS
Before we discuss about the development patterns in detail, let us
first define the preliminaries of a data-flow based mashup
application.
A mashup Μ is a tuple, M = <N, C, T, O>

Where
N- denotes the name of a mashup application.
C - {c1, c2…cn} denotes set of components in an application.
T is a tuple, defined as T =<V, E> denotes the data mapping
function between connected components.
Where

V – {L1,L2,…LK} denotes set of pair of components which are
connected via connectors between them.
Such that L1 – (c1, c2), L2 - (c1, c3), … LK -(cK-1, cK),
E – {eL1 …eLK} denotes set of connectors that can be used for
connecting pair of components in V.
O – denotes the output of a mashup application.
Further, a component C can be defined as a tuple.
C = < I, R, Q >
Where
 I - {P1, P2, … PN} denotes the set of configuration parameters
(Input) that a component can have.
R - {Ai} denotes set of attribute values for the parameters of a
component. Given a component ci, and the set of configuration
parameters I, the attribute values that elements of I hold in a
mashup, is denoted by the elements of the set R:{Ai}, where i =
1..N , denotes the index of the parameters. An attribute value can
be provided by the developer explicitly or can be assigned with
the value of the output of another component in the development
canvas.
Q – denotes the output value for the component ci.
In the light of the above formalization, let us now define
composition patterns that we can identify and extract from a
mashup application as explained in section 2.

3.1 Frequent Parameter Value
• Description: Frequent parameter value captures a set,

consisting of possible value assignments for a parameter of a
component that have been used frequently in the past
compositions. The parameter value can be assigned with an
explicit user-specified string value (as shown in Figure 1,
URL parameter of Fetch Feed component) or can be assigned
with the output value of another component in the current
composition (as shown in Figure 2) via a connector pipe. By
analyzing the past successful compositions we can identify
the frequent itemsets, which capture the value assignments
for a given parameter of a component. Frequent value-
assignment itemsets along with associated component, and
composition context information are captured and stored as
data-pattern.

• Example:
The Fetch Feed component as shown in figure 2, has an URL
parameter. URL is assigned with the output value of another
component. In this example the output of an URL Input
component, as shown in the right-top end of Figure2,
provides the value to the URL parameter of Fetch Feed. This
value assignment can be captured in frequent parameter
value.

Figure 2 Example of Frequent Parameter Value

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
EuroPLoP’11, July 13–17, 2011,Bavaria, Germany

• Problem: There may be many possible value options, for the
parameter value assignments for a component, remembering
all of them are difficult for the developer. Human errors
(type mismatch, wrong value assignment etc) in specifying
the parameter value lead to erroneous result of the data-flow.
Also these types of errors are harder to detect at later stage of
the composition design. Learning from the examples of past
applications and use it in the current composition takes time
and expertise.

• Forces:
o The value can be provided manually as a string

value or can be provided by assigning output of
another component to the given parameter value
field.

o In case of assigning the input parameter value of a
component by the output of another component, it
is essential to know which of the components can
provide the required input value to be assigned to
the parameter. In case of explicit type casting is
required for the input parameter value, the
developer also needs to know how to do the
provisioning (e.g., using filter components to filter
out few attributes from the output parameter) in
order to make the composition work.

o Type mismatch is typical problem that arises
during parameter value assignment. Due to this
when the output of one component is assigned to
configuration parameters of another, more care is
required to avoid the problem of type mismatch.

• Solution: To solve the problems as mentioned above, we
capture and store the frequent value assignments information
for the parameters of a component along with the associated
composition context information. Given a component ci and
its parameter Pi, we can identify the possible value
assignments for Pi i.e. {<Pi,A1>,<Pi,A2>..<Pi,An>}, which
have occurred frequently in the past successful compositions.
We identify these patterns from the existing composition
models stored in the mashup repository and by applying
data-mining algorithm (association rule mining). We store
the extracted pattern information in our pattern repository to
analyze the best practices and common usage of patterns.

• Consequences:
o One component may have multiple parameters and

multiple parameters can have many possible
values, capturing and storing all the possible values
is memory intensive tasks.

o Frequently used value set doesn’t always represent
the possible set of values. Hence at time when the
user wants to know information about the whole
set of possible values this approach may not be
useful.

3.2 Associated Parameters Value
• Description: Associated Parameters value pattern captures

the information related to the value assignments for all the
associated parameters for a component. Given a parameter of
a component is assigned with a specific value, this pattern
captures how the remaining parameters of the selected
component are assigned with values. Association rules
capturing the relationship and assignments of parameters

with their corresponding values for a component along with
their support and confidence metric are stored in associated
parameter value pattern.

• Example:
As shown in the Figure 3, the value of the parameter Cut
content from and the subsequent Split using delimiter are
determined by the value of the parameter URL of Fetch
Page. Hence we can say that there exists an association
relation between the other parameter values of Fetch Page,
given the value of URL parameter.

• Description: Associated Parameters value pattern captures
the information related to the value assignments for all the
associated parameters for a component. Given a parameter of
a component is assigned with a specific value, it captures
how the remaining parameters of the selected component are
assigned with values from a set of possible values for them.
Association rules capturing the relationship and assignments
of parameters with their corresponding values for a
component along with their support and confidence metric
are stored in parameter value association.

• Example:
As shown in the Figure 3, the value of the parameter Cut
content from and the subsequent Split using delimiter are
determined by the value of the parameter URL of Fetch
Page. Hence we can say that there exists an association
relation between the other parameter values of Fetch Page,
given the value of URL parameter.

Figure 3 Example of Associated Parameters Value

• Context: A selected component has more than one parameter

(e.g. input parameter, configuration parameter, and output
parameters). User has filled a few of the parameters with
their corresponding value assignment and further he wants to
assign values for the rest of the parameters of the selected
component.

• Problem: The problems that a user may face in order to fill
up the values for the rest of the parameters, given a few of
the parameter values are filled, are due to the fact that there
could be many valid options for the parameter value
assignments. The assignments of parameters with their
corresponding values require the users to know the internal
data-flow logic of the composition. This task is not a trivial
one, especially the users who do not have enough exposures
on service composition and mashup tools, may find it
difficult to set these values.

• Forces:
o As the values of the parameters are associated, the

values of subsequent parameters are dependent on
the values of the preceding parameters. For
example selection of URL parameter value in
Figure 3, determines the possible value options for
the subsequent parameters (cut content from, Split
using delimiter etc).

o Type mismatch during the value assignment is
another typical problem that arises during the value
assignment for the parameters of a component.
Knowing the proper type information is not very
trivial for the developer who does not have enough
exposure on mashup tools and also do not have the
prior knowledge about the application’s data-flow
logic.

• Solution: Therefore, to solve the problem as described above
we need to identify and store the association relation
information between the value assignments for the
parameters of a component. Given a component ci has N
parameters (P1,P2,….PN),if the parameter value assignments
{(P1, A1),(P2,A2)…(PK,AK)…(PN,AN)} are found to be the
most frequent from the past successful compositions. Then
we can infer the association rule {(P1,A1),(P2,A2)…(Pk,AK)}
{(PK+1, AK+1)…(PN,AN)} i.e. given P1 is assigned with A1,
P2 with A2 and PK is assigned with AK etc implies Pk+1 will be
assigned with AK+1 and similarly PN will be assigned with
AN. Association rules, containing the parameter value
assignments along with the information of the corresponding
component, and composition context reference, are stored as
parameter value association in the composition knowledge
base. This association information is significant in helping
the users to fill the parameters with proper values for a given
component in a given composition context mitigating the risk
of type mismatch and selecting from multiple options
without having enough technical insight about the
composition.

• Consequences:
The consequences are similar to the consequences as
mentioned for parameter value pattern.

3.3 Components Co-occurrence
• Description: Components co-occurrence, captures the

information in terms of given a component selected what are
the other components that can co-exist in a given
composition context.

• Example:
Components co-occurrence captures the information about
what are the components that may occur together in a given
composition context. In the example as shown in Figure 4,
component co-occurrence captures the set of components
{Fetch Feed, Loop, Fetch Page, Unique}, given the fact that
these components occurred together frequently in the
previous successful compositions.

• Context: User wants to proceed or complete his current
composition design by adding a new component/s in his
composition model in the development canvas.

• Problem: In the presence of a large database of mashup
components, selecting proper component/s that can be used
together with the components already existing in the user
specified composition design model, is not an easy task for
the developer who do not posses sufficient IT knowledge.
Learning from the examples of past applications and use it in
the current composition requires time and expertise.

• Forces:
o From a database of n different mashup

components, the number of possible way that k
number of components can be chosen for the

mashup design is nk , in the worst-case scenario.
For a less IT skilled developer choosing the best
possible option of component out of nk is not an
easy task.

Figure 4 Example of Components Co-occurrence

o For defining a consistent mashup, not only the co-

existence of components in a given composition
context but also their inter-dependencies (proper
mapping of parameter value from one component
to another in order to make the data-flow consistent
etc.) have to be defined properly. Developers using
such mashup platforms must have the background
knowledge about how to satisfy these criteria while
defining the data-flow logic for a mashup
application.

o Making a simple mistake in the intermediate steps
during the mashup design may lead the whole
application to become erroneous. At the later stage
of the development, identifying such mistakes,
which have occurred in the earlier steps, become
difficult.

• Solution: Therefore, the components co-occurrence captures
the association information of a component or a set of
components with the associated set of components with their
corresponding support and confidence value to be appeared
together in an application. Given a set of components
S={ci,,ci+1 ,…,cN} are present in the current development
canvas, we can find the set of other components Y={cj, cj+1

..cM}, such that (S,Y) occurred together in the previous
successful compositions and the following conditions satisfy;
S,Y ∈C also S, ∩ Y = ∅. The elements in this association
rule captures the set of components, which have frequently
co-occurred together in the past successful compositions and
also the components ({ccurrent}) in the current development
canvas is a subset of either S or Y, i.e., ccurrent ⊂ S or ccurrent ⊂
Y. While the support value captures the statistical measures
of how many times in the past compositions (S,Y) occurred
together, the confidence value signifies the probability of
occurring Y given any elements of S is present in the
composition context. Components that satisfy a certain
threshold value of support and confidence are captured and
stored in a list that stores the co-occurrence (S,Y)
information of the components in a mashup composition
knowledge repository. This knowledge may be significant in

understanding the possible options for components, which
the user may use in his composition.

• Consequences:
o This pattern captures the information about the

number of components co-occurred in a
composition.

o But this pattern doesn’t capture the information
about how those components are connected with
each other. In other words how the data flows
between the components.

3.4 Data-mapping
• Description: Data-mapping captures the most frequent

dataflow logic definition which consists of components in the
current composition, i.e., how in the past compositions the
output attribute of one of the existing component is
connected via connector to the input parameter of another
component/s in the given composition context. Data can be
mapped between one component’s output to another
component’s default input or it can be mapped between one
component’s output to another components’ configuration
parameter.

• Example:
In a data-flow based composition scenario, as we have
described in this paper, the data-mapping can happen
between one component’s output to another component’s
default input as shown in Figure 5b or between one
component’s output to another’s configuration parameter as
shown in Figure 5a.

• Context: A user wants to connect one component with
another component in the composition by defining proper
data mapping between the output attribute/s of one
component to the input parameter on another.

Figure 5a

Figure 5b

Figure 5 Examples of Data-mapping patterns

• Problem: Defining the proper data-mapping logic requires

developer to know the technical details about the data-flow
logic. If the user makes a mistake in defining the data-
mapping logic between the components then the whole
composition logic becomes erroneous.

• Forces:
o A user needs to know the type information of the

input parameters for the target component as well
as the type information for the output parameter of
the source component. The type of these two
parameters must match for the data mapping
between the components.

o When the output of one component is used as an
input parameter value by more than one
component, then the type of the output of the
source component must match with the input of all
the target components.

o Mapping a specific value from the output set of a
component to the input parameter value of another
component, for example in Figure 5b, the mapping
of item.link from the output list Item of Fetch Feed
component to the URL parameter of Fetch Page is
another data-mapping example. However we can
observe in this example that knowing this kind of
finer mapping details involves technical knowledge
as well as knowledge on the data-flow logic.

o Learning the possible relevant options from the
previous application examples is not very easy for
the end-users. Also this learning process requires
time and expertise.

• Solution: To solve the problem as explained above, in data-
mapping, we capture the association rule capturing the
information about how the output of one component (source
component) are mapped to the input parameter
(configuration parameter) value of another component
(Target component). The data-mapping information is
captured in terms of association rules between the parameter
values of the components. Let us assume, for a given pair of
components (ci ,ci+1), output object qi of ci (Source
Component) is mapped to configuration parameter Pj of ci+1
(Target Component). Furthermore let us assume that qi
contains set of N values as {ß1,ß2 ….ßN} and out of that a
subset { ßj,…ßK }, where 1<=i and K<=N, can be mapped to
Pi , in a given composition context. The association relation
that captures the relation of {{ci,qi[ßj,…ßK]} {ci+1, Pj }} with
corresponding support and confidence value is stored as
data-mapping.

• Consequences:
o Given two components this pattern will help users

to know in how many ways they can be connected
with each other via data-mapping.

o If the number of components increases, the
possible options for their data mapping with each
other increase. The viable options for the possible
data mappings also become exponentially high.

3.5 Associated Composition Fragments
• Description: Associated Composition Fragment captures the

association information between two composition fragments.

In other words, given a partial composition definition in the
current development canvas, associated composition
fragment captures the association information between the
current partial compositions with the associated components/
composition fragment, which can be used to auto-complete
or to extend the current composition definition. Associated
Composition Fragment consists of set of connected
components that have been frequently used together in
previous successful applications. This pattern contains partial
compositions definition consisting of multiple components,
connectors with proper parameter value and data mapping
setting.

• Example: For instance in Figure 6, the combination of Filter-
Fetch Page embedded inside Loop – Unique component
together is an example of Associated Composition Fragment.
Given Fetch Feed component is selected and its URL
parameter is filled with a specific value as shown in the
Figure 6, Associated Composition Fragment captures the
knowledge that the combination of Filter- Fetch Page
embedded inside Loop – Unique component together is the
most frequently used fragment which can be connected to
Fetch Feed component.

• Context: when a user selects a component in the
development canvas, and he wants to complete his partial
composition definition with fragment consisting of several
components connected via connectors with proper data-
mapping set among the components etc.

• Problem: Completing a mashup composition definition with
components, connector and data mapping, requires users to
know the internal data flow logic of the application, input
and output parameters and their type information for all the
constituent components. If the mashup platform contains
many components and if the components can have many
possible ways to be connected with each other, then the
complexity of defining a proper mashup composition
becomes exponentially huge. Even a small mistake while
selecting a component or filling the parameter value or
defining the data mapping logic during the intermediate steps
can lead to an erroneous mashup application definition.

• Forces:
o The number of possible ways that a mashup

composition can be defined is many. Knowing all
of these possible options for defining a proper
mashup application is difficult for the end-users.
Especially when the mashup application is
considerably large, for each of the components and
connections user needs know the information
regarding the parameter values, data mapping logic
etc. Knowing all of them is not a trivial task for a
less skilled developer or end-users for instance.

o Learning the possible options of the intermediate
steps from the previous application examples
requires time and expertise.

o As for the large mashup application designing
making mistake in defining any of the intermediate
steps may become difficult to debug at the later
stage.

Figure 6 Example of Associated Composition Fragments

(containing component/s, connector/s as a part of meaningful
compositions)

• Solution: To solve the problem as explained above,

associated composition fragment could be used for auto-
completing the partial composition definition. Past successful
application fragments, which were frequently used and well-
tested in similar composition, context, can be used for auto-
completing the partial mashup definition fast. Associated
composition fragment can be used for this purpose.
Associated composition fragment can capture the
information such as, given the existing composition
definition in the development canvas, the set of frequently
occurring partial composition instances, which can be used to
auto-complete or extend the definition of the existing
composition in the development panel. Let us assume
Mexisting = < Cexisting, Texisting, O > denotes the existing partial
composition in the development canvas, where O= ∅ and
Cexisting={ci} is the set of components present in the current
partial composition such that i=1..N. Texisting is the set of data
mapping function which connects the components in C.
Also assume Mfragment= < Cfragment, Tfragment, O > is a partial
composition where O may or may not be ∅. Mfragment can be
associated with the existing composition in the development
canvas to complete the composition definition such that
(Mexisting ∪ Mfragment) = M <N, C, T, O>; where M is
consistent. If O = ∅ then we say that the associated fragment
is used for extending the definition of Mexisting, otherwise
associated fragment auto-completes Mexisting. Given Mexisting,
, associated fragment pattern captures the association rules
(Mexisting {Mfragment }) such that {Mfragment} contains set of
fragments with their corresponding support and confidence
values. For each of the elements of the set {Mfragment} there
exists a at least one connection between qi and Pj, where qi is
the output of a component ci and cj ∈ Mexisting and Pi is the
input parameter of a component cj and cj ∈ Mfragment. Using
standard data mining technique e.g., association rule mining
etc we can identify and mine frequently occurring
composition fragments sets from the past successful
compositions and can store these knowledge in our
knowledge-base. This knowledge if provided as development
recommendation, can be helpful in automating the
composition task and can be used to leverage faster
development and maximum reuse of existing composition

knowledge in order to help end-users in their composition
tasks.

• Consequences:
o Associated composition fragment pattern is

basically a union of one or more patterns as
described before.

 However if the developer wishes to know the final composition
model instead of knowing the constituent blocks individually, this
pattern can be useful in that scenario.

4. DISCUSSION
For the sake of the simplicity of our analysis, in this paper we
have considered Yahoo! Pipes, as a reference data-flow based
mashup development environment. Yahoo! Pipes provides a
simple visual drag-and-drop metaphor for application
development instead of writing code. Based upon the meta-model
of Yahoo Pipes as introduced in [1] and composition language
provided by the platform, we have identified six types of
composition patterns as shown in the previous section. However
to verify the applicability of these composition patterns in all the
data-mashup domains, we have further explored other popular
data mashup platforms e.g. Presto Wires1 and MyCocktail2. To
anticipate our analysis on these platforms, we have developed
applications in these platforms which implement similar/same
scenario as described in Section 2 (as shown in Figure 8 and
Figure 9 [Appendix A]). During our analysis of the development
steps in these platforms, we could successfully map all the
identified composition patterns to the corresponding composition
languages as provided by these tools. Based upon our
observations, we can hence infer that the 6 composition patterns,
as described in this paper can well represent different composition
aspects supported by the composition languages that are used for
data-flow based mashup development.
In our research approach in WIsdom AwaRE (WIRE) computing
[1], we aim at developing an assisted mashup development
platform. In WIRE we provide development recommendations
during development about the next possible composition steps
based upon user actions and partial composition information, with
a view that by following the recommendations the users can
successfully define their mashup applications. The patterns as
discussed in this paper can be a good base for providing
development recommendations at different levels of abstraction.
We claim that development recommendations on next component,
connector, or the possible value set for a given parameter etc
which are derived from the composition patterns are more useful
to the users during their development tasks. To verify this claim
recently we have performed a user study [9] with 10 non-IT
administrators of a university. The result of the study reveals the
fact that the end-user indeed would like to receive development
assistance at different levels of granularity during development.
The end-users also expressed their concerns about the existing
assisted development platforms, which by auto-completing the
partial composition provide little or no room for the end-users to
have control over the intermediate steps. However the assistance,
which is harvested from the patterns, as discussed in this paper
will provide them more control over the intermediate steps. We
claim that development recommendations on next component,
connector, or the possible value set for a given parameter etc are

1 http://www.jackbe.com/products/wires.php
2 http://www.ict-romulus.eu/MyCocktail/

more useful to an end-user than auto-completion. We also claim
that these sets of recommendations will help users to learn about
how to define the composition logic in their application. In our
approach in WIRE we aim at deriving development
recommendations from the community composition knowledge,
which is again captured from the composition patterns that
occurred frequently in past successful compositions. The
composition patterns, as discussed in this paper, can be discovered
by applying data-mining techniques on the existing composition
models. In WIRE in particular, we want to explore and extend the
standard data mining techniques like frequent itemsets,
association rule mining etc for discovering the patterns from the
existing composition logs. However we also realize that in case of
incomplete or uncertain data these pattern-mining techniques may
not work properly. In future work we will direct our research
efforts in order to tackle the challenges related to data mining in
the presence of incomplete/uncertain data.
The composition patterns in this paper will be helpful in
understanding and knowing which composition knowledge are
important and are required to be captured as patterns in order to
provide them as useful development recommendations. In our
future work we will further explore to analyze the contexts under
which certain composition patterns can be recommended during
the development process.

5. LITERATURE REVIEW
The idea of developing large-scale applications by composing
coarse grained, reusable component modules has been well
established by [12]. A similar, approach has been proposed in the
parallel computing domain [13]. In this case, sequential
procedures are composed into a parallel structure using a control
flow based graphical notation, where the data flow is derived
implicitly by matching parameter names [14], later these parallel
structures are reused as knowledge. In the past, there have also
been many approaches, which had tried to tackle the problem of
extending visual data flow languages with iteration constructs
[10]. An example of iteration through vector operators and
conditional switches is described in [11]. The main drawback of
these approaches is, the patterns only capture the structural
behavior of the composition, that too only the variation points
(join, split etc), the association between the data sources,
relationship of data sources with data flow logic are not captured
in these approaches. In our approach as described in this paper,
instead of only capturing the iterative structure in a composition,
we capture the composition steps, which have occurred frequently
over the past successful compositions. The composition patterns
as described in this paper capture the iterative structural patterns
implicitly along with other related information about the data-flow
logic. Hence we can say that the patterns as discussed in this
paper are more complete and useful in capturing the composition
knowledge in visual programming like mashup development
paradigm.

6. Conclusion
In this paper we discussed about the mashup composition patterns,
which can be identified during mashup application development.
By analyzing the contexts, problems and the factors related to
different composition steps, we have identified and formalized
five mashup composition patterns. To validate the generality of
these patterns, we have further explored the mashup composition
languages of other data mashup platforms. The result of this
experiment shows the applicability and generality of the identified
composition patterns in data-flow based mashup platforms. In this

paper, however, we have restricted our analysis to only data
mashup platforms. However this set of composition patterns may
not be exhaustive. In “Process mashup” we may have different
set of representative patterns, which require further research
efforts and analysis. In our future work we will analyze the meta-
model of such process flow based mashup composition languages
and will try to map or extend these composition patterns to
support both data-flow based and process-flow based mashup
developments.

7. ACKNOWLEDGMENTS
We convey our sincere thanks to our shepherd Christian Kohls for
his constructive and supportive help during the shepherding
process in order to improve the quality of the patterns and the
paper. We would also like to thank Kristian Sorensen, from
EuroPLoP 2011 program committee, for his extended help and
support during the shepherding process. This work is supported by
the funds from European Commission (project OMELETTE,
contract no. 257635).

8. REFERENCES
[1] Soudip Roy Chowdhury, Carlos Rodríguez, Florian Daniel

and Fabio Casati. Wisdom-Aware Computing: On the
Interactive Recommendation of Composition Knowledge.
Proceedings of WESOA 2010, December 2010, Springer.

[2] Michael Ogrinz. 2009. Mashup Patterns: Designs and
Examples for the Modern Enterprise (1 ed.). Addison-
Wesley Professional.

[3] Florian Daniel, Agnes Koschmider, Tobias Nestler, Marcus
Roy, Abdallah Namoun. Toward Process Mashups: Key
Ingredients and Open Research Challenges. Proceedings of
Mashups 2010, December 2010, ACM

[4] F. Daniel, S. Soi, S. Tranquillini, F. Casati, C. Heng, and L.
Yan. From People to Services to UI: Distributed
Orchestration of User Interfaces. In Proceedings of BPM’10,
pages 310–326., 2010.

[5] David E. Simmen, Mehmet Altinel, Volker Markl, Sriram
Padmanabhan, and Ashutosh Singh. 2008. Damia: data
mashups for intranet applications. In Proceedings of the 2008
ACM SIGMOD international conference on Management of
data (SIGMOD '08). ACM, New York, NY, USA, 1171-
1182.

[6] Jeffrey Wong and Jason I. Hong. 2007. Making mashups
with marmite: towards end-user programming for the web. In
Proceedings of the SIGCHI conference on Human factors in
computing systems (CHI '07). ACM, New York, NY, USA,
1435-1444

[7] Martin Fowler. 1996. Analysis Patterns: Reusable Objects
Models. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA

[8] Colette Rolland and Naveen Prakash. 1993. Reusable
Process Chunks. In Proceedings of the 4th International
Conference on Database and Expert Systems Applications
(DDEXA '93), Springer-Verlag, London, UK, 655-666.

[9] De Angeli, Antonella and Battocchi, Alberto and Roy
Chowdhury, Soudip and Rodriguez, Carlos and Daniel,
Florian and Casati, Fabio (2011) Conceptual Design and
Evaluation of WIRE: A Wisdom-Aware EUD Tool.
Technical Report DISI-11-353, Ingegneria e Scienza
dell'Informazione, University of Trento.

[10] Mosconi, M. and Porta, M. Iteration constructs in data-flow
visual programming languages. In Proceedings of Comput.
Lang. 2000, 67-104.

[11] M. Auguston and A. Delgado. Iterative constructs in the
visual data flow lan- guage. In G. Tortora, editor,
Proceedings of the 1997 IEEE Symposium on Visual
Languages (VL97), pages 152–159, Capri, Italy, September
1997

[12] G. Wiederhold, P. Wegner, and S. Ceri. Towards mega
programming: A paradigm for component-based
programming. Communications of the ACM, 35(11):89–99,
1992

[13] J. C. Browne, S. I. Hyder, J. Dongarra, K. Moore, and P.
Newton. Visual programming and debugging for parallel
computing. IEEE parallel and distributed technology:
systems and applications, 3(1):75–83, Spring 1995 .

[14] V. S. Sunderam, G. A. Geist, J. Dongarra, and R. Manchek.
1994. The PVM concurrent computing system: evolution,
experiences, and trends. Parallel Comput. 20, 4 (April 1994),
531-545

Appendix A

Figure 7 Composition Patterns in Presto Wires

Figure 7 shows an implementation of a simple mashup application in Presto Wires platform. This mashup consists of 6
components. In this example Direct Invoke components (GetNewsFeedFromCNNSoccer,GetNewsFeedFromESPNSoccer,
GetNewsFeedFromYahooSoccer) fetch rss-feeds from URLs of the websites as mentioned in the Resource Link parameter
value. Merge component then merges the feeds based upon the condition specified in its configuration. Finally Filter
component filters the merged data based upon the conditions specified by the developer (shown as Block:Filter
Configuration setting in Figure 7) and provides the filtered data to the Mashup Output component. Mapping of composition
patterns, as discussed in this paper, to the composition language of Presto Wires validates the applicability of five
composition patterns in other data flow based mashup composition language as well. To further support this claim we tried to
map these five composition patterns to MyCocktail, another data flow based mashup platform. Figure 8 shows an
implementation of the mashup scenario as described in section 2 by using MyCocktail mashup builder. This application can
also be viewed at this link (http://www.ict-romulus.eu/MyCocktail/#107). This mashup consists of 4 components. The first
component in this composition is Fetch RSS service, which fetches the soccer news from the URL as specified in RSS url
parameter. The next component Iterate, iterates through all the items in the input list and stores them in a temporary array
iterate. Count component counts the elements of an array based upon some property value of array elements. In this example
the elements are counted by the property id. Finally UI component List Renderer is used for rendering the news in the
temporary array. In this example scenario as shown in Figure 8, we can see how the composition patterns, as defined in this
paper, can be mapped to the composition language of MyCocktail.

Figure 8 Composition Patterns in MyCocktail Mashup Builder

70 Composition Patterns in Data Flow Based Mashups

Appendix D

Efficient, Interactive

Recommendation of Mashup

Composition Knowledge

Soudip Roy Chowdhury, Florian Daniel, Fabio Casati. Efficient, Interactive Recommendation of

Mashup Composition Knowledge. Proceedings of ICSOC 2011, LNCS, December 2011, Springer,

Pages 374388.

Efficient, Interactive Recommendation of
Mashup Composition Knowledge

Soudip Roy Chowdhury, Florian Daniel, Fabio Casati

University of Trento
Via Sommarive 5, 38123 Povo (TN), Italy

{rchowdhury,daniel,casati}@disi.unitn.it

Abstract In this paper, we approach the problem of interactively query-
ing and recommending composition knowledge in the form of re-usable
composition patterns. The goal is that of aiding developers in their com-
position task. We specifically focus on mashups and browser-based mod-
eling tools, a domain that increasingly targets also people without pro-
found programming experience. The problem is generally complex, in
that we may need to match possibly complex patterns on-the-fly and
in an approximate fashion. We describe an architecture and a pattern
knowledge base that are distributed over client and server and a set of
client-side search algorithms for the retrieval of step-by-step recommen-
dations. The performance evaluation of our prototype implementation
demonstrates that - if sensibly structured - even complex recommenda-
tions can be efficiently computed inside the client browser.

1 Introduction

Mashing up, i.e., composing, a set of services, for example, into a data process-
ing logic, such as the data-flow based data processing pipes proposed by Yahoo!
Pipes (http://pipes.yahoo.com/pipes/), is generally a complex task that
can only be managed by skilled developers. People without the necessary pro-
gramming experience may not be able to profitably use mashup tools like Pipes
– to their dissatisfaction. For instance, we think of tech-savvy people, who like
exploring software features, author and share own content on the Web, that
would like to mash up other contents in new ways, but that don’t have pro-
gramming skills. They might lack appropriate awareness of which composable
elements a tool provides, of their specific function, of how to combine them, of
how to propagate data, and so on. The problem is analogous in the context of
web service composition (e.g., with BPEL) or business process modeling (e.g.,
with BPMN), where modelers are typically more skilled, but still may not know
all the features of their modeling languages.

Examples of ready mashup models are one of the main sources of help for
modelers who don’t know how to express or model their ideas – provided that
suitable examples can be found (examples that have an analogy with the mod-
eling situation faced by the modeler). But also tutorials, expert colleagues or

friends, and, of course, Google are typical means to find help. However, search-
ing for help does not always lead to success, and retrieved information is only
seldom immediately usable as is, since the retrieved pieces of information are
not contextual, i.e., immediately applicable to the given modeling problem.

Inspired by a study on how end users would like to be assisted in mashup
development [1], we are working toward the interactive, contextual recommen-
dation of composition knowledge, in order to assist the modeler in each step of
his development task, e.g., by suggesting a candidate next component or a whole
chain of tasks. The knowledge we want to recommend is re-usable composition
patterns, i.e., model fragments that bear knowledge that may come from a vari-
ety of possible sources, such as usage examples or tutorials of the modeling tool
(developer knowledge), best modeling practices (domain expert knowledge), or
recurrent model fragments in a given repository of mashup models (community
knowledge [2]). The vision is that of developing an assisted, web-based mashup
environment (an evolution of our former work [3]) that delivers useful composi-
tion patterns much like Google’s Instant feature provides search results already
while still typing keywords into the search field.

In this paper, we approach one of the core challenges of this vision, i.e., the
fast search and retrieval of a ranked list of contextual development recommen-
dations. The problem is non-trivial, in that the size of the respective knowledge
base may be large, and the search for composition patterns may be complex;
yet, recommendations are to be delivered at high speed, without slowing down
the modeler’s composition pace. Matching a partial mashup model with a repos-
itory of modeling patterns, in order to identify which of the patterns do in fact
represent useful information, is similar to the well-known inexact sub-graph iso-
morphism problem [4], which has been proven to be NP-complete in general.
Yet, if we consider that the pattern recommender should work as a plug-in for
a web-based modeling tool (such as Pipes or mashArt [3], but also instruments
like the Oryx BPMN editor [http://bpt.hpi.uni-potsdam.de/Oryx/]), fast
response times become crucial.

We provide the following contributions, in order to approach the problem:

– We model the problem of interactively recommending composition knowl-
edge as pattern matching and retrieval problem in the context of data
mashups and visual modeling tools (Section 2). This focus on one specific
mashup/composition model is without loss of generality as for what regards
the overall approach, and the model can easily be extended to other contexts.

– We describe an architecture for an assisted development environment, along
with a client-side, recommendation-specific knowledge base (Section 3).

– We describe a set of query and similarity search algorithms that enable the
efficient querying and ranking of interactive recommendations (Section 4).

– We study the performance of the conceived algorithms and show that inter-
actively delivering composition patterns inside the modeling tool is feasible
(Section 5).

In Section 6 we have a look at related works, and in the conclusion we recap
the lessons we learned and provide hints of our future work.

2 Preliminaries and Problem Statement

Recommending composition knowledge requires, first of all, understanding how
such knowledge looks like. We approach this problem next by introducing the
mashup model that accompanies us throughout the rest of this paper and that
allows us to define the concept of composition patterns as formalization of the
knowledge to be recommended. Then, we characterize the typical browser-based
mashup development environment and provide a precise problem statement.

2.1 Mashup model and composition patterns

As a first step toward more complex mashups, in this paper we focus on data
mashups. Data mashups are simple in terms of modeling constructs and expres-
sive power and, therefore, also the structure and complexity of mashup patterns
is limited. The model we define in the following is inspired by Yahoo! Pipes and
JackBe’s Presto (http://www.jackbe.com) platform; in our future work we will
focus on more complex models.

A data mashup model can be expressed as a tuple m = 〈name,C, F,M,P 〉,
where name is the unique name of the mashup, C is the set of components used
in the mashup, F is the set of data flow connectors ruling the propagation of
data among components, M is the set of data mappings of output attributes1 to
input parameters of connected components, and P is the set of parameter value
assignments for component parameters. Specifically:

– C = {ci|ci = 〈namei, desci, Ini, Outi, Confi〉} is the non-empty set of com-
ponents, with namei being the unique name of the component ci, desci
being a natural language description of the component (for the modeler),
and Ini = {〈inij , reqij〉}, Outi = {outik}, and Confi = {〈confil, reqil〉},
respectively, being the sets of input, output, and configuration parame-
ters/attributes, and reqij , reqil ∈ {yes, no} specifying whether the param-
eter is required, i.e., whether it is mandatory, or not. We distinguish three
kinds of components:

• Source components fetch data from the web or the local machine. They
don’t have inputs, i.e., Ini = ∅. There may be multiple source compo-
nents in C.

• Regular components consume data in input and produce processed data
in output. Therefore, Ini, Outi 6= ∅. There may be multiple regular
components in C.

• Sink components publish the output of the data mashup, e.g., by printing
it onto the screen or providing an API toward it, such as an RSS or
RESTful resource. Sinks don’t have outputs, i.e., Outi = ∅. There must
always be exactly one sink in C.

1 We use the term attribute to denote data attributes in the data flow and the term
parameter to denote input and configuration parameters of components.

– F = {fm|fm ∈ C × C} are the data flow connectors that assign to each
component ci it’s predecessor cp (i 6= p) in the data flow. Source components
don’t require any data flow connector in input; sink components don’t have
data flow connectors in output.

– M = {mn|mn ∈ IN × OUT, IN = ∪i,jinij , OUT = ∪i,koutik} is the data
mapping that tells each component which of the attributes of the input
stream feed which of the input parameters of the component.

– P = {po|po ∈ (IN∪CONF)×(val∪null), CONF = ∪i,lconfil} is the value
assignment for the input or configuration parameters of each component,
val being a number or string value (a constant), and null representing an
empty assignment.

This definition allows models that may not be executed in practice, e.g.,
because the data flow is not fully connected. With the following properties we
close this gap:

Definition 1. A mashup model m is correct if the graph expressed by F is
connected and acyclic.

Definition 2. A mashup model m is executable if it is correct and all required
input and configuration parameters have a respective data mapping or value as-
signment.

These two properties must only hold in the moment we want to execute a
mashup m. Of course, during development, e.g., while modeling the mashup logic
inside a visual mashup editor, we may be in the presence of a partial mashup
model pm = 〈C,F,M,P 〉 that may be neither correct nor executable. Step by
step, the mashup developer will then complete the model, finally obtaining a
correct and executable one, which can typically be run directly from the editor
in a hosted fashion.

Given the above characterization of mashups, we can now define composition
knowledge that can be recommended as re-usable composition patterns for
mashups of type m, i.e., model fragments that provide insight into how to solve
specific modeling problems. Generically – given the mashup model introduced be-
fore – we express a composition pattern as a tuple cp = 〈C,F,M,P, usage, date〉,
where C,F,M,P are as defined for m, usage counts how many times the pat-
tern has been used (e.g., to compute rankings), and date is the creation date of
the pattern. In order to be useful, a pattern must be correct, but not necessar-
ily executable. The size of a pattern may vary from a single component with a
value assignment for at least one input or configuration parameter to an entire,
executable mashup; later on we will see how this is reflected in the structure of
individual patterns.

Finally, to effectively deliver recommendations it is crucial to understand
when to do so. Differently from most works on pattern search in literature (see
Section 6), we aim at an interactive recommendation approach, in which pat-
terns are queried for and delivered in response to individual modeling actions per-
formed by the user in the modeling canvas. In visual modeling environments, we

typically have action ∈ {select, drag, drop, connect, delete, fill,map, ...}, where
action is performed on an object ⊆ C ∪ F ∪ IN ∪ CONF , i.e., on the set of
modeling constructs affected by the last modeling action. For instance, we can
drop a component ci onto the canvas, or we can select a parameter confil to fill
it with a value, we can connect a data flow connector fm with an existing target
component, or we can select a set of components and connectors.

2.2 Problem statement

In the composition context described above, providing interactive, contextual
development recommendations therefore corresponds to the following problem
statement: given a query q = 〈object, action, pm〉, with pm being the partial
mashup model under development, how can we obtain a list of ranked com-
position patterns R = [〈cpi, ranki〉] (the recommendations), such that (i) the
provided recommendations help the developer to stepwise draw an executable
mashup model and (ii) the search, ranking, and delivery of the recommendations
can be efficiently embedded into an interactive modeling process?

3 Recommending Composition Knowledge: Approach

The key idea we follow in this work is not trying to crack the whole problem at
once. That is, we don’t aim to match a query q against a repository of generic
composition patterns of type cp in order to identify best matches. This is instead
the most followed approach in literature on graph matching, in which, given a
graph g1, we search a repository of graphs for a graph g2, such that g1 is a sub-
graph of g2 or such that g1 satisfies some similarity criteria with a sub-graph of
g2. Providing interactive recommendations can be seen as a specific instance of
this generic problem, which however comes with both a new challenge as well
as a new opportunity: the new challenge is to query for and deliver possibly
complex recommendations responsively ; the opportunity stems from the fact
that we have an interactive recommendation consumption process, which allows
us to split the task into optimized sub-steps (e.g., search for data mappings,
search for connectors, and similar), which in turn helps improve performance.

Having an interactive process further means having a user performing model-
ing actions, inspecting recommendations, and accepting or rejecting them, where
accepting a recommendation means weaving (i.e., connecting) the respective
composition pattern into the partial mashup model under development. Thanks
to this process, we can further split recommendations into what is needed to
represent a pattern (e.g., a component co-occurrence) from what is needed to
use the pattern in practice (e.g., the exact mapping of output attributes to input
parameters of the component co-occurrence). We can therefore further leverage
on the separation of pattern representation and usage: representations (the rec-
ommendations) don’t need to be complete in terms of ingredients that make up
a pattern; completeness is required only at usage time.

3.1 Types of knowledge patterns

Aiming to help a developer to stepwise refine his mashup model, practically
means suggesting the developer which next modeling action (that makes sense)
can be performed in a given state of his progress and doing so by providing as
much help (in terms of modeling actions) as possible. Looking at the typical
modeling steps performed by a developer (filling input fields, connecting compo-
nents, copying/pasting model fragments) allows us to define the following types
of patterns (for simplicity, we omit the usage and date attributes):

– Parameter value pattern: cppar = 〈cx,∅,∅, pxo〉. Given a component, the
system suggest values for the component’s parameters.

– Connector pattern: cpconn = 〈{cx, cy}, fxy,∅,∅〉. Given two components,
the system suggests a connector among the components.

– Data mapping pattern: cpmap = 〈{cx, cy}, fxy, {mxy
n },∅〉. Given two com-

ponents and a connector among them, the system suggests how to map the
output attributes of the first component to the parameters of the second
component.

– Component co-occurrence pattern: cpco = 〈{cx, cy}, fxy, {mxy
n }, {pxo}∪{pyo}〉.

Given one component, the system suggests a possible next component to be
used, along with all the necessary data mappings and value assignments.

– Complex pattern: cpcom = 〈C,F,M,P 〉. Given a fragment of a mashup
model, the system suggests a pattern consisting of multiple components and
connectors, along with the respective data mappings and value assignments.

Our definition of cp would allow many more possible types of composition
patterns, but not all of them make sense if patterns are to be re-usable as is, that
is, without requiring further refinement steps like setting parameter values. This
is the reason for which we include also connectors, data mappings, and value
assignments when recommending a component co-occurrence pattern.

3.2 The interactive modeling and recommender system

Figure 1 illustrates the internals of our prototype modeling environment equipped
with an interactive knowledge recommender. We distinguish between client and
server side, where the whole application logic is located in the client, and the
server basically hosts the persistent pattern knowledge base (KB; details in Sec-
tion 3.3). At startup, the KB loader loads the patterns into the client environ-
ment, decoupling the knowledge recommender from the server side.

Once the editor is running inside the client browser, the developer can visu-
ally compose components (in the modeling canvas) taken from the component
tool bar. Doing so generates modeling events (the actions), which are published
on a browser-internal event bus, which forwards each modeling action to the
recommendation engine. Given a modeling action, the object it has been applied
to, and the partial mashup model pm, the engine queries the client-side pattern
KB via the KB access API for recommendations (pattern representations). An

Modeling editor in client browser

HTML rendering window

Modeling canvas

Event bus

Recommendation
engine

KB access API

KB loader

C
om

po
ne

nt
 to

ol
 b

ar

R
ec

om
en

da
tio

n
pa

ne
l

Client-side
pattern KB

Partial mashup model

Composition server

Data
transformer

Mashup models

Pattern
extractor

Modeling actions
<object,action>

Modeling
instructions

Selection
events

Modeling actions
<object,action>

Recom-
menda-
tions R

Query

Patterns {cpi}

<mashup>
...
</mashup>

Raw pattern KB

<mashup>
...
</mashup>

Persistent
pattern KB

C
om

po
si

tio
n

pa
tte

rn
 K

B

Pa
tte

rn
 u

sa
ge

 s
ta

tis
tic

s

Pattern weaver

Selection
events

Modeling
instruct.

Modeling expert

Solid lines are part of this work Dotted lines are future work

Object-action-
recommend. mapping

Similarity
metrics

Ranking
algos

Partial
mashup
model pm KB access API

Pa
tte

rn
 c

p i
D

et
ai

ls

Figure 1. Simplified architecture of the assisted modeling environment with client-side
knowledge base and interactive recommender. We focus on recommendations only and
omit elements like the mashup runtime environment, the component library, etc.

object-action-recommendation mapping (OAR) tells the engine which type of
recommendation is to be retrieved for each modeling action on a given object.

The list of patterns retrieved from the KB (either via regular queries or
by applying dedicated similarity criteria) are then ranked by the engine and
rendered in the recommendation panel, which renders the recommendations to
the developer for inspection. In future, selecting a recommendation will allow
the pattern weaver to query the KB for the usage details of the pattern (data
mappings and value assignments) and to automatically provide the modeling
canvas with the necessary modeling instructions to weave the pattern into the
partial mashup model.

3.3 Patterns knowledge base

The core of the interactive recommender is the KB that stores generic patterns,
but decomposed into their constituent parts, so as to enable the incremental
recommendation approach. If we recall the generic definition of composition
patterns, i.e., cp = 〈C,F,M,P, usage, date〉, we observe that, in order to convey
the structures of a set of complex patterns inside a visual modeling tool, typ-
ically C and F (components and connectors) will suffice to allow a developer

1..N

DataMapping
ID
SourceAttribute
TargetParameter
Usage
Date
_ConnID
_CompCooID
_CompTopID

ComponentCooccur
ID
SourceComponent
TargetComponent
Usage
Date

ParameterValues
ID
Component
Parameter
Value
Usage
Date
_CompCooID
_CompTopID

Connectors
ID
SourceComponent
TargetComponent
Usage
Date

ComplexPattern
ID
C
F
F'
Usage
Date

0..1
1..N

0..1

1..N

0..1
1..N

0..1

0..1
1..N

Figure 2. Model of the pattern knowledge base for client-side knowledge management.

to select a candidate pattern. Ready data mappings and value assignments are
then delivered together with the components and connectors only upon selection
of a pattern by the developer.

This observation leads us to the KB illustrated in Figure 2, whose struc-
ture enables the retrieval of the representations of the types of recommendations
introduced in Section 3.1 with a one-shot query over a single table. For in-
stance, the entity Connectors contains all connector patterns, and the entity
ComplexPattern contains the structure of the complex patterns (in Section 4
we explain the meaning of the attributes C,F, F ′). The KB is partly redun-
dant (e.g., the structure of a complex pattern also contains components and
connectors), but this is intentional. It allows us to defer the need for joins to
the moment in which we really need to retrieve all details of a pattern, i.e.,
when we want to use it. In order to retrieve, for example, the representation of
a component co-occurrence pattern, it is therefore enough to query the Com-
ponentCooccur entity for the SourceComponent and the TargetComponent at-
tributes; weaving the pattern then into the modeling canvas requires querying
ComponentCooccur ./ DataMapping ./ ParameterV alues for the details.

4 Exact and Approximate Search of Recommendations

Given the described types of composition patterns and a query q, we retrieve
composition recommendations from the described KB in two ways: (i) we query
the KB for parameter value, connector, data mapping, and component co-occur-
rence patterns; and (ii) we match the object against complex patterns. The
former approach is based on exact matches with the object, the latter leverages
on similarity search. Conceptually, all recommendations could be retrieved via
similarity search, but for performance reasons we apply it only in those cases
(the complex patterns) where we don’t know the structure of the pattern in
advance and, therefore, are not able to write efficient conventional queries.

Algorithm 1 details this strategy and summarizes the logic implemented by
the recommendation engine. In line 3, we retrieve the types of recommendations
that can be given (getSuitableRecTypes function), given an object-action combi-
nation. Then, for each recommendation type, we either query for patterns (the

Algorithm 1: getRecommendations
Data: query q = 〈object, action, pm〉, knowledge base KB, object-action-recommendation

mapping OAR, component similarity matrix CompSim, similarity threshold Tsim,
ranking threshold Trank, number n of recommendations per recommendation type

Result: recommendations R = [〈cpi, ranki〉] with ranki ≥ Trank

R = array();1
Patterns = set();2
recTypeToBeGiven = getSuitableRecTypes(object, action,OAR);3
foreach recType ∈ recTypeToBeGiven do4

if recType ∈ {ParV alue, Connector,DataMapping, CompCooccur} then5
Patterns = Patterns∪ queryPatterns(object,KB, recType) ; // exact query6

else7
Patterns = Patterns∪8
getSimilarPatterns(object,KB.ComplexPattern, CompSim, Tsim) ; // similarity
search

foreach pat ∈ Patterns do9
if rank(pat.cp, pat.sim, pm) ≥ Trank then10

append(R, 〈pat.cp, rank(pat.cp, pat.sim, pm)〉) ; // rank, threshold, remember11

orderByRank(R);12
groupByType(R);13
truncateByGroup(R,n);14
return R;15

queryPatterns function can be seen like a traditional SQL query) or we do a sim-
ilarity search (getSimilarPatterns function, see Algorithm 2). For each retrieved
pattern, we compute a rank, e.g., based on the pattern description (e.g., contain-
ing usage and date), the computed similarity, and the usefulness of the pattern
inside the partial mashup, order and group the recommendations by type, and
filter out the best n patterns for each recommendation type.

As for the retrieval of similar patterns, our goal was to help modelers, not
to disorient them. This led us to the identification of the following principles
for the identification of “similar” patterns: preference should be given to exact
matches of components and connectors in object, candidate patterns may differ
for the insertion, deletion, or substitution of at most one component in a given
path in object, and among the non-matching components preference should be
given to functionally similar components (e.g., it may be reasonable to allow a
Yahoo! Map instead of a Google Map).

Algorithms 2 and 3 implement these requirements, although in a way that
is already optimized for execution, in that they don’t operate on the original,
graph-like structure of patterns, but instead on a pre-processed representation
that prevents us from traversing the graph at runtime. Figure 3(a) illustrates the
pre-processing logic: each complex pattern is represented as a tuple 〈C,F, F ′〉,
where C is the set of components, F the set of direct connections, and F ′ the set
of indirect connections, skipping one component for approximate search. This
pre-processing logic is represented by the function getStructure, which can be
evaluated offline for each complex pattern in the raw pattern KB; results are
stored in the ComplexPattern entity introduced in Figure 2. Another input that
can be computed offline is the component similarity matrix CompSim, which
can be set up by an expert or automatically derived by mining the raw pat-

A

B

C

E

D

AB

AC

BE

CD

CE
DE

AE

AD

A

F

C
AC

AF

E
CE

(a) An example composition pattern cp

getStructure(cp) = <C,F,F'> with
C = {A,B,C,D,E},
F = {AB,AC,BE,CD,DE}, and
F' = {AE,AD,CE}

getStructure(object) = <C,F,F'> with
C = {A,C,E,F},
F = {AF,AC,CE}, and
F' = {AE}

(b) An example object of a query q

Direct connection
f ∈ F

Indirect connection f' ∈ F'Component c ∈ C

A
B
C
D
E
F

1 - - - - -
- 1 - - - 0.5
- - 1 - - -
- - - 1 - -
- - - - 1 -
- 0.5 - - - 1

A B C D E F

(c) Component similarity
matrix CompSim

Figure 3. Pattern pre-processing and example of component similarity matrix
CompSim. Components are identified with characters, connectors with their endpoints.

tern KB. For the purpose of recommending knowledge, similarity values should
reflect semantic similarity among components (e.g., two flight search services);
syntactic differences are taken into account by the pattern structures. Figure
3(c) illustrates a possible matrix for the components in the sub-figures (a) and
(b); similarity values are contained in [0..1], 0 representing no similarity, 1 rep-
resenting equivalence.

Algorithm 2 now works as follows. First, it derives the optimized structure
of object (line 2). Then, it compares it with each complex pattern cp ∈ CP in
four steps: (i) it computes a similarity value for all components and connectors
of obj and cp that have an exact match (line 5); (ii) it eliminates all matching
components and connectors from the structure of obj (lines 6-8); (iii) it computes
the best similarity value for the so-derived obj by approximating it with other
components based on CompSim (lines 9-16); and it aggregates to two similarity
values (line 17). Specifically, the algorithm substitutes one component at a time
in obj (using getApproximatePattern in line 13), considering all possible substi-
tutes simc and their similarity values simc.sim obtained from CompSim. The
actual similarity value between two patterns is computed by Algorithm 3.

Let’s consider the pattern, object, and similarity matrix in Figure 3. If in
Algorithm 3 we use the weights wi ∈ {0.5, 0.2, 0.1, 0.1, 0.1} in the stated order,
sim in line 4 of Algorithm 2 is 0.57 (exact matches for 3 components and 2 con-
nectors). After the elimination of those matches, obj = 〈{F}, {AF},∅〉, and sub-
stituting F with B as suggested by CompSim allows us to obtain an additional
approximate similarity of approxSim = 0.35 (two matches and simc.sim = 0.5),
which yields a total similarity of sim = 0.57 + 0.35/4 = 0.66.

5 Implementation and Performance Evaluation

We implemented the recommendation engine, the KB access API, and the client-
side pattern KB along with the recommendation and similarity search algo-
rithms, in order to perform a detailed performance analysis. The prototype
implementation is entirely written in JavaScript and has been tested with a

Algorithm 2: getSimilarPatterns
Data: query object object, set of complex patterns CP , component similarity matrix

CompSim, similarity threshold Tsim

Result: Patterns = {〈cpi, simi〉} with simi ≥ Tsim

Patterns = set();1
objectStructure = getStructure(object) ; // computes object’s structure for comparison2
foreach cp ∈ CP do3

obj = objectStructure;4
sim = getSimilarity(obj, cp) ; // compute similarity for exact matches5
obj.C = obj.C − cp.C ; // eliminate all exact matches for C, F, F’ from obj6

obj.F = obj.F − cp.F − cp.F ′;7

obj.F ′ = obj.F ′ − cp.F ′ − cp.F ;8
approxSim = 0; // will contain the best similarity for approximate matches9
foreach c ∈ obj.C do10

SimC = getSimilarComponents(c, CompSim) ; // get set of similar components11
foreach simc ∈ SimC do12

approxObj = getApproximatePattern(obj, c, simc) ; // get approx. pattern13
newApproxSim = simc.sim∗getSimilarity(approxObj, cp) ; // get similarity14
if newApproxSim > approxSim then15

approxSim = newApproxSim ; // keep highest approximate similarity16

sim = sim + approxSim ∗ |obj.C|/|objectStructure.C| ; // normalize and aggregate17
if sim ≥ Tsim then18

Patterns = Patterns ∪ 〈cp, sim〉 ; // remember patterns with sufficient sim19

return Patterns;20

Algorithm 3: getSimilarity
Data: query object object, complex pattern cp
Result: similarity

initialize wi for i ∈ 1..5 with
∑

i wi = 1;1
sim1 = |object.C ∩ cp.C|/|object.C| ; // matches components2
sim2 = |object.F ∩ cp.F |/|object.F | ; // matches connectors3

sim3 = |object.F ∩ cp.F ′|/|object.F | ; // allows insertion of a component4

sim4 = |object.F ′ ∩ cp.F |/|object.F ′| ; // allows deletion of a component5

sim5 = |object.F ′ ∩ cp.F ′|/|object.F ′| ; // allows substitution of a component6
similarity =

∑
i wi ∗ simi;7

return similarity;8

Firefox 3.6.17 web browser. The implementation of the client-side KB is based
on Google Gears (http://gears.google.com), which internally uses SQL Lite
(http://www.sqlite.org) for storing data on the client’s hard drive. Given
that SQL Lite does not support set data types, we serialize the representation of
complex patterns 〈C,F, F ′〉 in JSON and store them as strings in the respective
ComplexPattern table in the KB; doing so slightly differs from the KB model in
Figure 2, without however altering its spirit. The implementation of the persis-
tent pattern KB is based on MySQL, and it is accessed by the KB loader through
a dedicated RESTful Java API running inside an Apache 2.0 web server. The
prototype implementation is installed on a MAC machine with OS X 10.6.1, a
2.26 GHz Intel Core 2 Duo processor, and 2 GB of memory. Response times are
measured with the FireBug 1.5.4 plug-in for Firefox.

For the generation of realistic test data, we assumed to be in the presence of
a mashup editor with 26 different components (A−Z), with a random number of

!"
#!!"
$!!"
%!!"
&!!"
'!!"
(!!"
)!!"

#!" #!!" #!!!"

!"
#$
%"
&'
()*

+
")
,+

-.
)

/0+1"$)23)42+5("6)5'7"$8-)%8)9:)

;'<)=%+%('$%#>)-"'$4?)*+"-)32$)&'$>%8@)9:)'8A)
21B"4#)-%C"-)

*+,-./*0#"

*+,-./*0$"

*+,-./*0%"

*+,-./*0&"

*+,-./*0'"

*+,-./*0("

*+,-./*0)"

1234563"

'!!"
'$!"
'&!"
'(!"
'7!"
(!!"
($!"
(&!"
((!"

!" #" $" %" &" '" (")" 7"

!"
#$
%"
&'
()*

+
")
,+

-.
)

/0+1"$)23)42+528"8#-)%8)!"#$%&'

;1<)!"#$%"&'()*+"-)23)42+5("6)5'7"$8-)32$)&'$>%8@)
21B"4#)-%C"-)32$)DEEE)42+5("6)5'7"$8-)%8)9:)

!"
#!!"
$!!"
%!!"
&!!"
'!!"
(!!"
)!!"

#!" #!!" #!!!"

!"
#$
%"
&'
()*

+
")
,+

-.
)

/0+1"$)23)42+5("6)5'7"$8-)%8)9:)

;4<)F2#'()$"42++"8A'*28)*+"-)%8)4'-")#?")
+2A"("$)'AA-)')8"G)42+528"8#)#2)#?")+'-?05)

/+8839:+4"

;54"25<=3"

/+>+99=443893"

/+?@<3A"

B+:5<"

Figure 4. Performance evaluation of the client-side knowledge recommender.

input and configuration parameters (ranging from 1−5) and a random number of
output attributes (between 1−5). To obtain an upper bound for the performance
of the exact queries for parameter value, connector, data mapping, and compo-
nent co-occurrence patterns, we generated, respectively, 26 ∗ 5 = 130 parameter
values for the 26 components, 26 ∗ 25 = 650 directed connectors, 650 ∗ 5 = 3250
data mappings, and 650 component co-occurrences. To measure the performance
of the similarity search algorithms, we generated 5 different KBs with 10, 30,
100, 300, 1000 complex patterns, where the complexity of patterns ranges from
3 − 9 components. The patterns make random use of all available components
and are equally distributed in the generated KBs. Finally, we generated a set of
query objects with |obj.C| ∈ {1..7}.

In Figure 4, we illustrate the tests we performed and the respective results.
The first test in Figure 4(a) studies the performance in terms of pattern retrieval
times of Algorithm 2 for different KB sizes; the figure plots the retrieval times
for different object sizes. Considering the logarithmic scale of the x-axis, we note
that the retrieval time for complex patterns grows almost linearly. This somehow
unexpected behavior is due to the fact that, compared to the number of patterns,
the complexity of patterns is similar among each other and limited and, hence,
the similarity calculation can almost be considered a constant. We also observe
that there are no significant performance differences for varying object sizes. In
Figure 4(b) we investigate the effect of the object size on the performance of
Algorithm 2 only for the KB with 1000 complex patterns (the only one with
notable differences). Apparently, also the size of the query object does not affect
much retrieval time. Figure 4(c), finally, studies the performance of Algorithm
1, i.e., the performance perceived by the user, in a typical modeling situation: in
response to the user placing a new component into the canvas, the recommenda-

tion engine retrieves respective parameter value, connector, co-occurrence, and
complex patterns (we do not recommend data mappings for single components);
the overall response time is the sum of the individual retrieval times. As ex-
pected, the response times of the simple queries can be neglected compared to
the one of the similarity search for complex patterns, which basically dominates
the whole recommendation performance.

In summary, the above tests confirm the validity of the proposed pattern rec-
ommendation approach and even outperform our own expectations. The number
of components in a mashup or composition tool may be higher, yet the number
of really meaningful patterns in a given modeling domain only unlikely will grow
beyond several dozens or 100. Recommendation retrieval times of fractions of
seconds will definitely allow us – and others – to develop more sophisticated,
assisted composition environments.

6 Related Work

Traditionally, recommender systems focus on the retrieval of information of
likely interest to a given user, e.g., newspaper articles or books. The likelihood
of interest is typically computed based on a user profile containing the user’s
areas of interest, and retrieved results may be further refined with collabora-
tive filtering techniques. In our work, as for now we focus less on the user and
more on the partial mashup under development (we will take user preferences
into account in a later stage), that is, recommendations must match the partial
mashup model and the object the user is focusing on, not his interests. The ap-
proach is related to the one followed by research on automatic service selection,
e.g., in the context of QoS- or reputation-aware service selection, or adaptive or
self-healing service compositions. Yet, while these techniques typically approach
the problem of selecting at runtime a concrete service for an abstract activity,
we aim at interactively assisting developers at design time with more complex
information in the form of complete modeling patterns.

In the context of web mashups, Carlson et al. [5], for instance, react to
a user’s selection of a component with a recommendation for the next com-
ponent to be used; the approach is based on semantic annotations of compo-
nent descriptors and makes use of WordNet for disambiguation. Greenshpan
et al. [6] propose an auto-completion approach that recommends components
and connectors (so-called glue patterns) in response to the user providing a set
of desired components; the approach computes top-k recommendations out of
a graph-structured knowledge base containing components and glue patterns
(the nodes) and their relationships (the arcs). While in this approach the actual
structure (the graph) of the knowledge base is hidden to the user, Chen et al.
[7] allow the user to mashup components by navigating a graph of components
and connectors; the graph is generated in response to the user’s query in form
of descriptive keywords. Riabov et al. [8] also follow a keyword-based approach
to express user goals, which they use to feed an automated planner that derives
candidate mashups; according to the authors, obtaining a plan may require sev-

eral seconds. Elmeleegy et al. [9] propose MashupAdvisor, a system that, starting
from a component placed by the user, recommends a set of related components
(based on conditional co-occurrence probabilities and semantic matching); upon
selection of a component, MashupAdvisor uses automatic planning to derive how
to connect the selected component with the partial mashup, a process that may
also take more than one minute. Beauche and Poizat [10] apply automatic plan-
ning in the context of service composition. The planner generates a candidate
composition starting from a user task and a set of user-specified services.

The business process management (BPM) community more strongly fo-
cuses on patterns as a means of knowledge reuse. For instance, Smirnov et al.
[11] provide so-called co-occurrence action patterns in response to action/task
specifications by the user; recommendations are provided based on label similar-
ity, and also come with the necessary control flow logic to connect the suggested
action. Hornung et al. [12] provide users with a keyword search facility that al-
lows them to retrieve process models whose labels are related to the provided
keywords; the algorithm applies the traditional TF-IDF technique from infor-
mation retrieval to process models, turning the repository of process model into
a keyword vector space. Gschwind et al. [13] allow users in their modeling tool
to insert control flow patterns, as introduced by Van der Aalst et al. [14], just
like other modeling elements. The proposed system does not provide interactive
recommendations and rather focuses on the correct insertion of patterns.

In summary, the mashup and service composition approaches either focus on
single components or connectors, or they aim to automatically plan complete
compositions starting from user goals. The BPM approaches do focus on pat-
terns as reusable elements, but most of the times pattern similarity is based on
label/text similarity, not on structural compatibility. We assume components
have stable names and, therefore, we do not need to interpret text labels.

7 Conclusion and Future Work

In this paper, we focused on a relevant problem in visual mashup development,
i.e., the recommendation of composition knowledge. The approach we followed
is similar to the one adopted in data warehousing, in which data is transformed
from their operational data structure into a dimensional structure, which op-
timizes performance for reporting and data analysis. Analogously, instead of
querying directly the raw pattern knowledge base, typically containing a set of
XML documents encoding graph-like mashup structures, we decompose patterns
into their constituent elements and transform them into an optimized structure
directly mapped to the recommendations to be provided. We access patterns
with fixed structure via simple queries, while we provide an efficient similarity
search algorithm for complex patterns, whose structure is not known a-priori.

We specifically concentrated on the case of client-side mashup development
environments, obtaining very good results. Yet, the described approach will per-
form well also in the context of other browser-based modeling tools, e.g., business
process or service composition instruments (which are also model-based and of

similar complexity), while very likely it will perform even better in desktop-
based modeling tools like the various Eclipse-based visual editors. As such, the
pattern recommendation approach discussed in this paper represents a valuable,
practical input for the development of advanced modeling environments.

Next, we will work on three main aspects: The complete development of the
interactive modeling environment for the interactive derivation of search queries
and the automatic weaving of patterns; the discovery of composition patterns
from a repository of mashup models; the fine-tuning of the similarity and ranking
algorithms with the help of suitable user studies. This final step will also allow
us to assess and tweak the set of proposed composition patterns.

Acknowledgments. This work was partially supported by funds from the Eu-
ropean Commission (project OMELETTE, contract no. 257635).

References

1. De Angeli, A., Battocchi, A., Roy Chowdhury, S., Rodŕıguez, C., Daniel, F., Casati,
F.: End-user requirements for wisdom-aware eud. In: IS-EUD’11, Springer (2011)

2. Roy Chowdhury, S., Rodŕıguez, C., Daniel, F., Casati, F.: Wisdom-aware comput-
ing: On the interactive recommendation of composition knowledge. In: WESOA’10,
Springer (2010) 144–155

3. Daniel, F., Casati, F., Benatallah, B., Shan, M.C.: Hosted Universal Composition:
Models, Languages and Infrastructure in mashArt. In: ER’09. ER ’09, Berlin,
Heidelberg, Springer-Verlag (2009) 428–443

4. Hlaoui, A., Wang, S.: A new algorithm for inexact graph matching. In: ICPR’02.
Volume 4. (2002) 180 – 183

5. Carlson, M.P., Ngu, A.H., Podorozhny, R., Zeng, L.: Automatic mash up of com-
posite applications. In: ICSOC’08, Springer (2008) 317–330

6. Greenshpan, O., Milo, T., Polyzotis, N.: Autocompletion for mashups. VLDB’09
2 (2009) 538–549

7. Chen, H., Lu, B., Ni, Y., Xie, G., Zhou, C., Mi, J., Wu, Z.: Mashup by surfing a
web of data apis. VLDB’09 2 (2009) 1602–1605

8. Riabov, A.V., Boillet, E., Feblowitz, M.D., Liu, Z., Ranganathan, A.: Wishful
search: interactive composition of data mashups. In: WWW’08, ACM (2008) 775–
784

9. Elmeleegy, H., Ivan, A., Akkiraju, R., Goodwin, R.: Mashup advisor: A recom-
mendation tool for mashup development. In: ICWS’08, IEEE Computer Society
(2008) 337–344

10. Beauche, S., Poizat, P.: Automated service composition with adaptive planning.
In: ICSOC’08, Springer-Verlag (2008) 530–537

11. Smirnov, S., Weidlich, M., Mendling, J., Weske, M.: Action patterns in business
process models. In: ICSOC-ServiceWave’09, Springer-Verlag (2009) 115–129

12. Hornung, T., Koschmider, A., Lausen, G.: Recommendation based process mod-
eling support: Method and user experience. In: ER’08, Springer (2008) 265–278

13. Gschwind, T., Koehler, J., Wong, J.: Applying patterns during business process
modeling. In: BPM’08, Springer (2008) 4–19

14. Van Der Aalst, W.M.P., Ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distrib. Parallel Databases 14 (2003) 5–51

Appendix E

Discovery and Reuse of Composition

Knowledge for Assisted Mashup

Development

Florian Daniel, Carlos Rodrguez, Soudip Roy Chowdhury, Hamid R. Motahari Nezhad, Fabio

Casati. Discovery and Reuse of Composition Knowledge for Assisted Mashup Development.

WWW 2012 Companion, April 2012, Pages 493-494.

Discovery and Reuse of Composition Knowledge
for Assisted Mashup Development

Florian Daniel1, Carlos Rodríguez1, Soudip Roy Chowdhury1,
Hamid R. Motahari Nezhad2, and Fabio Casati1

1University of Trento, Italy, 2 HP Labs Palo Alto, USA
1{daniel,crodriguez,rchowdhury,casati}@disi.unitn.it, 2hamid.motahari@hp.com

ABSTRACT
Despite the emergence of mashup tools like Yahoo! Pipes or
JackBe Presto Wires, developing mashups is still non-trivial
and requires intimate knowledge about the functionality of
web APIs and services, their interfaces, parameter settings,
data mappings, and so on. We aim to assist the mashup pro-
cess and to turn it into an interactive co-creation process,
in which one part of the solution comes from the developer
and the other part from reusable composition knowledge that
has proven successful in the past. We harvest composition
knowledge from a repository of existing mashup models by
mining a set of reusable composition patterns, which we then
use to interactively provide composition recommendations to
developers while they model their own mashup. Upon ac-
ceptance of a recommendation, the purposeful design of the
respective pattern types allows us to automatically weave
the chosen pattern into a partial mashup model, in practice
performing a set of modeling actions on behalf of the de-
veloper. The experimental evaluation of our prototype im-
plementation demonstrates that it is indeed possible to har-
vest meaningful, reusable knowledge from existing mashups,
and that even complex recommendations can be efficiently
queried and weaved also inside the client browser.

Categories and Subject Descriptors
D.2.6 [Software]: Software Engineering—Programming En-
vironments

Keywords
Assisted mashup development, End user development, Com-
position patterns, Pattern recommendation, Weaving

1. INTRODUCTION
Mashup tools, such as Yahoo! Pipes (http://pipes.yahoo.

com/pipes/) or JackBe Presto Wires (http://www.jackbe.
com), generally promise easy development tools and lightweight
runtime environments, both typically running inside the client
browser. By now, mashup tools undoubtedly simplified some
complex composition tasks, such as the integration of web
services or user interfaces. Yet, despite these advances in
simplifying technology, mashup development is still a com-
plex task that can only be managed by skilled developers.

Copyright is held by the author/owner(s).
WWW 2012 Companion, April 16–20, 2012, Lyon, France.
ACM 978-1-4503-1230-1/12/04.

Figure 1: A typical pattern in Yahoo! Pipes

Figure 1 illustrates a Yahoo! Pipes model that encodes
how to plot news items on a map. The lesson that can be
learned from it is that plotting news onto a map requires
enriching the news feed with geo-coordinates, fetching the
actual news items, and handing the items over to the map.
Understanding this logic is neither trivial nor intuitive.

In order to aid less skilled developers in the design of
mashups like the one above, Carlson et al. [1], for instance,
leverage on semantic annotations of components to recom-
mend compatible components, given a component in the
canvas. Greenshpan et al. [3] recommend components and
connectors (so-called glue patterns) in response to the user
providing a set of desired components. Elmeleegy et al. [2]
recommend a set of components related to a component in
the canvas, leveraging on conditional co-occurrence and se-
mantic matching, and automatically plan how to connect
selected components to the partial mashup. Riabov et al.
[4] allow users to express goals as keywords, in order to feed
an automated planner that derives candidate mashups.

We assist the modeler in each step of his development
task by means of interactive, contextual recommenda-
tions of composition knowledge. The knowledge is re-
usable composition patterns, i.e., fragments of mashup mod-
els. Such knowledge may come from a variety of possi-
ble sources; we specifically focus on community composi-
tion knowledge (recurrent model fragments in a mashup
model repository). In this poster, we describe (i) how we
mine mashup composition patterns, (ii) the architecture of
our knowledge recommender, (iii) its recommendation algo-
rithms, and (iv) its pattern weaving algorithms (automati-
cally applying patterns to mashup models).

Interactive modeling environment in client browser

HTML rendering window

Modeling canvas

Event bus

Recommendation
engine

KB access API

KB loader

R
ec

om
en

da
tio

n
pa

ne
l

C
om

po
ne

nt
 to

ol
 b

ar

Client-side
pattern KB

Partial mashup model

Recommendation server

Pattern miner

Model
adapter

Modeling action
<object,action>

Instruction
instr

Selection
<cp,intent>

Modeling action
<object,action>

Recom-
menda-
tions R

Query q

Patterns {cpi}

Native models

<mashup>
...
</mashup>

Canonical models

<mashup>
...
</mashup>

C
om

po
si

tio
n

pa
tte

rn
 K

B

Pa
tte

rn
 u

sa
ge

 s
ta

tis
tic

s

Pattern weaver

Selection
<cp,intent>

Instruction
instr

Solid lines are part of this work Dashed lines are future work

Object-action-
recommend. mapping

Similarity
metrics

Ranking
algos

Partial
mashup

model pmKB access API

Pa
tte

rn
 c

p

D
et

ai
ls

Persistent KB

Data

Meta
data

Data
transformer

Canonical patterns

<mashup>
...
</mashup>

Figure 2: Functional architecture of the composition knowledge discovery and recommendation approach

2. THE RECOMMENDATION PLATFORM
Figure 2 details our knowledge discovery and recommen-

dation prototype. The pattern discovery logic is located
in the server. After converting mashup models into a canon-
ical format, the pattern miner extracts patterns, which we
store into a knowledge base (KB) that is structured to min-
imize pattern retrieval at runtime. We support six compo-
sition pattern types: parameter value, connector, connector
co-occurrence, component co-occurrence , component embed-
ding, and multi-component patterns (cf. Figure 1).

The interactive modeling environment runs in the client.
It is here where the pattern recommendation logic re-
acts to modeling actions performed by the modeler on a
construct (the object of the action) in the canvas. For in-
stance, we can drop a component onto the canvas, or we
can select a parameter. Upon each interaction, the action
and its object are published on a browser-internal event bus,
which forwards them to the recommendation engine. With
this information and the partial mashup model pm the en-
gine queries the client-side KB for recommendations, where
an object-action-recommendation mapping tells the engine
which types of recommendations are to be retrieved. The
list of patterns retrieved from the KB are then ranked and
rendered in the recommendation panel.

Upon the selection of a pattern from the recommenda-
tion panel, the pattern weaver weaves it into the partial
mashup model. The pattern weaver first retrieves a basic
weaving strategy (a set of model-agnostic mashup instruc-
tions) and then derives a contextual weaving strategy (a set
of model-specific instructions), which is used to weave the
pattern. Deriving the contextual strategy from the basic one
may require the resolution of possible conflicts among the
constructs of the partial model and those of the pattern to
be weaved. The pattern weaver resolves them according to
a configurable conflict resolution policy.

Our prototype is a Mozilla Firefox extension for Yahoo!
Pipes [6], with the recommendation and weaving algorithms
implemented in JavaScript. Event listeners listen for DOM
modifications, in order to identify mashup modeling actions
inside the modeling canvas. The instructions in the weaving
strategies refers to modeling actions, which are implemented
as JavaScript manipulations of the mashup model’s DOM
elements. The server-side part is implemented in Java.

3. EVALUATION
For our experiments we extracted 303 pipes definitions

from the repository of Pipes. The average numbers of com-
ponents, connectors and input parameters were 12.7, 13.2
and 3.1, respectively, indicating fairly complex mashups.
We were able to identify patterns of all the types described
above. For example, the minimum/maximum support for
the connector patterns was 0.0759/0.3234, while the one
for the component co-occurrence patterns was 0.0769/0.2308.
We used these patterns to populate our KB and generated
additional synthetic patterns to test the performance of the
recommendation engine (the sizes of the KBs ranged from
10, 30, 100, 300, 1000 multi-component patterns) [5]. The
complexity of the patterns ranged from 3 − 9 components
per pattern, and we used queries with 1 − 7 components. In
the worst case scenario (KB of 1000 patterns, approximate
similarity matching of patterns), the recommendation en-
gine could retrieve relevant patterns within 608 millisecond
– everything entirely inside the client browser. The next
step is going online and performing users studies.

Acknowledgment. This work was supported by the Euro-
pean Commission (project OMELETTE, contract 257635).

4. REFERENCES
[1] M. P. Carlson, A. H. Ngu, R. Podorozhny, and L. Zeng.

Automatic mash up of composite applications. In
ICSOC’08, pages 317–330, 2008.

[2] H. Elmeleegy, A. Ivan, R. Akkiraju, and R. Goodwin.
Mashup advisor: A recommendation tool for mashup
development. In ICWS’08, pages 337–344, 2008.

[3] O. Greenshpan, T. Milo, and N. Polyzotis. Autocom-
pletion for mashups. VLDB’09, 2:538–549, 2009.

[4] A. V. Riabov, E. Boillet, M. D. Feblowitz, Z. Liu, and
A. Ranganathan. Wishful search: interactive composi-
tion of data mashups. In WWW’08, pages 775–784,
2008.

[5] S. Roy Chowdhury, F. Daniel, and F. Casati. Efficient,
Interactive Recommendation of Mashup Composition
Knowledge. In ICSOC’11, pages 374–388, 2011.

[6] S. Roy Chowdhury, C. Rodŕıguez, F. Daniel, and
F. Casati. Baya: Assisted Mashup Development as a
Service. In WWW’12, 2012.

90 Discovery and Reuse of Composition Knowledge for Assisted Mashup Development

Appendix F

Baya: Assisted Mashup

Development as a Service

Soudip Roy Chowdhury, Carlos Rodrguez, Florian Daniel, Fabio Casati. Baya: Assisted Mashup

Development as a Service. WWW 2012 Companion, April 2012, Pages 409-412.

Baya: Assisted Mashup Development as a Service

Soudip Roy Chowdhury, Carlos Rodríguez, Florian Daniel and Fabio Casati
University of Trento

Via Sommarive 5, 38123 Povo (TN), Italy
{rchowdhury,crodriguez,daniel,casati}@disi.unitn.it

ABSTRACT
In this demonstration, we describe Baya, an extension of
Yahoo! Pipes that guides and speeds up development by in-
teractively recommending composition knowledge harvested
from a repository of existing pipes. Composition knowl-
edge is delivered in the form of reusable mashup patterns,
which are retrieved and ranked on the fly while the devel-
oper models his own pipe (the mashup) and that are auto-
matically weaved into his pipe model upon selection. Baya
mines candidate patterns from pipe models available online
and thereby leverages on the knowledge of the crowd, i.e.,
of other developers. Baya is an extension for the Firefox
browser that seamlessly integrates with Pipes. It enhances
Pipes with a powerful new feature for both expert developers
and beginners, speeding up the former and enabling the lat-
ter. The discovery of composition knowledge is provided as
a service and can easily be extended toward other modeling
environments.

Categories and Subject Descriptors
H.m [Information Systems]: Miscellaneous; D.1 [Softwa-
re]: Programming Techniques; D.2.6 [Software]: Software
Engineering—Programming Environments

Keywords
Baya, Assisted mashup development, Composition patterns,
Pattern mining, Pattern recommendation, Weaving

1. INTRODUCTION
Mashup tools, such as Yahoo! Pipes (http://pipes.

yahoo.com/pipes/) or JackBe Presto Wires (http://www.
jackbe.com), simplify the development of composite appli-
cations by means of easy development paradigms (e.g., using
visual programming metaphors) and hosted runtime envi-
ronments that do not require the installation of any client-
side software. Yet, despite the initial goal of enabling end
users to develop own applications and the advances in sim-
plifying technology, mashup development is still a complex
task that can only be managed by skilled developers.

For instance, Figure 1 illustrates a Yahoo! Pipes model
that encodes how to plot news items on a map. The example
shows that understanding and modeling the logic for build-
ing such a mashup is neither trivial nor intuitive. Firstly,

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2012 Companion, April 16–20, 2012, Lyon, France.
ACM 978-1-4503-1230-1/12/04.

Figure 1: A typical pattern in Yahoo! Pipes

we need to enrich the news feed with geo-coordinates, then,
we must fetch the actual news items, and only then we can
plot the items on a map. If modeling difficulties arise, it
is common practice to manually search the Web for exam-
ples or help on which components to use, on how to fill the
respective parameter fields, or on how to propagate data.

In order to aid less skilled developers in the design of
mashups like the one above, in programming by demonstra-
tion [1], for instance, the system aims to auto-complete a
process definition, starting from a set of user-selected model
examples. Goal-oriented approaches [4] aim to assist the
user by automatically deriving compositions that satisfy user-
specified goals. Pattern-based development [3] aims at rec-
ommending connector patterns (so-called glue patterns) in
response to user selected components (so-called mashlets)
in order to autocomplete the partial mashup. Syntactic ap-
proaches [7] suggest modeling constructs based on syntactic
similarity (comparing output and input data types), while
semantic approaches [5] annotate constructs to support sug-
gestions based on the meaning of constructs. The limitations
in these approaches lie in the fact that they overlooked the
perspectives for end user development, as they either still
require advanced modeling skills (which users don’t have),
or they expect the user to specify complex rules for defining
goals (which they are not able to), or they expect domain ex-
perts to specify and maintain the semantics of the modeling
constructs (which they don’t do).

Driven by a user study on how end users would like to be
assisted during mashup development [2], we have developed
Baya, a plug-in for Yahoo! Pipes that provides interactive,
contextual recommendations of reusable composition knowl-

edge. The knowledge Baya recommends is re-usable compo-
sition patterns, i.e., model fragments that bear knowledge
about how to compose mashups, such as the one in Figure
1. For instance, Baya may suggest a candidate next com-
ponent or a whole chain of constructs. Upon selection of a
recommendation, Baya weaves the respective pattern auto-
matically into the current model in the modeling canvas1.
Baya mines community composition knowledge from exist-
ing mashup models publicly available in the online Yahoo!
Pipes repository and provides the respective patterns as a
service to client-side modeling environments.

In this demo paper, we describe Baya, outline the con-
cepts and architecture behind its simple user interface, and
provide insight into its implementation and future evolution.

2. THE BAYA APPROACH
Baya aims to seamlessly extend existing mashup or com-

position instruments with advanced knowledge reuse capa-
bilities. It targets both expert developers and beginners and
aims to speed up the former and to enable the latter.

The design goals behind Baya can be summarized as fol-
lows: We didn’t want to develop yet another mashup envi-
ronment; so we opted for an extension of existing and work-
ing solutions (in this demo, we focus on Yahoo! Pipes; other
tools will follow). We wanted to reuse composition knowl-
edge that has proven successful in the past; mining modeling
patterns from existing mashups allows us to identify exactly
this, i.e., recurrent modeling practice. We wanted to sup-
port a variety of different mashup tools, not just one; as we
will see, the sensible design of a so-called canonical mashup
model serves exactly this purpose. Modelers should not be
required to ask for help; we therefore pro-actively and inter-
actively recommend contextual composition patterns. We
did not want the reuse to be limited to simple copy/paste of
patterns, but knowledge should be actionable, and therefore,
Baya features the automated weaving of patterns.

2.1 Composition Knowledge
Considering the typical actions performed by a developer

in a graphical modeling environment (e.g., filling input fields,
connecting components, copying/pasting model fragments),
Baya specifically supports the following set of pattern types:

• Parameter value pattern. The parameter value pat-
tern represents a set of recurrent value assignments for
the input parameters of a component. This pattern
helps filling input parameters of a component that re-
quire explicit user input.

• Connector pattern. The connector pattern repre-
sents a recurrent connector between a pair of compo-
nents, along with the data mapping of the target com-
ponent. The pattern helps connecting a newly placed
component to the partial mashup model in the canvas.

• Connector co-occurrence pattern. The connector
co-occurrence pattern captures which connectors oc-
cur together. The pattern also includes the associated
data mappings. This pattern is particularly valuable in
those cases where people, rather than developing their

1This is also the capability that inspired the name of the
tool: the Baya weaver is a so-called weaverbird that weaves
its nest with long strips of leaves.

mashup model in an incremental but connected fash-
ion, first select the desired functionalities (the compo-
nents) and only then connect them.

• Component co-occurrence pattern. Similarly, the
component co-occurrence pattern captures couples of
components that occur together. It comes with the
two associated components as well as with their con-
nector, parameter values, and data mapping logic. The
pattern helps developing mashups incrementally in a
connected fashion.

• Component embedding pattern. The component
embedding pattern captures which component is typ-
ically embedded into which other component, both
being preceded by another component. The pattern
helps, for instance, modeling loops, a task that is usu-
ally not trivial to non-experts.

• Multi-component pattern. The multi-component pat-
tern represents recurrent model fragments that are com-
posed of multiple components. It represents more com-
plex patterns, such as the one in Figure 1, that are not
yet captured by the other pattern types.

This list of pattern types is extensible and will evolve
over time. However, this set of pattern types at the same
time leverages on the interactive modeling paradigm of the
mashup tools (the patterns represent modeling actions that
could also be performed by the developer) and provides as
much information as possible.

2.2 Discovery, Recommendation andWeaving
Figure 2 details the internals of the Baya architecture.

The overall architecture is devided into two blocks, namely,
the recommendation server and the client-side extension of
the chosen mashup tool, i.e., Yahoo! Pipes.

The Baya recommendation server (at the left in Fig-
ure 2) is in charge of discovering and harvesting composi-
tion knowledge patterns from existing mashup compositions.
The first step for discovering composition patterns consists
in taking the native models of the target mashup tools from
a repository of existing compositions and translating them
into a canonical mashup model, a step that is performed by
a dedicated model adapter. The canonical model is able to
represent a variety of similar mashup languages and allows
the development of more generic mining algorithms. The
pattern miner runs a set of pattern mining algorithms on
the data in the canonical model and discovers the above
introduced patterns. Discovered patterns are stored back
into a database of canonical patterns, transformed by the
data transformer, and loaded into the persistent knowledge
base (KB). The persistent KB consists in a database that
is structured in such a way that patterns can be efficiently
queried and retrieved by the client-side browser extension
for interactive recommendation.

The Baya Firefox extension consists of two main com-
ponents: a recommendation engine and a pattern weaver. In
the client, we have the actual interactive modeling environ-
ment (Pipes), in which the developer can visually compose
components by dragging and dropping them from a compo-
nent tool bar and connecting them together in the canvas.
The developer therefore performs composition actions (e.g.,
select, drag, drop, connect, delete, fill, map,...), where the

Baya Firefox extension

Event bus

Recommendation
engine

KB access API

KB loader

Client-side
pattern KB

Baya recommendation server

Pattern miner

Model
adapter

Modeling
action

User
selection

Modeling
action

Recom-
menda-
tions

Query

Patterns

Native models

<mashup>
...
</mashup>

Canonical models

<mashup>
...
</mashup>

Co
m

po
sit

io
n

pa
tte

rn
 K

B

Pa
tte

rn
 u

sa
ge

 s
ta

tis
tic

s

Pattern weaver

User
selection

Modeling
instructions

Object-action-
recommend. mapping

Similarity
metrics

Ranking
algos

Partial
mashup
modelKB access API

Pa
tte

rn

De
ta

ils
Persistent KB

Data

Meta
data

Data
transformer

Canonical patterns

<mashup>
...
</mashup>

Partial mashup model Re
co

m
m

en
da

tio
n

pa
ne

l

Modeling
instructions

Yahoo! Pipes

Figure 2: The internals of Baya: functional architecture for pattern discovery, recommendation and weaving

action is performed on a modeling construct in the model-
ing canvas; we call this construct the object of the action.
For instance, we can drop a component onto the canvas, or
we can select a parameter to fill it with a value, and so on.
Upon each interaction, the action and its object are pub-
lished on a browser-internal event bus, which forwards them
to the recommendation engine. Given a modeling action,
the object it has been applied to, and the partial mashup
model, the engine queries the client-side pattern KB via the
KB access API for recommendations (pattern representa-
tions) and gets a list of candidate patterns. Baya uses both
exact and approximate pattern matching algorithms [6] to
determine the final candidate set of recommendations that
also match the current composition context, ranks them in
order of their similarity and popularity, and finally renders
them in the recommendation panel.

Upon the selection of a pattern from the recommendation
panel, the pattern weaver weaves it into the partial mashup
model in the modeling canvas. For each supported pattern
type, Baya retrieves a basic weaving strategy (a static set
of modeling instructions; see http://goo.gl/Xk7VF), which
is independent of the partial mashup model, and derives a
contextual weaving strategy, which applies the basic strategy
to the partial model at runtime. Applying the mashup op-
erations in the basic strategy may require the resolution of
possible conflicts among the constructs of the partial model
and those of the pattern to be weaved. For instance, if we
want to add a new component of type ctype but the mashup
already contains an instance of type ctype, say comp, we
are in the presence of a conflict: either we decide that we
reuse comp, which is already there, or we decide to create
a new instance of ctype. In order to choose how to pro-
ceed, Baya allows one to choose among different policies (see
http://goo.gl/9jJtK). Given a final, contextual strategy,
the pattern weaver applies the respective modeling actions
to the partial mashup model.

Upon successful weaving of a recommended pattern into
the partial composition, the usage statistics of the selected
pattern in the client-side KB get updated, and simultane-
ously this information is sent to the server-side persistent
KB via the KB loader. This updated metadata is used for
future recommendation filtering and ranking. In the Baya
client side, we also consider the option for saving patterns,

in which users can select and store to the pattern KB new
user-defined patterns from their current composition. This
feature is part of our on-going development and will be avail-
able in future versions of Baya.

3. IMPLEMENTATION
Baya is implemented as Mozilla Firefox (http://mozilla.

com/firefox) extension for Yahoo! Pipes, adding an inter-
active recommendation panel at the right of its modeling
canvas. Baya implementation is based on JavaScript for the
business logic (e.g., the algorithms) and XUL (XML User
Interface Language, https://developer.mozilla.org/En/

XUL) for UI development. The use of JavaScript in Firefox
Extension development framework eases the interaction with
the HTML DOM elements in the browser window and the
implementation of dedicated listeners to intercept modeling
events on elements in the DOM tree (e.g., model constructs
in the Pipes modeling canvas). A screenshot of Baya in ac-
tion is shown in Figure 3.

The server side is implemented in Java. This comprises
the model adapter (cf. Figure 2), which is able to convert
Yahoo! Pipes’ internal JSON representation of mashups into
our canonical mashup model as well as the necessary mining
algorithms for the discovery of the patters (a description
of the algorithms can be found at http://goo.gl/Dis5V).
Parts of our mining algorithms make use of frequent itemset
mining, for which we used the tool ARMiner (http://www.
cs.umb.edu/~laur/ARMiner/).

Discovered patterns are transformed and stored in a knowl-
edge base that is optimized for fast pattern retrieval at run-
time. The implementation of the persistent pattern KB at
server side, is based on MySQL (http://www.mysql.com/).
Via a dedicated Java RESTful API, at startup of the rec-
ommendation panel the KB loader synchronizes the server-
side KB with the client-side KB, which instead is based on
SQLite (http://www.sqlite.org). The pattern matching
and retrieval algorithms are implemented in JavaScript and
triggered by events generated by the event listeners moni-
toring the DOM modifications related to the mashup model.

The weaving algorithms are also implemented in Java-
Script. Upon the selection of a recommendation from the
panel, they derive the contextual weaving strategy that is
necessary to weave the respective pattern into the partial

Yahoo! Pipes
modeling canvas

Newly added component

Baya recommendation panel

Recommended
patterns

Details about
selected pattern

Component
toolbar

Figure 3: Screenshot of Baya in action.

mashup model. Each of the instructions in the weaving
strategy refers to a modeling action, where modeling actions
are implemented as JavaScript manipulations of the mashup
model’s DOM elements. Both the weaving strategies (basic
and contextual) are encoded as JSON arrays, which enable
us to use the native eval() command for fast and easy pars-
ing of the weaving logic.

For our experiments we extracted 303 pipes definitions
from the repository of Pipes. The average numbers of com-
ponents, connectors and input parameters were 12.7, 13.2
and 3.1, respectively, indicating fairly complex mashups.
We were able to identify patterns of all the types described
above. For example, the minimum/maximum support for
the connector patterns was 0.0759/0.3234, while the one
for the component co-occurrence patterns was 0.0769/0.2308.
We used these patterns to populate our KB and generated
additional synthetic patterns to test the performance of the
recommendation engine (the sizes of the KBs ranged from
10, 30, 100, 300, 1000 multi-component patterns) [6]. The
complexity of the patterns ranged from 3 − 9 components
per pattern, and we used queries with 1 − 7 components. In
the worst case scenario (KB of 1000 patterns, approximate
similarity matching of patterns), the recommendation en-
gine could retrieve relevant patterns within 608 millisecond
– everything entirely inside the client browser.

4. DEMONSTRATION STORYBOARD
During the live demonstration, we will showcase Baya at

work and take our audience through the theoretical as well
as the usage aspects of the tool, using a mix of slides and
hands-on examples. In particular, we intend to organize the
demonstration as follows:

1. Introduction : A short intro to the goals and key con-
cepts of Baya.

2. Example: A simple example developed by us with the
use of the interactive recommendations.

3. Non-assisted development by audience : A similar
modeling exercise for a member of the audience, how-
ever without the help of the interactive recommender.

4. Assisted development by audience: The same mod-
eling scenario as in 3, this time however with the help
of the interactive recommender.

5. Patterns and discovery : An explanation of the pat-
tern types supported by Baya, along with the mining
approach underlying the pattern knowledge base.

6. Architecture and internals: Explanation of the in-
ternal architecture of Baya and of the recommendation
and weaving algorithms working behind the scenes.

7. Conclusion : Lessons learned and outline of future
works and the evolution of Baya.

This process will allow us to introduce the audience to
Baya and help us evaluate the efficacy and usability of the
tool. We hope we will get valuable feedback from the audi-
ence, in order to further fine-tune Baya’s UI and algorithms.

An introduction to and a screencast of Baya is available
at http://www.youtube.com/watch?v=RNRAsX1CXtE.

5. STATUS AND LESSONS LEARNED
Baya was born in the context of the EU research project

OMELETTE, in order to assist mashup development inside
the project’s own mashup editors. Soon, however, we rec-
ognized that the kind of knowledge discovery algorithms we
were working on and the conceptual approach to pattern
recommendation and weaving are generic enough to be ap-
plied in the context of many other modeling or mashup tools.
As a proof of concept, we therefore developed Baya, an ap-
parently simple, yet effective tool. The idea of composition
knowledge as a service makes it unique among other assisted
development approaches, and a-priori definition of pattern
structures allows us to extract meaningful knowledge also
from single mashup models.

Next, we will extend the mining algorithms to other com-
position paradigms and develop dedicated clients for differ-
ent composition tools. The idea is to make Baya publicly
available and to study how effectively pattern recommenda-
tion and weaving can help users to develop own mashups.

Acknowledgment. This work was supported by the Euro-
pean Commission (project OMELETTE, contract 257635).

6. REFERENCES
[1] A. Cypher, D. C. Halbert, D. Kurlander, H. Lieberman,

D. Maulsby, B. A. Myers, and A. Turransky, editors.
Watch what I do: programming by demonstration. MIT
Press, Cambridge, MA, USA, 1993.

[2] A. De Angeli, A. Battocchi, S. Roy Chowdhury,
C. Rodŕıguez, F. Daniel, and F. Casati. End-User
Requirements for Wisdom-Aware EUD. In IS-EUD’11,
pages 245–250.

[3] O. Greenshpan, T. Milo, and N. Polyzotis.
Autocompletion for mashups. VLDB’09, 2:538–549.

[4] M. Henneberger, B. Heinrich, F. Lautenbacher, and
B. Bauer. Semantic-Based Planning of Process Models.
In Multikonferenz Wirtschaftsinformatik’08, 2008.

[5] A. Ngu, M. Carlson, Q. Sheng, and H. young Paik.
Semantic-based mashup of composite applications.
IEEE TSC, 3(1):2 –15, 2010.

[6] S. Roy Chowdhury, F. Daniel, and F. Casati. Efficient,
Interactive Recommendation of Mashup Composition
Knowledge. In ICSOC’11, pages 374–388, 2011.

[7] J. Wong and J. I. Hong. Making mashups with
marmite: towards end-user programming for the web.
In CHI’07, pages 1435–1444.

96 Baya: Assisted Mashup Development as a Service

Appendix G

Assisting End-User Development in

Browser-Based Mashup Tools

Soudip Roy Chowdhury. Assisting end-user development in browser-based mashup tools. In

Proceedings of the 2012 International Conference on Software Engineering (ICSE 2012). IEEE

Press, Piscataway, NJ, USA, 1625-1627.

Assisting End-User Development in Browser-Based Mashup Tools

Soudip Roy Chowdhury
DISI, University of Trento, Italy

rchowdhury@disi.unitn.it

Abstract—Despite the recent progresses in end-user devel-
opment and particularly in mashup application development,
developing even simple mashups is still non-trivial and requires
intimate knowledge about the functionality of web APIs and
services, their interfaces, parameter settings, data mappings,
and so on. We aim to assist less skilled developers in compos-
ing own mashups by interactively recommending composition
knowledge in the form of modeling patterns and fostering
knowledge reuse. Our prototype system demonstrates our idea
of interactive recommendation and automated pattern weaving,
which involves recommending relevant composition patterns
to the users during development, and once selected, applying
automatically the changes as suggested in the selected pattern
to the mashup model under development. The experimental
evaluation of our prototype implementation demonstrates that
even complex composition patterns can be efficiently stored,
queried and weaved into the model under development in
browser-based mashup tools.

Keywords-assisted development; end-user development; com-
position pattern; pattern recommendation; weaving

I. PROBLEM AND MOTIVATION

By now, mashup tools, such as Yahoo! Pipes (http://
pipes.yahoo.com/pipes/), undoubtedly simplified some com-
plex composition tasks by providing easy modeling con-
structs and lightweight runtime environments inside the
client browser. Yet, despite these advances in simplifying
technology, mashup development is still a complex task that
can only be managed by skilled developers ([1], [2]).

Figure 1 illustrates a Yahoo! Pipes model that encodes
how to plot news items on a map. The lesson that can be
learned from it is that plotting news onto a map requires
enriching the news feed with geo-coordinates, fetching the
actual news items, and plotting them on a map. For de-
veloping even such a simple application, at every step the
user needs to know which component/s to use, how to set
the parameter values for the components, how to define the
data mapping among the components etc. Understanding this
logic is neither trivial nor intuitive. Motivated by a user
study on how end users imagine assistance during mashup
development [3], we assist the modeler in each step of his
development task by means of interactive, contextual rec-
ommendations of composition knowledge. The knowledge
is re-usable composition patterns, i.e., frequently occurred
composition fragments of previous successful mashup mod-
els. Having such re-usable composition patterns stored in

Figure 1. A typical pattern in Yahoo! Pipes

our pattern knowledge base, in this research, we particularly
focus on (i) how to efficiently query and retrieve them
interactively in response to the user’s modeling actions and
the current composition context inside modeling tool. For
instance, once user drags URL Builder into the modeling
canvas and fills it’s parameters with values like in Figure
1, we recommend a pattern which suggests to use Fetch
Feed as a next component. We further focus on (ii) how
to automatically weave a pattern, upon selection, into the
current mashup model by performing a set of modeling
steps (adding a component, adding a connector between two
components etc.) on behalf of the user.

II. BACKGROUND AND RELATED WORK

A. Challenges

To identify the composition patterns for mashup devel-
opment, in [4] we analyzed data flow based mashup com-
position models (similar to Yahoo! Pipes) and discovered
five types of composition patterns: parameter value, connec-
tor, data mapping, component co-occurence, and complex
patterns. However, recommending this patterns proactively
and interectively inside the client-side modeling environment
requires to design a pattern knowledge base (KB) that sup-
ports fast retrieval of the patterns. It also requires to have a
set of efficient and interactive pattern querying and retrieval
algorithms. In [4], we explained our approach for tackling
these challenges. For the weaving, we further require to
define a set of algorithms, which automate the contextual

978-1-4673-1067-3/12/$31.00 c© 2012 IEEE
ICSE 2012, Zurich, Switzerland
ACM Student Research Competition

1625

Event busKB loader

 cp

Recom-
mendation
 R

Query q

Patterns

C
om

po
si

tio
n

pa
tte

rn

Pa
tte

rn
 u

sa
ge

 s
ta

tis
tic

s

User
selection

cp

Modeling
instructions
instr

Object-action-
recommend. mapping

Similarity
metrics

Ranking
algos

pm

Modeling action
<object,action>

pm

Modeling action
<object,action> Modeling

instructions
instr

steps related to recommendation steps related to weaving

 object

Interactive modeling environment

Modeling canvas

R
ec

om
en

da
tio

n
pa

ne
l

Partial mashup
model

 pm

Client-side pattern
knowledge base

Synchronization
of client side and
server side pattern
knowledge base

Pattern weaver

Pa
tte

rn
in

st
an

ce

cp
' us

er

se
le

ct
io

n
cp

Recommendation
engine

Figure 2. Functional architecture of our interactive recommendation and
weaving approach

weaving steps of a pattern into a model by tackling issues
related to model conflicts at runtime.

B. Related Work

Several works aim to assist less skilled developers in the
design of mashups. Web macro approaches ([5], [6]) capture
and reuse navigation patterns in end user programming.
However, the assistance in these approaches are provided
only for navigating and configuring data in webpages. In
our research, we support compostion pattern reuse, by
providing development assistance to end-users, in a more
complex web mashup compositions scenario. Among other
assisted development approaches, syntactic approaches [7]
suggest modeling constructs based on syntactic similarity
(comparing output and input data types), while semantic
approaches [8] annotate constructs to support suggestions
based on the meaning of constructs. In programming by
demonstration [9], the system aims to auto-complete a
process definition, starting from a set of user-selected model
examples. Goal-oriented approaches [10] aim to assist the
user by automatically deriving compositions that satisfy
user-specified goals. Pattern-based development [11] aims at
recommending connector patterns (so-called glue patterns)
in response to user selected components (so-called mashlets)
in order to autocomplete the partial mashup. The limitation
of these approaches is that they partly overestimate the skills
of less skilled developers (e.g., end users), as they either still
require advanced modeling skills (which users don’t have),
or they expect the user to specify complex rules for defining
goals (which they are not able to), or they expect domain
experts to specify and maintain complex semantic networks
describing modeling constructs (which they don’t do).

III. APPROACH

In Figure 2, we show the architecture of our client-side,
interactive pattern recommendation and weaving infrastruc-
ture. The interactive modeling environment runs in the client
browser. It is here where the pattern recommendation logic
reacts to modeling actions performed by the modeler on

a construct (the object of the action) in the canvas. For
instance, we can drop a component onto the canvas, or we
can select a parameter. Upon each interaction, the action
and its object are published on a browser-internal event
bus, which forwards them to the recommendation engine.
With this information and the partial mashup model pm
the engine queries the client-side KB for recommendations,
where an object-action-recommendation mapping tells the
engine which types of recommendations are to be retrieved.
The list of patterns retrieved from the KB are then ranked
and rendered in the recommendation panel. Upon the se-
lection of a pattern from the recommendation panel, the
pattern weaver weaves it into the partial mashup model.
The pattern weaver first retrieves a basic weaving strategy
(a set of model-agnostic mashup instructions) and then
derives a contextual weaving strategy (a set of model-specific
instructions), which is used to weave the pattern. Deriving
the contextual strategy from the basic one may require the
resolution of possible conflicts among the constructs of the
partial model and those of the pattern to be weaved. The
pattern weaver resolves them according to a configurable
conflict resolution policy.

Our prototype is a Mozilla Firefox extension for Yahoo!
Pipes [12], with the recommendation and weaving algo-
rithms implemented in JavaScript. Event listeners listen for
DOM modifications, in order to identify mashup modeling
actions inside the modeling canvas, and accordingly recom-
mendation engine queries and retrieves patterns from the
KB, which is implemented in SQLite (http://www.sqlite.
org/). The instructions in the weaving strategies refers to
modeling instructions, which are implemented as JavaScript
manipulations of the mashup model’s JSON representation.

IV. EVALUATION AND DISCUSSION

For our experiments we extracted 303 pipes definitions
from the repository of Pipes. We were able to identify
patterns of all the types described above. We used these pat-
terns to populate our KB and generated additional synthetic
patterns to test the performance of the recommendation
engine (the sizes of the KBs ranged from 10, 30, 100,
300, 1000 complex patterns) [4]. The complexity of the
patterns ranged from 3− 9 components per pattern, and we
used queries with varying component set of size 1 − 7. In
the worst case scenario (KB of 1000 patterns, approximate
similarity matching of patterns), the recommendation is
provided within 608 millisecond – everything entirely inside
the client browser. As a next step, we will work towards
evaluating the precision and recall of our recommendation
and weaving algorithms. Subsequently we will expand our
algorithms toward other modeling environments (e.g., BPM
tools), we will make our prototype tool publicly available
online and perform in-depth user studies to fine-tune the
usability of our approach.

1626

REFERENCES

[1] A. J. Ko, R. Abraham, L. Beckwith, A. Blackwell, M. Burnett,
M. Erwig, C. Scaffidi, J. Lawrance, H. Lieberman, B. Myers,
M. B. Rosson, G. Rothermel, M. Shaw, and S. Wiedenbeck,
“The state of the art in end-user software engineering,” ACM
Comput. Surv., pp. 21:1–21:44, 2011.

[2] F. Casati, “How end-user development will save composition
technologies from their continuing failures,” in IS-EUD’11,
2011, pp. 4–6.

[3] A. De Angeli, A. Battocchi, S. Roy Chowdhury,
C. Rodrı́guez, F. Daniel, and F. Casati, “End-User
Requirements for Wisdom-Aware EUD,” in IS-EUD’11,
pp. 245–250.

[4] S. Roy Chowdhury, F. Daniel, and F. Casati, “Efficient,
Interactive Recommendation of Mashup Composition Knowl-
edge,” in ICSOC’11, 2011, pp. 374–388.

[5] C. Bogart, M. Burnett, A. Cypher, and C. Scaffidi, “End-user
programming in the wild: A field study of coscripter scripts,”
in VL/HCC 2008, 2008, pp. 39 –46.

[6] A. Koesnandar, S. Elbaum, G. Rothermel, L. Hochstein,
C. Scaffidi, and K. T. Stolee, “Using assertions to help
end-user programmers create dependable web macros,” in
SIGSOFT 2008, ser. SIGSOFT ’08/FSE-16, 2008, pp. 124–
134.

[7] J. Wong and J. I. Hong, “Making mashups with marmite:
towards end-user programming for the web,” in CHI’07, pp.
1435–1444. [Online]. Available: http://doi.acm.org/10.1145/
1240624.1240842

[8] A. Ngu, M. Carlson, Q. Sheng, and H. young Paik,
“Semantic-based mashup of composite applications,” IEEE
TSC, vol. 3, no. 1, pp. 2 –15, 2010.

[9] A. Cypher, D. C. Halbert, D. Kurlander, H. Lieberman,
D. Maulsby, B. A. Myers, and A. Turransky, Eds., Watch
what I do: programming by demonstration. Cambridge, MA,
USA: MIT Press, 1993.

[10] M. Henneberger, B. Heinrich, F. Lautenbacher, and B. Bauer,
“Semantic-Based Planning of Process Models,” in Multikon-
ferenz Wirtschaftsinformatik’08, 2008.

[11] O. Greenshpan, T. Milo, and N. Polyzotis, “Autocompletion
for mashups,” VLDB’09, vol. 2, pp. 538–549. [Online]. Avail-
able: http://dl.acm.org/citation.cfm?id=1687627.1687689

[12] S. Roy Chowdhury, C. Rodrı́guez, F. Daniel, and F. Casati,
“Baya: Assisted Mashup Development as a Service,” in
WWW’12, 2012.

1627

Appendix H

Assisted Mashup Development: On

the Discovery and Recommendation

of Mashup Composition Knowledge

Carlos Rodrguez, Soudip Roy Chowdhury, Florian Daniel, Hamid R. Motahari Nezhad, Fabio

Casati. Assisted Mashup Development: On the Discovery and Recommendation of Mashup Com-

position Knowledge. To be published in the Handbook on Web Services, Springer, 2012.

Chapter 1
Assisted Mashup Development:
On the Discovery and Recommendation of
Mashup Composition Knowledge

Carlos Rodrı́guez, Soudip Roy Chowdhury, Florian Daniel, Hamid R. Motahari
Nezhad and Fabio Casati

Abstract Over the past few years, mashup development has been made more ac-
cessible with tools such as Yahoo! Pipes that help in making the development task
simpler through simplifying technologies. However, mashup development is still a
difficult task that requires knowledge about the functionality of web APIs, param-
eter settings, data mappings, among other development efforts. In this work, we
aim at assisting users in the mashup process by recommending development knowl-
edge that comes in the form of reusable composition knowledge. This composition
knowledge is harvested from a repository of existing mashup models by mining a
set of composition patterns, which are then used for interactively providing com-
position recommendations while developing the mashup. When the user accepts a
recommendation, it is automatically woven into the partial mashup model by apply-
ing modeling actions as if they were performed by the user. In order to demonstrate
our approach we have implemented Baya, a Firefox plugin for Yahoo! Pipes that
shows that it is indeed possible to harvest useful composition patterns from existing
mashups, and that we are able to provide complex recommendations that can be
automatically woven inside Yahoo! Pipes’ web-based mashup editor.

1.1 Introduction

Mashup tools, such as Yahoo! Pipes (http://pipes.yahoo.com/pipes/)
or JackBe Presto Wires (http://www.jackbe.com), generally promise easy
development tools and lightweight runtime environments, both typically running
inside the client browser. By now, mashup tools undoubtedly simplified some com-

Carlos Rodrı́guez, Soudip Roy Chowdhury, Florian Daniel and Fabio Casati
University of Trento, Via Sommarive 5, 38123, Povo (TN), Italy, e-mail: {crodriguez,
rchowdhury,daniel,casati}@disi.unitn.it

Hamid R. Motahari Nezhad
Hewlett Packard Labs, Palo Alto (CA), USA, e-mail: hamid.motahari@hp.com

1

2 C. Rodrı́guez, S. Roy Chowdhury, F. Daniel, H. R. Motahari Nezhad, F. Casati

plex composition tasks, such as the integration of web services or user interfaces.
Yet, despite these advances in simplifying technology, mashup development is still
a complex task that can only be managed by skilled developers.

People without the necessary programming experience may not be able to prof-
itably use mashup tools like Pipes — to their dissatisfaction. For instance, we think
of tech-savvy people, who like exploring software features, authoring and sharing
own content on the Web, that would like to mash up other contents in new ways,
but that don’t have programming skills. They might lack appropriate awareness of
which composable elements a tool provides, of their specific functionality, of how
to combine them, of how to propagate data, and so on. In short, these are people
that do not have software development knowledge. The problem is analogous in the
context of web service composition (e.g., with BPEL) or business process model-
ing (e.g., with BPMN), where modelers are typically more skilled, but still may not
know all the features or typical modeling patterns of their tools.

What people (also programmers) typically do when they don’t know how to solve
a tricky modeling problem is searching for help, e.g., by asking more skilled friends
or by querying the Web for solutions to analogous problems. In this latter case, ex-
amples of ready mashup models are one of the most effective pieces of information
– provided that suitable examples can be found, i.e., examples that have an analogy
with the modeling situation faced by the modeler. Yet, searching for help does not
always lead to success, and retrieved information is only seldom immediately usable
as is, since the retrieved pieces of information are not contextual, i.e., immediately
applicable to the given modeling problem.

Fig. 1.1 A typical pattern in Yahoo! Pipes

For instance, Figure 1.1 illustrates a Yahoo! Pipes model that encodes how to
plot news items on a map. Besides showing how to connect components and fill pa-
rameters, the key lesson that can be learned from this pipe is that plotting news onto
a map requires first enriching the news feed with geo-coordinates, then fetching the

1 Assisted Mashup Development 3

actual news items, and only then handing the items over to the map. Understanding
this logic is neither trivial nor intuitive.

Driven by a user study on how end users imagine assistance during mashup devel-
opment [4], we aim to automatically offer them help pro-actively and interactively.
Specifically, we are working toward the interactive, contextual recommendation of
reusable composition knowledge, in order to assist the modeler in each step of his
development task, e.g., by suggesting a candidate next component or a whole chain
of tasks. The knowledge we want to recommend is re-usable composition patterns,
i.e., model fragments that bear knowledge about how to compose mashups, such
as the pattern in Figure 1.1. Such knowledge may come from a variety of possible
sources. In this work, we specifically focus on community composition knowledge
and mine recurrent model fragments from a repository of given mashup models.

The vision is that of enabling the development of assisted, web-based mashup en-
vironments that deliver composition knowledge much like Google’s Instant feature
delivers search results already while still typing keywords into the search field.

In this chapter, we approach two core challenges of this vision, i.e., the discovery
of reusable composition knowledge from a repository of ready mashup models and
the reuse of such knowledge inside mashup tools, a feature that we call weaving.
Together with the ability to search and retrieve composition patterns contextually
when modeling a new mashup, a problem we approached in [10] and that we sum-
marize in this chapter, these two features represent the key enablers of the vision of
assisted development. We specifically provide the following contributions:

• We describe a canonical mashup model that is able to represent in a single mod-
eling formalism a variety of data flow mashup languages. The goal is to mine
composition knowledge from multiple source languages by implementing the
necessary algorithms only once.

• Based on our canonical mashup model, we define a set of mashup pattern types
that resemble the modeling actions of typical mashup environments.

• We describe an architecture of our knowledge recommender that can be used to
equip any mashup environment with interactive assistance for its developers.

• We develop a set of data mining algorithms that discover composition knowledge
in the form of reusable mashup patterns from a repository of mashup models.

• We present our pattern recommendation and pattern weaving algorithms. The
former aims at recommending composition patterns based on the user actions on
the design canvas. The later aims at automatically appying patterns to mashup
models, allowing the developer to progress in his development task.

In the next section, we start by introducing the canonical mashup model, which
will help us to formulate our problem statement, define mashup pattern types and
describe our pattern mining algorithms. Section 1.3 is where we describe the types
of mashup patterns we are interested in and the architecture of our recommendation
platform. In Sections 1.4, 1.5 and 1.6 we, respectively, describe in details the mining,
recommendation, and weaving algorithms. Section 1.7 presents the details of the
implementation of our approach. In Section 1.8 we overview related work. Then,
with Section 1.9, we conclude the chapter.

4 C. Rodrı́guez, S. Roy Chowdhury, F. Daniel, H. R. Motahari Nezhad, F. Casati

1.2 Preliminaries and Problem

The development of a data mining algorithm strongly depends on the data to be
mined. The data in our case are the mashup models. Since in our work we do not
only aim at the reuse of knowledge but also at the reuse of our algorithms across
different platforms, we strive for the development of algorithms that are able to ac-
commodate different mashup models in input. Next, we therefore describe a canon-
ical mashup model that allows us to concisely express multiple data mashup mod-
els and to implement mining algorithms that intrinsically support multiple mashup
platforms. The canonical model is not meant to be executed; it rather serves as de-
scription format.

As a first step toward generic modeling environments, in this chapter we focus
on data flow based mashup models. Although relatively simple, they are the basis
of a significant number of mashup environments, and the approach can easily be
extended toward other mashup environments.

1.2.1 A Canonical Mashup Model

Let CT be a set of component types of the form ctype = 〈type, IP, IN,OP,OUT, is
embedding〉, where type identifies the type of component (e.g., RSS feed, filter, or

similar), IP is the set of input ports of the component type (for the specification of
data flows), IN is the set of input parameters of the component type, OP is the set
of output ports, OUT is the set of output attributes1, and is embedding ∈ {yes,no}
tells whether the component type allows the embedding of components or not (e.g.,
to model a loop). We distinguish three types of components:

• Source components fetch data from the web (e.g., from an RSS feed) or the local
machine (e.g., from a spreadsheet), or they collect user inputs at runtime. They
don’t have input ports, i.e., IP = /0.

• Data processing components consume data in input and produce processed data
in output. Therefore: IP, OP 6= /0. Filter components, operators, and data trans-
formers are examples of data processing components.

• Sink components publish the output of a mashup, e.g., by printing it onto the
screen (e.g., a pie chart) or providing an API toward it, such as an RSS or REST-
ful resource. Sinks don’t have outputs, i.e., OP = /0.

Given a set of component types, we are able to instantiate components in a
modeling canvas and to compose mashups. We express the respective canoni-
cal mashup model as a tuple m = 〈name, id,src,C,GP,DF,RES〉, where name is
the name of the mashup in the canonical representation, id a unique identifier,
src ∈ {“Pipes”,“Wires”,“myCocktail”, ...} keeps track of the source platform of

1 We use the term attribute to denote data attributes produced as output by a component or flowing
through a data flow connector and the term parameter to denote input parameters of a component.

1 Assisted Mashup Development 5

the mashup, C is the set of components, GP is a set of global parameters, DF is a
set of data flow connectors propagating data among components, and RES is a set
of result parameters of the mashup. Specifically:

• GP = {gpi|gpi = 〈namei,valuei〉} is a set of global parameters that can be
consumed by components, namei is the name of a given parameter, valuei ∈
(ST R∪NUM ∪{null}) is its value, with ST R and NUM representing the sets
of possible string or numeric values, respectively. The use of global parameters
inside data flow languages is not very common, yet tools like Presto Wires or
myCocktail (http://www.ict-romulus.eu/web/mycocktail) sup-
port the design-time definition of globally reusable variables.

• DF = {d f j|d f j = 〈srccid j,srcop j, tgtcid j, tgtip j〉} is a set of data flow connec-
tors that, each, assign the output port srcop j of a source component with iden-
tifier srccid j to an input port tgtip j of a target component identified by tgtcid j,
such that srccid 6= tgtcid. Source components don’t have connectors in input;
sink components don’t have connectors in output.

• C = {ck|ck = 〈namek, idk, typek, IPk, INk,DMk,VAk,
OPk,OUTk,Ek〉} is the set of components, such that ck = instanceO f (
ctype)2, ctype ∈ CT and namek is the name of the component in the mashup
(e.g., its label), idk uniquely identifies the component, typek = ctype.type3, IPk =
ctype.IP, INk = ctype.IN, OPk = ctype.OP, OUTk = ctype.OUT , and:

– DMk ⊆ INk× (
⋃

ip∈IPk
ip.source.OUT) is the set of data mappings that map

attributes of the input data flows of ck to input parameters of ck.
– VAk ⊆ INk× (ST R∪NUM∪GP) is the set of value assignments for the in-

put parameters of ck; values are either filled manually or taken from global
parameters.

– Ek = {cidkl} is the set of identifiers of the embedded components. If the com-
ponent does not support embedded components, Ek = /0.

• RES⊆⋃
c∈C c.OUT is the set of mashup outputs computed by the mashup.

Without loss of generality, throughout this chapter we exemplify our ideas and
solutions in the context of Yahoo! Pipes, which is well known and comes with a large
body of readily available mashup models that we can analyze. Pipes is very similar
to our canonical mashup model, with two key differences: it does not have global
parameters, and the outputs of the mashup are specified by using a dedicated Pipe
Output component (see Figure 1.1). Hence, GP,RES = /0 and a pipe corresponds to
a restricted canonical mashup of the form m = 〈name, id,“Pipes”,C, /0,DF, /0〉 with
the attributes as specified above. In general, we refer to the generic canonical model;
we explicitly state where instead we use the restricted Pipes model.

2 To keep models and algorithms simple, we opt for a self-describing instance model for compo-
nents, which presents both type and instance properties.
3 We use a dot notation to refer to sub-elements of structured elements; ctype.type therefore refers
to the type attribute of the component type ctype.

6 C. Rodrı́guez, S. Roy Chowdhury, F. Daniel, H. R. Motahari Nezhad, F. Casati

1.2.2 Problem Statement

Given the above canonical mashup model, the problem we want to address in this
chapter is understanding (i) which kind of knowledge can be extracted from the
canonical mashup model so as to automatically assist users in developing their
mashups, (ii) what algorithms we need to develop in order to be able to discover
such knowledge from existing mashup models, (iii) how to interactively recom-
mend discovered patterns inside mashup tools in order to guide users with the next
modeling step/s and (iv) how to automatically apply (weave) the selected recom-
mendation inside the current mashup design.

1.3 Approach

The current trend in modeling environments in general, and in mashup tools in par-
ticular, is toward intuitive, web-based solutions. The key principles of our work are
therefore to conceive solutions that resemble the modeling paradigm of graphical
modeling tools, to develop them so that they can run inside the client browser, and
to specifically tune their performance so that they do not annoy the developer while
modeling. These principles affect the nature of the knowledge we are interested in
and the architecture and implementation of the respective recommendation infras-
tructure.

1.3.1 Composition Knowledge Patterns

Starting from the canonical mashup model, we define composition knowledge as
reusable composition patterns for mashups of type m, i.e., model fragments that
provide insight into how to solve specific modeling problems, such as the one il-
lustrated in Figure 1.1. In general, we are in the presence of a set of composition
pattern types PT , where each pattern type is of the form ptype = 〈C,GP,DF,RES〉,
where C,GP,DF,RES are as defined for m.

The size of a pattern may vary from a single component with a value assignment
for one input parameter to an entire, executable mashup. The most basic patterns
are those that represent a co-occurrence of two elements out of C,GP,DF or RES.
For instance, two components that recur often together form a basic pattern; given
one of the components, we are able to recommend the other component. Similarly,
an input parameter plus its value form a basic pattern, given the parameter, we can
recommend a possible value for it. As such, the most basic patterns are similar to
association rules, which, given one piece of information, are able to suggest another
piece of information.

Aiming, however, to help a developer refine his mashup model step by step with
as less own effort as possible, we are able to identify a set of pattern types that al-

1 Assisted Mashup Development 7

low the developer to obtain more practical and meaningful composition knowledge.
Such knowledge is represented by sensible combinations of basic patterns, i.e., by
composite patterns.

Considering the typical modeling steps performed by a developer (e.g., filling
input fields, connecting components, copying/pasting model fragments), we specif-
ically identify the following set PT of pattern types:

Parameter value pattern. The parameter value pattern represents a set of recurrent
value assignments VA for the input fields IN of a component c:

ptypepar = 〈{c},GP, /0, /0〉;
c = 〈name,0, type, /0, IN, /0, /0,VA, /0, /0〉4;
GP 6= /0 if VA also assigns global parameters to IN;
GP = /0 if VA assigns only strings or numeric constants.
This pattern helps filling input fields of a component that require explicit user

input.

Connector pattern. The connector pattern represents a recurrent connector d fxy,
given two components cx and cy, along with the respective data mapping DMy of
the output attributes OUTx to the input parameters INy:

ptypecon = 〈{cx,cy}, /0,{d fxy}, /0〉;
cx = 〈namex,0, typex, /0, /0, /0, /0,{opx},OUTx, /0〉;
cy = 〈namey,1, typey,{ipy}, INy,DMy, /0, /0, /0, /0〉.
This pattern helps connecting a newly placed component to the partial mashup

model in the canvas.

Connector co-occurrence pattern. The connector co-occurrence pattern captures
which connectors d fxy and d fyz occur together, also including their data mappings:

ptypecoo = 〈{cx,cy,cz}, /0,{d fxy,d fyz}, /0〉;
cx = 〈namex,0, typex, /0, /0, /0, /0,{opx},OUTx, /0〉;
cy = 〈namey,1, typey,{ipy}, INy,DMy, /0,{opy},
OUTy, /0〉
cz = 〈namez,2, typez,{ipz}, INz,DMz, /0, /0, /0, /0〉.
This pattern helps connecting components. It is particularly valuable in those

cases where people, rather than developing their mashup model in an incremen-
tal but connected fashion, proceed by first selecting the desired functionalities (the
components) and only then by connecting them.

Component co-occurrence pattern. Similarly, the component co-occurrence pattern
captures couples of components that occur together. It comes with two components
cx and cy as well as with their connector, global parameters, parameter values, and
cy’s data mapping logic:

4 The identifier c.id = 0 does not represent recurrent information. Identifiers in patterns rather rep-
resent internal, system-generated information that is necessary to correctly maintain the structure
of patterns. When mining patterns, the actual identifiers are lost; when weaving patterns, they need
to be re-generated in the target mashup model.

8 C. Rodrı́guez, S. Roy Chowdhury, F. Daniel, H. R. Motahari Nezhad, F. Casati

ptypecom = 〈{cx,cy},GP,{d fxy}, /0〉;
cx = 〈namex,0, typex, /0, INx,{opx},OUTx,VAx, /0, /0〉;
cy = 〈namey,1, typey,{ipy}, INy,DMy,VAy, /0, /0, /0〉.
This pattern helps developing a mashup model incrementally, producing at each

step a connected mashup model.

Component embedding pattern. The component embedding pattern captures which
component cz is typically embedded into a component cy preceded by a component
cx. The pattern has three components, in that both the embedded and the embedding
component have access to the outputs of the preceding component. How these out-
puts are jointly used is valuable information. The pattern, hence, contains the three
components with their connectors, data mappings, global parameters, and parameter
values:

ptypeemb = 〈{cx,cy,cz},GP,{d fxy,d fxz,d fzy}, /0〉;
cx = 〈namex,0, typex, /0, /0,{opx},OUTx, /0, /0, /0〉;
cy = 〈namey,1, typey,{ipy}, INy,DMy,VAy, /0, /0, /0〉;
cz = 〈namez,2, typez,{ipz}, INz,DMz,VAz,{opz},
OUTz, /0〉.
This pattern helps, for instance, modeling cycles, a task that is usually not trivial

to non-experts.

Multi-component pattern. The multi-component pattern represents recurrent model
fragments that are generically composed of multiple components. It represents more
complex patterns, such as the one in Figure 1.1, that are not yet captured by the
other pattern types alone. It allows us to obtain a full model fragment, given any of
its sub-elements, typically, a set of components or connectors:

ptypemul = 〈C,GP,DF,RES〉;
C = {ci|ci.id = i; i = 0,1,2, ...}.
Besides providing significant modeling support, this pattern helps understanding

domain knowledge and best practices as well as keeping agreed-upon modeling
conventions.

This list of pattern types is extensible, and what actually matters is the way we
specify and process them. However, this set of pattern types, at the same time, lever-
ages on the interactive modeling paradigm of the mashup tools (the patterns repre-
sent modeling actions that could also be performed by the developer) and provides
as much information as possible (we do not only tell simple associations of con-
structs, but also show how these are used together in terms of connectors, parameter
values, and data mappings).

Given a set of pattern types, an actual pattern can therefore be seen as an instance
of any of these types. We model a composition pattern as cp = instanceO f (ptype),
ptype ∈ PT , where cp = 〈type,src,C,GP,DF,RES,usage,date〉, type ∈ {“Par”,
“Con”,“Coo”,“Com”,“Emb”,“Mul”}, src ∈ {“Pipes”,“Wires”,“myCockail”, ...}
specifies the target platform of the pattern, C,GP,DF,RES,src are as defined for
the pattern’s ptype, usage counts how many times the pattern has been used (e.g.,
to compute rankings), and date is the creation date of the pattern.

1 Assisted Mashup Development 9

Interactive modeling environment in client browser

Recom-
menda-
tions R

HTML rendering window

Modeling canvas

R
ec

om
en

da
tio

n
pa

ne
l

C
om

po
ne

nt
 to

ol
 b

ar

Partial mashup model

Recommendation server

Pattern
miner

Model
adapter

(native to canonical)

Native models

<mashup>
...
</mashup>

Canonical models

<mashup>
...
</mashup>

Persistent KB

Data

Meta
data

Model
adapter

(canonical to native)

Canonical patterns

<mashup>
...
</mashup>

Recommendation
engine

KB access API

Object-action-
recommend. mapping

Similarity
metrics

Ranking
algos

Partial
mashup
model pm

Query q

Patterns {cpi}

Pattern weaver
KB access API

Pa
tte

rn
 c
p

D
et

ai
ls

Event bus

Selection
<cp,intent>

Instruction
instr

Modeling action
<object,action>

Modeling action
<object,action>

Instruction
instr

Selection
<cp,intent> C

om
po

si
tio

n
pa

tte
rn

 K
B

Pa
tte

rn
 u

sa
ge

 s
ta

tis
tic

s

KB loader

KB access API

query Patterns
{cpi}

Patterns {cpi}

Fig. 1.2 Functional architecture of the composition knowledge discovery and recommendation
approach

1.3.2 Architecture

Figure 1.2 details the internals of our knowledge discovery and recommendation
prototype. We distinguish between client and server side, where the discovery logic
is located in the server and the recommendation and weaving logic resides in the
client. In the recommendation server, a model adapter imports the native mashup
models into the canonical format. The pattern miner then extracts reusable com-
position knowledge in the form of composition patterns, which is then handed to a
second model adapter to convert the canonical patterns into native patterns and load
them into a knowledge base (KB). This KB is structured to maximize the perfor-
mance of pattern retrieval at runtime.

In the client, we have the interactive modeling environment, in which the de-
veloper can visually compose components (in the modeling canvas) taken from the
component tool bar. It is here where patterns are queried for and delivered in re-
sponse to modeling actions performed by the modeler in the modeling canvas. In vi-
sual modeling environments, we typically have action ∈ {“select”,“drag”,“drop”,
“connect”, “delete”,“ f ill”,“map”, ...}, where the action is performed on a mod-
eling construct in the canvas; we call this construct the ob ject of the action. For
instance, we can drop a component onto the canvas, or we can select a parameter to
fill it with a value, we can connect a data flow with a target component, or we can
select a set of components and connectors. Upon each interaction, the action and its
ob ject are published on a browser-internal event bus, which forwards them to the
recommendation engine. Given a modeling action, the ob ject it has been applied
to, and the partial mashup model pm, the engine queries the client-side pattern KB
via the KB access API for recommendations (pattern representations). An object-

10 C. Rodrı́guez, S. Roy Chowdhury, F. Daniel, H. R. Motahari Nezhad, F. Casati

action-recommendation mapping (OAR) tells the engine which types of recommen-
dations are to be retrieved for each modeling action on a given object (for example,
when selecting an input field, only recommending possible values makes sense).
The client-side KB is filled at startup by the KB loader, which loads the available
patterns into the client environment, decoupling the knowledge recommender from
the server side.

The list of patterns retrieved from the KB (either via regular queries or by apply-
ing dedicated similarity criteria) are then ranked by the engine and rendered in the
recommendation panel, which renders the recommendations to the developer for
inspection. Selecting a recommendation enacts the pattern weaver, which queries
the KB for the usage details of the pattern (data mappings and value assignments)
and generates a set of modeling instructions that emulate user interactions inside the
modeling canvas and thereby weave the pattern into the partial mashup model.

1.4 Discovering Patterns

The first step in the information flow described in the above architecture is the dis-
covery of mashup patterns from canonical mashup models. To this end, we look into
the details of each individual pattern and implement dedicated mining algorithms for
each of them, which allow us to fine-tune each mashup-specific characteristic (e.g.,
to treat threshold values for parameter value assignments and data mappings dif-
ferently). The pattern mining algorithms make use of standard statistics as well as
frequent itemset and subgraph mining algorithms [13].

1.4.1 Mining algorithms

For each of the pattern types identified in Section 1.3.1, we have implemented a re-
spective pattern mining algorithm, the details of which we provide in the following.

Parameter value pattern. In the case of the parameter value pattern, we are inter-
ested in finding suitable values for the input fields in a given component. Most of
the components in mashup compositions contain more than one parameter and more
often than not the values of these parameters are related to one another and there-
fore we need take into account the co-occurrence of parameter values. In order to
discover such co-occurrences, we map this problem to the well-known problem of
itemset mining [13]. Algorithm 1 outlines the approach for finding parameter value
patterns. Here, we first get all component instances from the mashups in the mashup
repository (line 2) and group them together by their type (line 5-6) and then perform
the parameter value pattern mining by component type (line 7). Finally, we construct
the actual set of patterns that consists in tuples 〈ct,VA〉, where ct represents a com-
ponent type and VA represents the value assignment for its parameters.

1 Assisted Mashup Development 11

Algorithm 1: mineParameterValues
Data: repository of mashup compositions M and minimun support (minsupppar) for the frequent itemset mining
Result: set of parameter value patterns 〈ct,VA〉.

1 Patterns = set();
2 C = set of component instances in M;
3 CT = array();
4 Patterns = set();
5 foreach type of component ct in C do
6 CT [ct] = cx.VA with cx ∈C such that cx.type = ct ; // get all the parameter value

assignments of component instances of type ct
7 FI = mineFrequentItemsets(CT [ct],minsupppar);
8 foreach VA ∈ FI do
9 Patterns = Patterns∪{〈ct,VA〉};

10 return Patterns;

Connector pattern. A connector pattern is composed of two components, the source
component cx and the target component cy, their data flow connector d fxy, and the
data mapping DMy of the target component. Given a repository of mashup models
M = {mi} and the minimum support levels for the data flow connectors and data
mappings, the pseudo-code in Algorithm 2 shows how we mine connector patterns.

We start the mining task by getting the list of all recurrent connectors in M (line
1). The respective function getRecurrentConnectors is explained in Algorithm 3; in
essence, it computes a recurrence distribution for all connectors and returns only
those that exceed the threshold minsuppd f . The function returns a set of connector
types without repetitions and without information about the instances that generated
them. Given this set, we construct a database of concrete instances of each connector
type (using the getConnectorInstances function in line 5 and described in Algorithm
4) and, for each connector type, derive a database of the data mappings for the con-
nectors’ target component cy (lines 7-9). We feed the so constructed database into
a standard mineFrequentItemsets function [13], in order to obtain a set of recurrent
data mappings for each connector type. Finally, for each identified data mapping
DMy, we construct a tuple 〈d fxy,DMy〉 (lines 11-12), which concisely represents the
connector pattern structure introduced in Section 1.3.1; the rest of the pattern comes
from the component definitions.

Connector co-occurrence pattern. The connector pattern introduced previously
is about how pairs of components are connected together. The connector co-
occurrence pattern goes a step further: it tells how connectors between different
pairs of components co-occur together in compositions and how data mappings
are defined for them. Algorithm 5 presents the logic for computing connector co-
occurrence patterns. The main difference with respect to Algorithm 2 is that, in-
stead of computing the frequency of individual dataflow connectors between pairs
of components, we compute frequent itemsets of dataflow connectors (lines 2-4).

Component co-occurrence pattern. The component co-occurrence pattern is an ex-
tension of the connector pattern; in addition to the connectors and data mappings,
it also contains the parameter value assignments of the two components involved in
the connector. As shown in Algorithm 6, the respective mining logic is similar to

12 C. Rodrı́guez, S. Roy Chowdhury, F. Daniel, H. R. Motahari Nezhad, F. Casati

Algorithm 2: mineConnectors
Data: repository of mashup models M, minimum support of data flow connectors (minsuppd f) and data

mappings (minsuppdm)
Result: set of connectors with their corresponding data mappings {〈d fxy,i,DMy,i〉}

1 Fd f = getRecurrentConnectors(M,minsuppd f);

2 DB = array(); // database of recurrent connector instances
3 Patterns = set(); // set of connector patterns

4 foreach d fxy ∈ Fd f do
5 DB[d fxy] = getConnectorInstances(M,d fxy);

// create database for frequent itemset mining
6 DBDMy = array():
7 foreach d f ixy ∈ DB[d fxy] do
8 cy = target component of d f ixy;
9 append(DBDMy, cy.DM);

10 FIdy = mineFrequentItemsets(DBDMy, minsuppdm);

// construct the connector patterns
11 foreach DMy ∈ FIdy do
12 Patterns = Patterns∪{〈d fxy,DMy〉};

13 return Patterns;

Algorithm 3: getRecurrentConnectors
Data: repository of mashup models M, minimum support of data flow connectors (minsuppd f)
Result: set of recurrent connectors Fd f

1 DBd f = array(); // database of data flow connector instances
2 foreach mi ∈M do
3 append(DBd f ,mi.DF) ; // fill with instances

4 Fd f = set(); // set of recurrent data flow connectors
5 foreach d fxy ∈ DBd f do
6 if computeSupport(d fxy,DBd f) ≥ minsuppd f then
7 Fd f = Fd f ∪{d fxy};

8 return Fd f ;

Algorithm 4: getConnectorInstances
Data: repository of mashup models M, reference connector d fxy
Result: array of connector instances DBxy

1 DBxy = array(); // database of data flow connector instances

2 foreach mi ∈M do
3 append(DBxy],mi.DF ∩{d fxy}) ; // fill with instances of the reference

connector type

4 return DBxy;

the one of the connector pattern, with two major differences: in lines 6-17 we also
mine the recurrent parameter value assignments of cx and cy, and in lines 18-21 we
consider only those combinations of VAx, VAy and DMy that co-occur in mashup
instances for the given connector. Notice that, for the purpose of explaining this al-
gorithm, we perform a cartesian product of VAx,, VAy and DMy in line 22. Doing this
can be computational expensive if implemented as-is. In practice, the implementa-
tion of this algorithm is performed in such a way that we do not have to explore

1 Assisted Mashup Development 13

Algorithm 5: mineConnectorCooccurrences
Data: repository of mashup compositions M, minimun support for dataflow connectors (minsuppd f) and data

mappings (minsuppdm)
Result: list of connector patterns with their corresponding data mappings 〈DFxy,DMy〉
// find the co-occurrence of dataflow connectors

1 DBd f = array();
2 foreach mi ∈M do
3 append(DBd f , mi.DF);

4 Fd f = mineFrequentItemsets(DBd f ,minsuppd f);

5 DBci = array();
6 foreach mi ∈M do
7 foreach DFxy ∈ Fd f do
8 if DFxy ∩mi.DF = DFxy then
9 foreach d f ixy ∈ DFxy do

10 append(DBci[DFxy], getConnectorInstances({mi},d f ixy);

// find data mappings for the frequent dataflow connectors obtained above
11 DBDMy = array();
12 foreach DFxy ∈ DBci do
13 foreach d f ixy ∈ DFxy do
14 cy = target component of d f ixy;
15 append(DBDMy, cy.DM);

16 FIdy = mineFrequentItemsets(DBDMy, minsuppdm);

// construct the connector patterns
17 Patterns = set();
18 foreach DMy ∈ FIdy do
19 Patterns = Patterns∪{〈DFxy,DMy〉};
20 return Patterns;

the whole search space. This comment also applies to the rest of the algorithms
presented in this section.

Component embedding pattern. Mashup composition tools typically allow for the
embedding of components inside other components. However, not all components
present this capability. A common example is the loop component: it takes as input
a set of data items and then loops over them executing the operations provided
by the embedded component (e.g., a filter component). Embedding one component
into another is not a trivial task, as there may be complex dataflow connectors and
data mappings between the outer and inner component as well as between the last
two and the component that proceeds the outer component in the composition flow.
Algorithm 7 shows the logic for mining component embedding patterns. First, we
get the instances of component embeddings from the mashup repository and then
we keep only those that have a support greater or equal to minsuppem (lines 2-10).
Using these frequent embeddings, we look for frequent dataflows that involve these
embeddings (lines 11 to 17). For these patterns, we are also interested in finding
data mapping and parameter value patterns and thus we proceed as in the previous
algorithms to mine them (lines 18-31). In the last part of the algorithm (lines 32-37),
we proceed with building the actual patterns with tuples 〈{cx,cy,cz},DF,DM,VA〉
that include information about the components involved in the pattern as well as the
dataflow connectors, data mappings and parameter value assignments.

14 C. Rodrı́guez, S. Roy Chowdhury, F. Daniel, H. R. Motahari Nezhad, F. Casati

Algorithm 6: mineComponentCooccurrences
Data: repository of mashup models M, minimum support of data flow connectors (minsuppd f), data mappings

(minsuppdm), parameter value assignments (minsuppva) and pattern co-occurrence (minsupppc).
Result: set of component co-occurrence patterns with their corresponding dataflow connectors, data mappings

and parameter values {〈d fxy,i,VAx,i,VAy,i,DMy,i〉}
1 Fd f = getRecurrentConnectors(M,minsuppd f);

2 DB = array(); // database of recurrent connector instances
3 Patterns = set(); // set of component co-occurrence patterns

4 foreach d fxy ∈ Fd f do
5 DB[d fxy] = getConnectorInstances(M,d fxy);

// create databases for frequent itemset mining
6 DBVAx = array();
7 DBVAy = array();
8 DBDMy = array();
9 foreach d f ixy in DB[d fxy] do

10 cx = source component of d f ixy;
11 cy = target component of d f ixy;
12 append(DBVAx, cx.VA);
13 append(DBVAy, cy.VA);
14 append(DBDMy, cy.DM);

15 FIvx = mineFrequentItemsets(DBVAx, minsupppar);
16 FIvy = mineFrequentItemsets(DBVAy, minsupppar);
17 FIdy = mineFrequentItemsets(DBDMy, minsuppdm);

// keep only those combinations of value assignments and data mappings
that occur together in mashup instances

18 Coo = set();
19 foreach 〈VAx,VAy,DMy〉 ∈ FIvx×FIvy×FIdy do
20 if computeSupport(〈VAx,VAy,DMy〉,DB[d fxy])≥ minsupppc then
21 Coo = Coo∪{〈VAx,VAy,DMy〉};

// construct the component co-occurrence patterns
22 foreach 〈VAx,VAy,DMy〉 ∈Coo do
23 Patterns = Patterns∪{〈d fxy,VAx,VAy,DMy〉};

24 return Patterns;

Multi-component pattern. The multi-component pattern represents recurrent model
fragments that are composed of multiple components. It represents more complex
patterns, which are not yet captured by the other pattern types alone. This pattern
helps understanding domain knowledge and best practices as well as keeping model-
ing conventions. Multi-component patterns consists in a combination of the patterns
we have introduced before. Algorithm 8 provides the details of the mining algo-
rithm. We start by obtaining the graph representation of the mashups in the repos-
itory and mining frequent sub-graphs out of them (lines 2-5). For the sub-graph
mining we can choose among the state of the art sub-graph mining algorithms [13].
Then, we get from the mashup repository the list of mashup fragments that match
the frequent sub-graphs mined in the previous step (lines 6-11). We do this, so that
next we can mine both the parameter value and data mapping patterns using again
standard itemset mining algorithms (lines 13-21). Finally, we build the actual multi-
component patterns by going through the mashup repository and keeping only those
combinations of patterns that co-occur in the mashup instances (lines 22-25).

1 Assisted Mashup Development 15

Algorithm 7: mineComponentEmbeddings
Data: repository of mashup compositions M, minimum supports for component embeddings (minsuppem), data

flows (minsuppd f), data mappings (minsuppdm), parameter value (minsupppar) and pattern co-occurrence
(minsupppc)

Result: list of component embedding patterns with their corresponding components, dataflow connectors, data
mappings and parameter value assignments 〈{cx,cy,cz},DF,DM,VA〉

// get the list of component embeddings
1 DBem = array();
2 foreach mi ∈M do
3 foreach 〈cx,cy,cz〉 ∈ mi.C×mi.C do
4 if (cx preceeds cy) and (cy embeds cz) then
5 emxyz = 〈cx,cy,cz〉;
6 append(DBem,emxyz);

// find the frequent component embeddings
7 Fem = set();
8 foreach emxyz ∈ DBem do
9 if computeSupport(emxyz,DBem)≥ minsuppem then

10 append(Fem,emxyz);

// get dataflows involving the frequent component embeddings
11 DBd f = array();
12 Fd f = array();
13 foreach mi ∈M do
14 foreach emxyz ∈ Fem do
15 if emxyz ∈ mi then
16 append(DBd f [emxyz],〈mi.d fxy,mi.d fxz,mi.d fyz〉);

17 Fd f = mineFrequentItemsets(DBd f ,minsuppd f);

// get parameter value and data mapping instances and compute the
corresponding frequent itemsets

18 DBva = array(); DBdm = array();
19 foreach mi ∈M do
20 foreach 〈d fxy,d fxz,d fyz〉 ∈ Fd f do
21 if 〈d fxy,d fxz,d fyz〉 ∈ mi then
22 cx = component instance cx ∈ mi corresponding to d fxy;
23 cy = component instance cy ∈ mi corresponding to d fxy;
24 cz = component instance cz ∈ mi corresponding to d fyz;
25 VAx = cx.VA; DMx = cx.DM;
26 VAy = cy.VA; DMy = cy.DM;
27 VAz = cz.VA; DMz = cz.DM;
28 append(DBva,VAx ∪VAy ∪VAz);
29 append(DBdm,DMx ∪DMy ∪DMz);

30 Fva = mineFrequentItemsets(DBva,minsupppar);
31 Fdm = mineFrequentItemsets(DBdm,minsuppdm);

// construct the component embedding pattern
32 Patterns = set();
33 foreach 〈EM,DF,DM,VA〉 ∈ Fem×Fd f ×Fdm×Fva do
34 if computeSupport(〈EM,DF,DM,VA〉,M)≥ minsupppc then
35 cx,cy,cz = components corresponding to the dataflows d f ∈ DF ;
36 Patterns = Patterns∪{〈{cx,cy,cz},DF,DM,VA〉};

37 return Patterns;

1.5 Recommending Patterns

Recommending patterns is non-trivial, in that the size of the knowledge base may
be large, and the search for composition patterns may be complex; yet, recommen-

16 C. Rodrı́guez, S. Roy Chowdhury, F. Daniel, H. R. Motahari Nezhad, F. Casati

Algorithm 8: mineMulticomponentPatterns
Data: repository of mashup compositions M and minimun support for multi-components (minsuppmc),

parameter value (minsupppar) and data mapping (minsuppdm) patterns.
Result: set of multi-component patterns 〈m f .C,m f .DF,VA,DM〉.

1 DBg = array() ; // database of graph representations of mashups
2 foreach mi ∈M do

// get a graph representation of mashup mi where the nodes represent
components and arcs represent dataflows; here, the arcs are labeled
with the output and input ports involved in the dataflow

3 gi = getGraphRepresentation(mi);
4 append(DBg,gi);

5 FG = mineFrequentSubraphs(DBg,minsuppmc);
6 DBmc = array();
7 foreach mi ∈M do
8 foreach f gi ∈ FG do
9 if getGraphRepresentation(mi) contains f gi then

// get the fragment m f from mashup instance mi that matches f gi;
notice that m f is represented as a canonical mashup model

10 m f = getSubgraphInstance(mi, f gi);
11 append(DBmc[f gi],m f)

12 Patterns = set();
13 foreach MC ∈ DBmc do

// get parameter values and data mappings and compute the corresponding
frequent itemsets

14 DBVA = array();
15 DBDM = array();
16 foreach m f ∈MC do
17 foreach cx ∈ m f .C do
18 append(DBVA,cx.VA);
19 append(DBDM,cx.DM);

20 FIva = mineFrequentItemsets(DBVA,minsupppar);
21 FIdm = mineFrequentItemsets(DBDM,minsuppdm);

// construct the multi-component pattern
22 foreach 〈VA,DM〉 ∈ FIva×FIdm do
23 foreach m f ∈MC do
24 if 〈VA,DM〉 ∈ m f then
25 Patterns = Patterns∪{〈m f .C,m f .DF,VA,DM〉} ; // using m f, build the

patterns with its components (m f .C), dataflows (m f .DF),
value assignments (m f .VA) and data mappings (m f .DM)

26 return Patterns;

dations are to be delivered at high speed, without slowing down the modeler’s com-
position pace. Recommending patterns is platform-specific. The following explana-
tions therefore refer to the specific case of Pipes-like mashup models. In [10], we
show all the details of our approach; in the following we summarize its key aspects.

1.5.1 Pattern Knowledge Base

The core of the interactive recommender is the pattern KB. In order to enable the
incremental and fast recommendation of patterns, we decompose them into their

1 Assisted Mashup Development 17

constituent parts and focus only on those aspects that are necessary to convey the
meaning of a pattern. That is, we leverage on the observation that, in order to convey
the structure of a pattern, already its components and connectors enable the devel-
oper to choose in an informed fashion. Data mappings and value assignments, unless
explicitly requested by the developer, are then delivered only during the weaving
phase upon the selection of a specific pattern by the developer.

This strategy leads us to the KB illustrated in Figure 1.3, whose structure en-
ables the retrieval of each of the patterns introduced in Section 1.3.1 with a one-
shot query over a single table. For instance, let’s focus on the component co-
occurrence pattern: to retrieve its representation, it is enough to query the Compo-
nentCooccur entity for the SourceComponent and the TargetComponent attributes.
The query is assembled automatically upon interactions in the modeling canvas and
is of the form q = 〈ob ject,action, pm〉. Only weaving the pattern into the mashup
model requires querying ComponentCooccur ./ Connectors ./ DataMapping and
ComponentCooccur ./ ParameterValues.

1..N

DataMapping
ID
SourceAttribute
TargetParameter
Usage
Date

Connectors
ID
SourceComponent
TargetComponent
Usage
Date

0..1

ParameterValues
ID
Component
Parameter
Value
Usage
Date

MultiComponent
ID
C
DF
DF'
Usage
Date

ComponentCooccur
ID
SourceComponent
TargetComponent
Usage
Date

ConnectorCooccur
ID
FirstComponent
SecondComponent
ThirdComponent
Usage
Date

Embedding
ID
SourceComponent
EmbeddingComponent
EmbeddedComponent
Usage
Date

0..1

1..N

0..1

1..N

1..N

1..N
0..1

0..1 1..N 0..1

0..1
1..N

1..N

1..N
0..1
0..1

Fig. 1.3 KB structure optimized for Pipes

1.5.2 Exact and Approximate Pattern Matching

The described KB supports both exact queries for the patterns with pre-defined
structure and approximate matching for multi-component patterns whose structure
is not known a priori. Patterns are queried for or matched against the ob ject of the
query, i.e., the last modeling construct manipulated by the developer. Conceptually,
all recommendations could be retrieved via similarity search, but for performance
reasons we apply it only when strictly necessary.

Algorithm 9 details this strategy and summarizes the logic implemented by the
recommendation engine. In line 3, we retrieve the types of recommendations that

18 C. Rodrı́guez, S. Roy Chowdhury, F. Daniel, H. R. Motahari Nezhad, F. Casati

Algorithm 9: getRecommendations
Data: query q = 〈ob ject,action, pm〉, knowledge base KB, object-action-recommendation mapping OAR,

component similarity matrix CompSim, similarity threshold Tsim, ranking threshold Trank , number n of
recommendations per recommendation type

Result: recommendations R = [〈cpi,ranki〉]
1 R = array();
2 Patterns = set();
3 recTypeToBeGiven = getRecTypes(ob ject,action,OAR);
4 foreach recType ∈ recTypeToBeGiven do
5 if recType 6= “Mul” then
6 Patterns = Patterns∪ queryPatterns(ob ject,KB,recType) ; // exact query
7 else
8 Patterns = Patterns∪ getSimilarPatterns(ob ject,

KB,CompSim,Tsim) ; // similarity search

9 foreach pat ∈ Patterns do
10 if rank(pat.cp, pat.sim, pm)≥ Trank then
11 append(R,〈pat.cp,rank(pat.cp, pat.sim, pm)〉) ; // rank, threshold, remember

12 orderByRank(R);
13 groupByType(R);
14 truncateByGroup(R,n);
15 return R;

can be given (getSuitableRecTypes function), given an ob ject-action combination.
Then, for each recommendation type, we either query for patterns (the queryPat-
terns function can be seen like a traditional SQL query) or we do a similarity search
(getSimilarPatterns function). For each retrieved pattern, we compute a rank, e.g.,
based on the pattern description (e.g., containing usage and date), the computed
similarity, and the usefulness of the pattern inside the partial mashup, order and
group the recommendations by type, and filter out the best n patterns for each rec-
ommendation type.

As for the retrieval of similar patterns, we give preference to exact matches
of components and connectors in ob ject and allow candidate patterns to differ for
the insertion, deletion, or substitution of at most one component in a given path in
ob ject. Among the non-matching components, we give preference to functionally
similar components (e.g., it may be reasonable to allow a Yahoo! Map instead of
a Google Map); we track this similarity in a dedicated CompSim matrix. For the
detailed explanation of the approximate matching logic we refer the reader to [10].

1.6 Weaving Patterns

Weaving a given composition pattern cp into a partial mashup model pm is not
straightforward and requires a thorough analysis of both cp and pm, in order to
understand how to connect the pattern to the constructs already present in pm. In
essence, weaving a pattern means emulating developer interactions inside the mod-
eling canvas, so as to connect a pattern to the partial mashup. The problem is not
as simple as just copying and pasting the pattern, in that new identifiers of all con-

1 Assisted Mashup Development 19

structs of cp need to be generated, connectors must be rewritten based on the new
identifiers, and connections with existing constructs may be required.

We approach the problem of pattern weaving by first defining a basic weaving
strategy that is independent of pm and then deriving a contextual weaving strategy
that instead takes into account the structure of pm.

1.6.1 Basic Weaving Strategy

Given an ob ject and a pattern cp of a recommendation, the basic weaving strat-
egy BS provides the sequence of mashup operations that are necessary to weave cp
into the ob ject. The basic weaving strategy does not use pm; it tells how to expand
ob ject into cp (ob ject being a part of cp). This basic strategy is static for each
pattern type and it consists a set of mashup operations that resemble the opera-
tions a developer can typically perform manually in the modeling canvas. Typical
examples of mashup operations are addComponent that corresponds to adding a
new component to pm, addConnector that corresponds to adding a connector be-
tween two selected components in pm, assignValues that corresponds to assigning
values to configuration parameters of a component, and similar. Mashup operations
are applied on the partial mashup pm and result in an updated pm′. All operations
assume that the pm is globally accessible. The internal logic of these operations
are highly platform-specific, in that they need to operate inside the target modeling
environment.

For instance, the basic weaving strategy for a component co-occurrence pat-
tern of type ptypecomp is as follows (we assume ob ject = comp with comp.type =
cx.type, cx being one of the components of the pattern):

1 $newcid5=addComponent(cy.type);
2 addConnector(〈comp.id,cx.op,$newcid,cy.ip〉);
3 assignDataMapping($newcid,cy.DM);
4 assignValues(comp.id,cx.VA);
5 assignValues($newcid,cy.VA);
That is, given a component cx, we add the other component cy (line 1) as men-

tioned in the selected pattern to the pm, connect cx and cy together (line 2) and then
apply the respective data mappings (line 3) and value assignments (line 4 and line
5). Note that, the basic strategy is not yet applied to pm; it represents an array of
basic modeling operations to be further processed before being able to weave the
pattern.

5 We highlight identifier place holders (variables) that can only be resolved when executing the
operation with a “$” prefix.

20 C. Rodrı́guez, S. Roy Chowdhury, F. Daniel, H. R. Motahari Nezhad, F. Casati

Algorithm 10: getWeavingStrategy
Data: partial mashup model pm, composition pattern cp, object ob ject that triggered the recommendation
Result: weaving strategy WS, i.e., a sequence of abstract mashup operations; updated mashup model pm′

1 WS = array();
2 BS = getBasicStrategy(cp,ob ject);
3 foreach instr ∈ BS do
4 CtxInstr = resolveConflict(pm, instr);
5 pm = apply(pm,CtxInstr);
6 append(WS,CtxInstr);

7 return 〈WS, pm〉;

1.6.2 Contextual Weaving Strategy

Given an object ob ject, a pattern cp, and a partial mashup pm, the contextual weav-
ing strategy WS is derived by applying the mashup operations in the basic weaving
strategy to the current partial mashup model and thus by weaving the selected cp
into pm. The WS is dynamically built at runtime by taking into consideration the
structure of the partial mashup (the context).

Applying the mashup operations in the basic weaving strategy may require the
resolution of possible conflicts among the constructs of pm and those of cp. For
instance, if we want to add a new component of type ctype to pm but pm already
contains an instance of type ctype, say comp, we are in the presence of a conflict:
either we decide that we reuse comp, which is already there, or we decide to create a
new instance of ctype. In the former case, we say we apply a soft conflict resolution
policy, in the latter case a hard policy:

Soft: substitute(“$var=addComponent(ctype)”) with “$var = comp.id”
Hard: substitute(“$var=addComponent(ctype)”) with “$var=addComponent(ctype)”
Formally, the conflict resolution policy corresponds to a function resolveCon-

flict(pm, instr) → CtxInstr, where instr is the mashup operation to be applied to
pm and CtxInstr is the set of instructions that replace instr. Only in the case of a
conflict, instr is replaced; otherwise the function returns instr again.

In Algorithm 10 we describe the logic of our pattern weaver. First, it derives a
basic strategy BS for the given composition pattern cp and the ob ject from pm (line
2). Then, for each of the mashup operations instr in the basic strategy, it checks
for possible conflicts with the current modeling context pm (line 4). In case of a
conflict, the function resolveConflict(pm, instr) derives the corresponding contex-
tual weaving instructions CtxInstr replacing the conflicting, basic operation instr.
CtxInstr is then applied to the current pm to compute the updated mashup model
pm′ (line 5), which is then used as basis for weaving the next instr of BS. The
contextual weaving structure WS is constructed as concatenation of all conflict-free
instructions CtxInstr.

Note that Algorithm 10 returns both the list of contextual weaving instructions
WS and the final updated mashup model pm′. The former can be used to interactively
weave cp into pm, the latter to convert pm′ into native formats.

1 Assisted Mashup Development 21

1.7 Implementation and Evaluation

We have implemented our prototype system, Baya [11], as Mozilla Firefox (http:
//mozilla.com/firefox) extension for Yahoo! Pipes to demonstrate the vi-
ability of our interactive recommendation approach. The design goals behind Baya
can be summarized as follows: We didn’t want to develop yet another mashup envi-
ronment; so we opted for an extension of existing and working solutions (so far, we
focused on Yahoo! Pipes; other tools will follow). Modelers should not be required
to ask for help; we therefore pro-actively and interactively recommend contextual
composition patterns. We did not want the reuse to be limited to simple copy/paste
of patterns, but knowledge should be actionable, and therefore, Baya automatically
weaves patterns.

In Baya we have implemented the model adapters (see Figure 1.2) in Java (1.6),
which are able to convert Yahoo! Pipes’s JSON representation into our canoni-
cal mashup model and back. All the mining algorithms are also implemented in
Java. For the frequent itemset mining we used the tool Carpenter (http://www.
borgelt.net/carpenter.html), while for graph mining we used the tool
MoSS (http://www.borgelt.net/moss.html). The resulting patterns are
expressed in terms of canonical mashup models, which are then converted to native
models (in this case, Yahoo! Pipes JSON representations) by our canonical-to-native
model adapter and loaded into the pattern KB.

For testing our mining algorithms, we used a dataset of 970 pipes definitions from
Yahoo! Pipes that were retrieved using YQL Console (http://developer.
yahoo.com/yql/console/). We selected pipes from the list of “most pop-
ular” pipes, as popular pipes are more likely to be functioning and useful. The aver-
age numbers of components, connectors and input parameters are 11.1, 11.0 and 4.1,
respectively, which is an indication that we are dealing with fairly complex pipes.

The results obtained from running our algorithms on the selected dataset show
that we are able to discover recurrent practices for building mashups. Table 1.1 re-
ports on the list of pattern types and their Upper Threshold for minsupp (UTm). The
UTm tells us what is the upper threshold for the minsupp values at which we start
finding patterns of a given type and for a given dataset. In the cases where we use
more than one type of minsupp (such as in the component co-occurrence pattern
where we use minsuppd f , minsuppdm and minsupppar), the minsupp we consider
is the one corresponding to the pattern that is first computed in the algorithm. For
our dataset, in Table 1.1 we can see that we are always able to find parameter value
patterns for some component types. For example, this is the case of Yahoo! Pipes’
component YQL that has the parameter raw with a default value Results only that is
always kept as-is by the users. From the table we can also notice that the connector
and component co-occurrence patterns have the same UTm value. This is because
in both cases their corresponding algorithms compute first the frequent dataflow
connectors and thus the reference minimum support for the UTm is minsuppd f . Fi-
nally, for the Multi-component pattern we have a UTm of 0.021, a relatively low
value, when we consider patterns with at least 4 components. However, considering
that here we are talking about complex patterns with at least 4 components that,

22 C. Rodrı́guez, S. Roy Chowdhury, F. Daniel, H. R. Motahari Nezhad, F. Casati

furthermore, include dataflow connectors, data mappings and parameter value as-
signments, we can say that, even with a relatively low support value, these patterns
still captures recurrent modeling practices for fairly complex settings.

Pattern type UTm
Parameter value pattern 1
Connector pattern 0.257
Connector co-occurrence pattern 0.072
Component co-occurrence pattern 0.257
Component embedding pattern 0.124
Multi-component pattern 0.021

Table 1.1 Summary of pattern types with their corresponding UTm.

The discovered patterns are transformed and stored in a knowledge base that is
optimized for fast pattern retrieval at runtime. The implementation of the persistent
pattern KB at server side, is based on MySQL (http://www.mysql.com/).
Via a dedicated Java RESTful API, at startup of the recommendation panel the KB
loader synchronizes the server-side KB with the client-side KB, which instead is
based on SQLite (http://www.sqlite.org). The pattern matching and re-
trieval algorithms are implemented in JavaScript and triggered by events generated
by the event listeners monitoring the DOM changes related to the mashup model.

The weaving algorithms are also implemented in JavaScript. Upon the selection
of a recommendation from the panel, they derive the contextual weaving strategy
that is necessary to weave the respective pattern into the partial mashup model. Each
of the instructions in the weaving strategy refers to a modeling action, where mod-
eling actions are implemented as JavaScript manipulations of the mashup model’s
JSON represenation. Both the weaving strategies (basic and contextual) are encoded
as JSON arrays, which enables us to use the native eval() command for fast and
easy parsing of the weaving logic.

Figure 1.4 illustrates the performance of the interactive recommendation algo-
rithm of Baya as described in Algorithm 9 in response to the user placing a new
component into the canvas, a typical modeling situation. Based on the object-action-
recommendation mapping, the algorithm retrieves parameter value, connector, com-
ponent co-occurrence, and multi-component patterns. As expected, the response
times of the simple queries can be neglected compared to the one of the similarity
search for multi-component patterns, which basically dominates the whole recom-
mendation performance. During the performance evaluation for Baya, we have also
observed that the time required for weaving a pattern is negligible with respect to
the total time required for the pattern recommendation and weaving.

1.8 Related work

Traditionally, recommender systems focus on the retrieval of information of likely
interest to a given user, e.g., newspaper articles or books. The likelihood of interest

1 Assisted Mashup Development 23

0"
100"
200"
300"
400"
500"
600"
700"

10" 100" 1000"
Re

tr
ie
va
l)*

m
e)
[m

s]
)

Number)of)complex)pa7erns)in)KB)

(a))Similarity)search)*mes)for)varying)KB)and)
object)sizes)

|obj.C|=1"

|obj.C|=2"

|obj.C|=3"

|obj.C|=4"

|obj.C|=5"

|obj.C|=6"

|obj.C|=7"

Average"

500"
520"
540"
560"
580"
600"
620"
640"
660"

0" 1" 2" 3" 4" 5" 6" 7" 8"

Re
tr
ie
va
l)*

m
e)
[m

s]
)

Number)of)components)in)object'

(b))Retrieval)*mes)of)complex)pa7erns)for)varying)
object)sizes)for)1000)complex)pa7erns)in)KB)

0"
100"
200"
300"
400"
500"
600"
700"

10" 100" 1000"

Re
tr
ie
va
l)*

m
e)
[m

s]
)

Number)of)mul*Fcomponent)pa7erns)in)KB)

(c))Total)recommenda*on)*mes)in)case)the)modeler)adds)a)
new)component)to)the)mashup)

Connector"

Par"value"

Component"Co@occurrence"

MulB@component"

Total"

Fig. 1.4 Recommendation types and times in response to a new component added to the canvas

is typically computed based on a user profile containing the user’s areas of interest,
and retrieved results may be further refined with collaborative filtering techniques.
In our work, as for now we focus less on the user and more on the partial mashup
under development (we will take user preferences into account in a later stage), that
is, recommendations must match the partial mashup model and the object the user
is focusing on, not his interests. The approach is related to the one followed by
research on automatic service selection, e.g., in the context of QoS- or reputation-
aware service selection, or adaptive or self-healing service compositions. Yet, while
these techniques typically approach the problem of selecting a concrete service for
an abstract activity at runtime, we aim at interactively assisting developers at design
time with domain knowledge in the form of modeling patterns.

In the context of web mashups, Carlson et al. [2], for instance, react to a user’s
selection of a component with a recommendation for the next component to be
used; the approach is based on semantic annotations of component descriptors and
makes use of WordNet for disambiguation. Greenshpan et al. [6] propose an auto-
completion approach that recommends components and connectors (so-called glue
patterns) in response to the user providing a set of desired components; the ap-
proach computes top-k recommendations out of a graph-structured knowledge base
containing components and glue patterns (the nodes) and their relationships (the
arcs). While in this approach the actual structure (the graph) of the knowledge base
is hidden to the user, Chen et al. [3] allow the user to mashup components by nav-
igating a graph of components and connectors; the graph is generated in response
to the user’s query in form of descriptive keywords. Riabov et al. [9] also follow a
keyword-based approach to express user goals, which they use to feed an automated
planner that derives candidate mashups; according to the authors, obtaining a plan
may require several seconds. Elmeleegy et al. [5] propose MashupAdvisor, a system
that, starting from a component placed by the user, recommends a set of related com-
ponents (based on conditional co-occurrence probabilities and semantic matching);
upon selection of a component, MashupAdvisor uses automatic planning to derive
how to connect the selected component with the partial mashup, a process that may
also take more than one minute. Beauche and Poizat [1] use automatic planning in
service composition. The planner generates a candidate composition starting from
a user task and a set of user-specified services.

24 C. Rodrı́guez, S. Roy Chowdhury, F. Daniel, H. R. Motahari Nezhad, F. Casati

The business process management (BPM) community more strongly focuses on
patterns as a means of knowledge reuse. For instance, Smirnov et al. [12] provide
so-called co-occurrence action patterns in response to action/task specifications by
the user; recommendations are provided based on label similarity, and also come
with the necessary control flow logic to connect the suggested action. Hornung et
al. [8] provide users with a keyword search facility that allows them to retrieve
process models whose labels are related to the provided keywords; the algorithm
applies the traditional TF-IDF technique from information retrieval to process mod-
els, turning the repository of process models into a keyword vector space. Gschwind
et al. [7] allow users to use the control flow patterns introduced by Van der Aalst et
al. [14], just like other modeling elements. The system does not provide interactive
recommendations and rather focuses on the correct insertion of patterns.

In summary, assisted mashup and service composition approaches either focus
on single components or connectors, or they aim to auto-complete compositions
starting from user goals by using AI Planning techniques. The BPM approaches do
focus on patterns, but most of the times pattern similarity is based on label/text sim-
ilarity, not on structural compatibility. In our work, we consider that if components
have been used together successfully multiple times, very likely their joint use is
both syntactically and semantically meaningful. Hence, there is no need to further
model complex ontologies or composition rules. Another key difference is that we
leverage on the interactive recommendation of composition patterns to assists users
step-by-step based on their actions on the design canvas. We do not only tell users
which patterns may be applied to progress in the mashup composition process, but
we also automatically weave recommended patterns on behalf of the users.

1.9 Conclusions

With this work, we aim to pave the road for assisted development in web-based
composition environments. We represent reusable knowledge as patterns, explain
how to automatically discover patterns from existing mashup models, describe how
to recommend patterns fast, and how to weave them into partial mashup models. We
therefore provide the basic technology for assisted development, demonstrating that
the solutions proposed indeed work in practice.

As for the discovery of patterns, it is important to note that even patterns with
very low support carry valuable information. Of course, they do not represent gen-
erally valid solutions or complex best practices in a given domain, but still they show
how its constructs have been used in the past. This property is a positive side-effect
of the sensible, a-priori design of the pattern structures we are looking for. Without
that, discovered patterns would require much higher support values, so as to provide
evidence that also their pattern structure is meaningful. Our analysis of the patterns
discovered by our algorithms shows that, in order to get the best out them, domain
knowledge inside the mashup models is crucial. Domain-specific mashups, in which
composition elements and constructs have specific domain semantics, are a thread of

1 Assisted Mashup Development 25

research we are already following. As a next step, we will also extend the canonical
model toward more generic mashup languages, e.g., including UI synchronization.

The results of our tests of the pattern recommendation approach even outperform
our own expectations, also for large numbers of patterns. In practice, however, the
number of really meaningful patterns in a given modeling domain will only unlikely
grow beyond several dozens. The described recommending approach will therefore
work well also in the context of other browser-based modeling tools, e.g., business
process or service composition instruments (which are also model-based and of sim-
ilar complexity), while very likely it will perform even better in desktop-based mod-
eling tools like the various Eclipse-based visual editors. Recommendation retrieval
times of fractions of seconds and negligible pattern weaving times will definitely
allow us – and others – to develop more sophisticated, assisted composition envi-
ronments. This is, of course, our goal for the future – next to going back to the users
of our initial study and testing the effectiveness of assisted development in practice.
Acknowledgment. This work was supported by the European Commission (project
OMELETTE, contract 257635).

References

1. S. Beauche and P. Poizat. Automated service composition with adaptive planning. In IC-
SOC’08, pages 530–537. Springer-Verlag, 2008.

2. M. P. Carlson, A. H. Ngu, R. Podorozhny, and L. Zeng. Automatic mash up of composite
applications. In ICSOC’08, pages 317–330. Springer, 2008.

3. H. Chen, B. Lu, Y. Ni, G. Xie, C. Zhou, J. Mi, and Z. Wu. Mashup by surfing a web of data
apis. VLDB’09, 2:1602–1605, August 2009.

4. A. De Angeli, A. Battocchi, S. Roy Chowdhury, C. Rodrı́guez, F. Daniel, and F. Casati. End-
user requirements for wisdom-aware eud. In IS-EUD’11. Springer, 2011.

5. H. Elmeleegy, A. Ivan, R. Akkiraju, and R. Goodwin. Mashup advisor: A recommendation
tool for mashup development. In ICWS’08, pages 337–344. IEEE Computer Society, 2008.

6. O. Greenshpan, T. Milo, and N. Polyzotis. Autocompletion for mashups. VLDB’09, 2:538–
549, August 2009.

7. T. Gschwind, J. Koehler, and J. Wong. Applying patterns during business process modeling.
In BPM’08, pages 4–19. Springer, 2008.

8. T. Hornung, A. Koschmider, and G. Lausen. Recommendation based process modeling sup-
port: Method and user experience. In ER’08, pages 265–278. Springer, 2008.

9. A. V. Riabov, E. Boillet, M. D. Feblowitz, Z. Liu, and A. Ranganathan. Wishful search:
interactive composition of data mashups. In WWW’08, pages 775–784. ACM, 2008.

10. S. Roy Chowdhury, F. Daniel, and F. Casati. Efficient, Interactive Recommendation of Mashup
Composition Knowledge. In ICSOC’11, pages 374–388. Springer, 2011.

11. S. Roy Chowdhury, C. Rodrı́guez, F. Daniel, and F. Casati. Baya: Assisted Mashup Develop-
ment as a Service. In WWW’12, 2012.

12. S. Smirnov, M. Weidlich, J. Mendling, and M. Weske. Action patterns in business process
models. In ICSOC-ServiceWave’09, pages 115–129. Springer-Verlag, 2009.

13. P. Tan, S. M, and K. V. Introduction to Data Mining. Addison-Wesley, 2005.
14. W. M. P. Van Der Aalst, A. H. M. Ter Hofstede, B. Kiepuszewski, and A. P. Barros. Workflow

patterns. Distrib. Parallel Databases, 14:5–51, July 2003.

Appendix I

Complementary Assistance

Mechanisms for End User Mashup

Composition

Soudip Roy Chowdhury, Olexiy Chudnovskyy,Matthias Niederhausen, Stefan Pietschmann, Paul

Sharples, Florian Daniel, and Martin Gaedke. Complementary Assistance Mechanisms for End

User Mashup Composition. WWW 2013 Companion, May 2013.

Complementary Assistance Mechanisms for End User
Mashup Composition

Soudip Roy Chowdhury1, Olexiy Chudnovskyy2,Matthias Niederhausen3,
Stefan Pietschmann3, Paul Sharples4, Florian Daniel1, and Martin Gaedke2

1{rchowdhury,daniel}@disi.unitn.it, 2{olexiy.chudnovskyy,martin.gaedke}@cs.tu-
chemnitz.de,3{matthias.niederhausen,stefan.pietschmann}@t-systems-mms.com,

4p.sharples@bolton.ac.uk

ABSTRACT
End user development becomes an increasingly important
topic in the field of web mashups. Despite several efforts for
simplifying the composition process, the learning curve for
using existing mashup editors remains rather steep. In this
paper, we describe how this barrier can be lowered by means
of an assisted development approach that seamlessly inte-
grates automatic composition and interactive pattern rec-
ommendation techniques into a mashup tool specifically tai-
lored to the needs of end users. We showcase the use of such
an assisted development environment in the context of the
open-source mashup platform Apache Rave. The results of
our user studies demonstrate the benefits of our approach
for end user software development.

Categories and Subject Descriptors
D.1 [Software]: Programming Techniques; D.2.6 [Software]:
Software Engineering—Programming Environments

Keywords
assisted mashup development, automated compostion, in-
teractive pattern recommendation, end user development,
crisis mashup

1. INTRODUCTION
Mashup tools, such as Yahoo! Pipes (http://pipes.yahoo.

com/pipes/) or Apache Rave (http://rave.apache.org/),
offer simple, visual metaphors that aim to enable end users
without programming skills to design own composition log-
ics by re-using existing components/widgets. Despite the
popularity of mashup tools in research, their common claim
for end user suitability is only weakly supported. In prac-
tice, building a mashup remains a challenging task for non-
programmers and even for less-skilled developers. First, they
simply lack knowledge about which components are avail-
able and which to use in the design. Second, they lack the
necessary technical skills to configure components. Third,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

they lack algorithmic thinking and, hence, are not able to
define a consistent composition logic that integrates multiple
components.

In order to aid such users in the design of mashups, re-
search has proposed two distinct approaches: goal-oriented
solutions [4, 6, 9] aim to assist end users by automati-
cally deriving compositions that satisfy user-specified goals;
pattern-based development [3, 5] aims to recommend com-
position patterns in response to modeling actions, e.g., to
auto-complete partial mashup models. Goal-oriented solu-
tions strive for simple interactions with users to elicit the
goal, i. e., intent of a composition without requiring users to
actually model the mashup, while pattern-based approaches
interactively assist them throughout the modeling process.
None of the two individually may thus provide suitably as-
sistance to an user in developing own mashups. Previous
works therefore motivate the joint use of goal-based and
pattern-based approaches for mashup composition [7], yet
the authors don’t provide detailed insight into how to real-
ize such a system in practice.

Our paper presents an example of such hybrid assistance
solution, built on top of Apache Rave, an open-source, widget-
based mashup platform, and combining the simplicity of a
dialog-based automatic composer with step-by-step assis-
tance by an interactive pattern recommender [8]. In this
demo we show how these two techniques complement each
other well in assisting end users. We further show the us-
ability of our system in an end user development scenario
(emergency management). The user studies performed with
our system provide evidence of the effectiveness of the hybrid
system for assisted mashup development.

2. CHALLENGES AND CONTRIBUTIONS
To identify the challenges and requirements for end user

assistance, let us introduce a real-world scenario, which also
provides the context for our demonstration. In August 2002,
a devastating flood caused by heavy rains hit the east of
Germany and several other parts of Europe. Such a crisis
situation demands for IT systems that support information
seekers as well as humanitarian activity coordinators. The
former want to quickly get an overview of the overall situ-
ation to understand the impact of an emergency incidents.
This requires them to aggregate and filter information from
different data sources (e. g., news articles, social streams,
etc.). The latter need tools that help them to coordinate
rescue tasks, calculate risks, and communicate with both
their teams and the local authorities.

These situational requirements underline the necessity of

Widget mashup environment

Widget container

Widget library

Mobile workspace manager

Desktop workspace manager

Widget
browser

Pattern
recommender

Automatic
composition

engine

MDL
workspace
models

reads /
writes

Widget information store

Widget
registry

Domain
ontology

references

WorkspacesWorkspacesWorkspaces

runs
widgets
from

reads widgets defn. from

Third party UIs, widgets,
services, network gateways

describes

a b

Figure 1: Functional architecture of the OMELETTE assisted development approach

a mashup platform that not only supports the quick devel-
opment of such “long tail” applications but can also serves
users with various technical backgrounds. However, espe-
cially in such time-critical situations, end users face several
challenges during composition. First, while the intention of
building a mashup is clear to end users, they do not neces-
sarily know which kind of widgets they need. Second, if they
do know, they still have no understanding of whether these
widgets are available or how to compensate their absence.
Third, in case both the functionalities needed and offered
are clear, users have to find the corresponding widgets. This
can be a cumbersome and error-prone adventure for different
reasons, but mostly due to insufficient or unsuitable widget
descriptions (e.g., meta-data). Finally, end users typically
lack knowledge about how to define the data and/or control
flow in a composition, especially when it comes to interop-
erability problems at the widget interface and data layer.

In this demonstration, we show our approach to address
these needs in crisis situations like the one explained be-
fore. We have designed two complementary assistance mech-
anisms, namely an automatic composition engine and a pat-
tern recommender, that help users in designing their mashups
fast and reliably.

The contributions of this paper are as follows:

• We describe our goal-oriented dialog system that en-
ables the automatic composition of workspaces to less
skilled users.

• We describe our pattern-based recommendation system
that enables more skilled users to refactor and/or ex-
tend mashup designs in a step-by-step fashion.

• We explain the implementation and integration of the
respective algorithms into the open source mashup plat-
form Apache Rave.

• We report on a user study conducted with 44 partic-
ipants, demonstrating the benefit of combining both
assistive techniques in one environment.

In the following, we present the realization of these contri-
butions in the context of the EU FP7 project OMELETTE
(http://www.ict-omelette.eu/). After that, we provide
an overview of the demonstration workflow and close this
paper with our findings from the user studies and ideas for
future work.

3. OMELETTE APPROACH TO ASSISTED
MASHUP COMPOSITION

Figure 1 gives an overview of the OMELETTE mashup
architecture. Therein, widgets represent full-fledged appli-
cation modules integrating both business logic and UI. The
widget mashup environment allows end users to compose
mashups (so-called workspaces) by placing one or more wid-
gets on the composition canvas. The technical complexity
of defining the data flow logic (or configuration parameters)
are abstracted from the user and handled automatically by
the platform and the widget implementations. To facilitate
assisted development, OMELETTE extends the mashup
engine of Apache Rave and includes additional functional
blocks, e. g., inter-widget communication, widget informa-
tion store, widget registry, etc.

Even though mashup creation sounds very simple, end
users need support to cope with the challenges discussed
in the previous section. Therefore, we introduce two tools
to support users realizing the desired applications without
being overwhelmed by the technical details of the underly-
ing platform and widget specifications. The first tool, the
Automatic Composition Engine (ACE), targets novices
who have no or very little experience in mashup development
and need to be guided through the composition process. The
second tool, the Pattern Recommender (PR), addresses
those users who are already familiar with the composition
environment, but need help in finding appropriate building
blocks.

3.1 Automatic Composition Engine
The ACE allows end users to focus on the goal of the

composition instead of the individual building blocks and
their accurate “wiring”. The ACE (cf. Figure 1.a) extends
the mashup environment with a dialog-based interface that
enables end users to specify their goals in an interactive
manner. The dialog takes place in form of a question-answer
game, during which the system elicits and refines user goals.
Eventually, this process results in the automatic composition
of a workspace derived from the identified goals.

The basis for this mechanism is an extensible knowledge
base and a rule engine guiding the dialog with the user
and ensuring the goal of a composition is clear at the end.
The knowledge base comprises a domain ontology with facts
about the application domains (e. g., project management
or trip organization) and a set of functions defining the be-

Figure 2: Hybrid recommendation system

havior of the dialog agent. The first function dedicated to
question building is language-aware and responsible for the
conversation flow with the user. The rule-based definition
of this function enables dynamic and flexible conversations
taking application context into account, e. g, the availabil-
ity and capabilities of mashup components. Based on the
user responses, the evidence collection function produces
an overlay model of the domain ontology. The widget se-
lection function defines a mapping between possible sets of
collected evidences and a SPARQL search query to be issued
to the widget registry, containing semantic descriptions of
functional and non-functional aspects of the available wid-
gets. The current implementation filters keyword annota-
tions from the domain knowledge against widgets’ textual
attributes, such as title, description, tags, and category. To
guarantee the best interoperability between the resulting
widgets, they are filtered based on the information about
their inter-widget-communication capabilities. Finally, the
workspace configuration function derives a set of config-
uration parameters to be applied to widgets and workspace
based on the evidences collected during the dialog.

In summary, the dialog agent helps users to select and
configure widgets out of a large number of potentially in-
compatible components in an interactive and natural fash-
ion. The more widgets with similar functionality and from
different vendors are registered in the platform, the better
results are achieved by ACE.

3.2 Pattern Recommender
The design goals behind the PR – as explained in our prior

work [1] – can be summarized as follows: support less skilled
users in refactoring mashups created by the ACE and pro-
viding autonomous assistance for skilled developers in build-
ing mashups from scratch. The PR helps users reuse existing
composition knowledge: the knowledge behind the PR’s rec-
ommendations is harvested from existing workspace models.
Extracted patterns are stored in a knowledge base (KB),
which is structured to minimize database join operations
for pattern retrieval at runtime. Currently, the PR sup-
ports two composition pattern types: widget co-occurence
and multi-widget patterns. During composition, the PR
reacts to user modeling actions (adding, deleting, or select-
ing a widget, etc.) on widgets (the object of an action)
in the workspace. Upon each interaction, the action and
its object are captured by the recommendation engine via
suitable event listeners. With this information, the PR en-
gine queries the client-side KB for recommendations, where
an object-action-recommendation mapping tells the engine

which types of recommendations are to be retrieved. The
list of patterns retrieved from the KB are then filtered and
ranked based on the partial mashup model in the workspace
and rendered in the recommendation panel. The panel is
the user interface of the PR and allows users to select a rec-
ommended pattern or browse its details. Upon selection of
a pattern, the PR automatically weaves it into the current
workspace model, resolving possible model conflicts.

4. IMPLEMENTATION
OMELETTE’s assisted development approaches are im-

plemented by extending two active Apache Software Foun-
dation projects: Apache Rave and Apache Wookie (http:
//wookie.apache.org/). While Rave is used as the core
mashup engine in OMELETTE, Wookie serves as a repos-
itory and runtime container for W3C widgets, accessible by
both assistance mechanisms for retrieving widget informa-
tion. Both assistance tools were realized as W3C widgets
and are shown in action in Figure 2.

Apart from its client-side UI, ACE’s answer processing
and evidence collection take place on the server side via a
dedicated RESTful interface. The conversation and ques-
tion building strategies are specified using production rules,
which are executed on the server side by the JBoss Drools
engine (http://www.jboss.org/drools/). To find widgets
that best fit a user’s needs, the server part of ACE uses a
dedicated semantic registry (widget registry cf. Figure 1)
based on the WebComposition/DataGridService [2].

The PR widget contains recommendation and weaving al-
gorithms implemented in JavaScript. The client-side pattern
KB runs on an in-browser SQLite (http://www.sqlite.org/)
implementation. This eliminates performance overheads of
client-server communication for retrieving recommendation
patterns at runtime. Client and server-side pattern KBs are
synchronized when loading the PR into a user’s workspace.
From then on, all queries triggered by the PR to retrieve
patterns from the KB are directed to the client-side only.
JavaScript event listeners capture the triggering events for
pattern retrieval, i. e., DOM modifications (e.g., adding a
widget, deleting a widget) of the workspace model.
Both the ACE and the PR rely on three new APIs intro-
duced into Apache Rave to provide the necessary integra-
tion points between the mashup platform and the assistance
tools. The first API allows the pattern mining algorithm of
PR’s server-side component to fetch all workspace models
from the workspace repository. The second one is used by
the recommendation algorithm implemented in PR to re-

trieve information about the set of widgets present in the
current workspace model. Finally, the third one is used by
ACE and PR to populare workspaces with new widgets.

5. DEMONSTRATION STORYBOARD
In the demo session, we plan to showcase the two assistive

techniques described above using the scenario introduced in
the beginning of this paper. We will show how workspaces
can be created ad hoc by end users in the case of an emer-
gency situation, and how such workspaces can be rapidly
extended with the help of the assistance provided by the
OMELETTE approach.

The demo will start from a blank workspace. By inter-
acting with the dialog system of the ACE, the user will ex-
press his/her composition intentions, e. g., to gather infor-
mation about emergency incidents and getting public web
cam footage to gauge the impact on the ground zero. This
will lead ACE to automatically populate the workspace with
suitable widgets and their implicit wiring, without any fur-
ther user interaction.

The second part of our demo will involve the extension
of this workspace model with other widgets (e.g., telco wid-
gets) that may be of interest to an emergency coordinator in
the given scenario. We will show how the interactive recom-
mender helps users to refactor an existing workspace with a
new set of widgets in a step-by-step manner.

Finally, we will explain the architecture behind our as-
sisted platform and share the lessons learned during the im-
plementation and user studies.

A screencast of our approach at work is available at
http://www.ict-omelette.eu/assisted-composition.

6. EVALUATION AND FUTURE WORK
In order to evaluate our approach with a potential user

group, we have conducted a user study including both the
ACE and the PR. The study was conducted in China and
Germany. In total, 44 participants attended the study, with
only 11 of them having had previous experiences with wid-
gets or configuring portal interfaces. Participants were equally
distributed in test and control groups.

For evaluating the ACE, users were given the task to cre-
ate a simple mashup that required them to build a workspace
with at least three widgets. The required widgets were not
explicitly named, but rather described by their functionality.
The control group was assigned the same task, but had to
use Apache Rave’s widget store to search for suitable wid-
gets. Interestingly, the study shows that participants using
the ACE took more time on average than the control group
(261 vs. 159 seconds). One decisive factor for this is the
tool’s learning curve: While all participants had the chance
to try out the widget store before, the ACE was newly intro-
duced. Even further, a few usability issues led some users
far astray (hence the high variance), requiring them to start
over multiple times.

The PR was evaluated in a similar fashion. Here, par-
ticipants had to modify a given workspace with additional
functionalities. The test group used the PR, whereas the
control group again used the widget store to find right wid-
gets. As the results show, the PR significantly reduced the
overall task completion time (57 vs. 137 seconds). While
the difference of the mean development time between the
groups seems rather big, it must be noted that the PR has

the distinct advantage of not requiring the user to leave his
workspace in search of widgets.

For user satisfaction, there was a huge gap between user
groups: while 64% of Chinese users said that they found our
assistance mechanism to be useful and would use it again,
only 36% of German users did so. However, 61% of all users
agreed that this feature was important or even essential for
a mashup environment.

Overall, the study shows that users with little experience
in mashups prefer being guided through the processes of
creating and extending their workspace. While no signifi-
cant increase in efficiency could be verified for the process of
creating a new mashup from scratch, results show that the
recommendation of additional widgets based on an existing
workspace provides significant benefits for users.

As a follow up to this user study, we are currently ad-
dressing usability issues of Apache Rave and of our assis-
tance mechanisms. We are also working on a more natural
goal elicitation system for the ACE to give users more free-
dom in creating new workspaces. The improvements on the
ACE are going to be part of another evaluation, the results
thereof we plan to present at the demo session. Future work
includes improvement of composition patterns coverage in
the PR’s pattern KB as well as providing more explanations
with each recommendation step to help users understand
and decide whether to follow a recommendation or not.

Acknowledgment. This work was supported by the Euro-
pean Commission (project OMELETTE, contract 257635).
Authors thank Vadim Chepegin from TIE Kinetix b.v. for
his contributions to the design and implementation of the
ACE.

7. REFERENCES
[1] S. R. Chowdhury, C. Rodŕıguez, F. Daniel, and

F. Casati. Baya: assisted mashup development as a
service. In WWW’12 (Companion Volume), pages
409–412.

[2] O. Chudnovskyy and M. Gaedke. Development of Web
2.0 Applications using WebComposition / Data Grid
Service. Service Computation’10, pages 55–61.

[3] O. Greenshpan, T. Milo, and N. Polyzotis.
Autocompletion for mashups. VLDB’09, 2:538–549.

[4] M. Henneberger, B. Heinrich, F. Lautenbacher, and
B. Bauer. Semantic-Based Planning of Process Models.
In Multikonferenz Wirtschaftsinformatik’08.

[5] A. H. H. Ngu, M. P. Carlson, Q. Z. Sheng, and H.-y.
Paik. Semantic-based mashup of composite
applications. IEEE Trans. Serv. Comput., 3(1):2–15,
Jan. 2010.

[6] S. Pietschmann, C. Radeck, and K. Meißner.
Semantics-based discovery, selection and mediation for
presentation-oriented mashups. In MASHUPS’11.

[7] C. Radeck, A. Lorz, G. Blichmann, and K. Meißner.
Hybrid recommendation of composition knowledge for
end user development of mashups. In ICIW’12, pages
30–33.

[8] S. Roy Chowdhury, F. Daniel, and F. Casati. Efficient,
Interactive Recommendation of Mashup Composition
Knowledge. In ICSOC’11, pages 374–388.

[9] V. Tietz, G. Blichmann, S. Pietschmann, and
K. Meißner. Task-based recommendation of mashup
components. In ICWE’11, pages 25–36.

132 Complementary Assistance Mechanisms for End User Mashup Composition

Appendix J

Interactive Recommendation and

Weaving of Mashup Model Patterns

for Assisted Mashup Development

* To be submitted to ACM Transactions on the Web

A

Interactive Recommendation and Weaving of Mashup Model Patterns
for Assisted Mashup Development

Soudip Roy Chowdhury, University of Trento, Italy
Florian Daniel, University of Trento, Italy
Fabio Casati, University of Trento, Italy

With this article, we give an answer to one of the open problems of tool-based mashup development, i.e.,
the lack of mashup and modeling knowledge users may face when operating a mashup tool. Mashup tools
have undoubtedly contributed to the simplification of mashup development, but mashups can nevertheless
be complex software artifacts. Developing a mashup that integrates multiple resources from the Web can
easily become non-trivial and require intimate knowledge of the components provided by the mashup tool, its
underlying mashup paradigm, and of how to apply such to the integration of the components. This knowledge
is in general neither intuitive nor standardized across different mashup tools.

We show how it is possible to effectively assist the users of mashup tools in their development task with
contextual, interactive recommendations of composition knowledge in the form of mashup model patterns.
We study a set of recommendation algorithms with different levels of performances and describe a flexible
pattern weaving approach for the one-click reuse of patterns. We report on the implementation of two pat-
tern recommender plug-ins for two different mashup tools and demonstrate via suitable user studies that
recommending contextual mashup model patterns significantly reduces development times in both mashup
environments.

Categories and Subject Descriptors: H.m [Information Systems]: Miscellaneous; D.1 [Software]: Pro-
gramming Techniques; D.2.6 [Software]: Software Engineering—Programming Environments

General Terms: Design, Algorithms, Experimentation, Performance

Additional Key Words and Phrases: recommendation, weaving, assisted mashup development, user studies

ACM Reference Format:
ACM Trans. Web V, N, Article A (January YYYY), 35 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION
Mashing up, i.e., composing, a set of services, for example, into an application logic,
such as the data-flow based data processing pipes proposed by Yahoo! Pipes (http:
//pipes.yahoo.com/pipes/), is generally a complex task that can only be managed
by skilled developers. People without the necessary programming experience may not
be able to profitably use mashup tools like Pipes – to their dissatisfaction. For instance,
we think of tech-savvy people, who like exploring software features, author and share
own content on the Web. Existing mashup tools provide visual programming languages
that help users in designing such mashup applications by integrating content from the

Author’s addresses:
Soudip Roy Chowdhury, University of Trento, Via Sommarive 5, 38123 Povo (TN), Italy.
email id: rchowdhury@disi.unitn.it; alternate email id: soudeep@gmail.com
Florian Daniel, University of Trento, Via Sommarive 5, 38123 Povo (TN), Italy. email id: daniel@disi.unitn.it
Fabio Casati, University of Trento, Via Sommarive 5, 38123 Povo (TN), Italy. email id: casati@disi.unitn.it
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1559-1131/YYYY/01-ARTA $15.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 S. Roy Chowdhury et al.

Web. These users, however, might lack appropriate awareness of which composable
elements a mashup platform provides, of their specific function, of how to combine
them, of how to propagate data, and so on. The problem is analogous in the context
of web service composition (e.g., with BPEL) or business process modeling (e.g., with
BPMN), where modelers are typically more skilled, but still may not know all the
features of a modeling language.

Examples of ready mashup models are one of the main sources of help for modelers
who don’t know how to express or model their ideas – provided that suitable examples
can be found (examples that have an analogy with the modeling situation faced by
the modeler). But also tutorials, expert colleagues or friends, and, of course, Google
are typical means to find help. However, searching for help does not always lead to
success, and retrieved information is only seldom immediately usable as is, since the
retrieved pieces of information are not contextual, i.e., immediately applicable to the
given modeling problem. In order to better understand the problem that we address
in this paper, let’s have a look at how a mashup is, for instance, composed in Yahoo!
Pipes http://pipes.yahoo.com/pipes/, one of the most well-known and used mashup
platforms as of today. Let us assume we want to develop a simple pipe that fetches
a set of news feeds from Google News website, filters them according to a predefined
condition (in our case, we want to search for news on products and services by a given
vendor), and locates them on a Yahoo! Map based upon the geo-location associated with
each news item.

The pipe that implements the required feature is illustrated in Figure 1. It is com-
posed of five components: The URL Builder is needed to set up the remote GeoNames
service http://www.geonames.org/, which takes a news RSS feed as an input, analyzes
its content, and inserts geo-coordinates, i.e., longitude and latitude, into each news
item (where applicable). Doing so requires setting few parameters of the URL Builder
component: Base=http://ws.geonames.org, Path elements=rssToGeoRSS, and Query
parameters=FeedUrl:news.google.com/news?topic=t&output=rss&ned=us. The so cre-

choosing the
right component

filling the correct config.
parameter value

connecting
components together

defining the correct
data mappings

Fig. 1. Screenshot of the Yahoo! Pipes mashup environment showing typical composition steps

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Assisting Mashup Development by Reusing Community Composition Knowledge A:3

ated URL is fed into the Fetch Feed component, which fetches the geo-enriched news
feed from the Google News site. In order to filter out the news items that we are really
interested in, we need to use the Filter component, which requires the setting of proper
filter conditions via the Rules input field. Feeding the filtered feed into the Location
Extractor component causes the plot of the news items on a Yahoo! Map. Finally, the
Pipe Output component specifies the end of the pipe.

If we analyze the development steps above, we can easily understand that develop-
ing even such a simple composition is out of reach for people without sufficient pro-
gramming knowledge. As pointed out in the Figure 1, the URL Builder, for example,
requires the correct setting of it’s configuration parameter. Then, components need to
be correctly connected in order to define a consistent data-flow logic i.e., the output
parameter of a component must be mapped correctly to the input parameter/s of other
component/s. But more importantly, plotting news onto a map requires knowing that
this can be done by first enriching a feed with geo-coordinates, then by fetching the
actual feed, and then by plotting the fetched items on a map. Understanding all these
programming concepts is neither trivial nor intuitive for a less-skilled developer.

To have a more detailed understanding of the problem space we performed an initial
user study [De Angeli et al. 2011] with few end users (10 university accountants), who
have little technical expertise. Inspired by the result of this study on how end users
would like to be assisted in mashup development, we have started our research explo-
rations toward the interactive, contextual recommendation of composition knowledge
in order to assist a modeler in each step of his/her development task, e.g., by sug-
gesting a candidate next component or a whole chain of tasks. The vision is that of
developing an assisted, web-based mashup environment (an evolution of our former
work [Daniel et al. 2009]) that delivers useful composition patterns much like Google’s
Instant feature provides search results already while still typing keywords into the
search field.

In this paper, we approach a few of the core research challenges of this vision, i.e.,
how to design an interactive development recommendation system that supports the
reuse of existing composition knowledge for developing mashups in a step-by-step
manner. That required us to find answers of the following research questions:

— How to interactively reuse existing composition knowledge for developing new
mashups.

— How to represent the composition knowledge that captures the typical modeling steps
in mashup designs and that can be recommended to users as reusable knowledge.

— How to support interactive and contextual retrieval of composition knowledge at run-
time.

— How to automate the application (weaving) of the modeling edits (addition or deletion
of components, connectors etc.), captured in a composition knowledge, to the current
composition context.

— How demonstrate and evaluate the usefulness of our interactive, contextual recom-
mendation approach to its target users.

— How to assess the usability and the accuracy of our recommendation algorithms for
the target user groups.

Working towards finding solutions for these research questions, in this paper we
report on the whole research efforts that we have made so far which includes the
summary of our already published research results and new research progresses and
a detailed analysis of results. More specifically, in this paper we describe the following
contributions:

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 S. Roy Chowdhury et al.

— We demonstrate the conceptual model of our interactive recommendation approach
that we introduced in [Roy Chowdhury et al. 2010]1.

— We show types of composition patterns that capture the typical modeling steps inside
a mashup platform1.

— We summarize algorithms for the efficient querying and ranking of interactive rec-
ommendations based on exact and similarity based matching algorithms proposed in
our prior work ([Roy Chowdhury et al. 2011])1.

— We describe a novel development profile based recommendation filtering approach
and related set of algorithms2.

— We study the performance of the conceived algorithms and report on their accuracy
measures3.

— We describe our pattern weaving algorithm together with the respective weaving
strategies and policies, which help to automatically apply a selected pattern to a
mashup model under development3.

— We detail the architecture for the assisted development environment that we intro-
duced in [Daniel et al. 2012] and also discussed new architecture components that
support development profile based recommendation filtering algorithms3.

— We describe the implementation of our two prototype tools: (Baya [Roy Chowd-
hury et al. 2012]) pattern recommendation and weaving plug-in for Yahoo! Pipes
and Pattern recommender: an extension of Baya for Apache Rave mashup platform
(http://rave.apache.org/)3.

— We report on the results of two user studies proving the effectiveness of the ap-
proach2.

In Section 2 we define the preliminaries and the types of composition patterns that
we use through out the paper. In Section 3 we discuss in detail our interactive recom-
mendation approach starting from a conceptual model to a set of pattern retrieval al-
gorithms and their detailed performance and accuracy results. In Section 4 we discuss
about our pattern weaving algorithms. In Section 5 we show the detailed functional
architecture of our system followed by implementation details of our two prototype
systems. Section 6 reports the results of two user studies that we performed to assess
the usefulness of our recommendation approach for two different mashup platforms
and different target user groups. In Section 7 we discuss about the related works, and
in Section 8 we concluded our discussion by recapping the lessons we learned and by
providing hints of our future work.

2. ASSISTED MASHUP DEVELOPMENT: PRELIMINARIES AND PROBLEM STATEMENT
In our approach, we assist the design of data mashup. Before discussing about our
development assistance approach, let us first formalize the model of such mashups.
This formalization will help us to define types of composition patterns that capture
the knowledge about the modeling steps involved in developing such mashups. These
composition patterns are then be used as the knowledge behind our development as-
sistance approach.

2.1. Reference mashup models
Without loss of generality (in terms of mashup models that can be supported), in
this paper we focus on data mashups. Data mashups are simple in terms of model-
ing constructs and expressive power, and therefore, the structure and the complexity

1 We summarize our previous published work.
2 We describe entirely new contributions.
3 We summarize our earlier work with major new contributions.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Assisting Mashup Development by Reusing Community Composition Knowledge A:5

of mashup patterns are limited. The model, we define in this paper, is inspired by
the modeling constructs in mashup tools like Yahoo! Pipes (http://pipes.yahoo.com),
JackBe Presto (http://www.jackbe.com) and MyCocktail (http://www.ict-romulus.
eu/MyCocktail/); in our future work, we will also focus on mashup models that take
into account control flow based composition patterns and user interfaces.

We define a data mashup as a tuple m = 〈name, id, C,DF,RES〉, where name is
the name of the mashup, id a unique identifier, C is the set of components, DF is a
set of data flow connectors propagating data among components (e.g., data sources or
operators), and RES is a set of result parameters of the mashup. Specifically:

—C = {ck|ck = 〈namek, idk, typek, IPk, INk, DMk, V Ak, OPk, OUTk〉} is the set of com-
ponents, where ck is an instance of a component characterized by a name label
namek, a unique id idk, and a type typek. IPk, INk, OPk and OUTk, are sets of in-
put ports, input parameters, output ports, and output attributes (the attributes of
the items in the output data flow), and:
—DMk ⊆ INk × (

⋃
c∈C c.OUT) is the set of data mappings that map attributes of

the input data flows of ck to the input parameters of ck.
— V Ak ⊆ INk × (STR∪NUM) is the set of value assignments of the input param-

eters INk; values are strings (STR) or numbers (NUM).
—DF = {dfj |dfj = 〈srccidj , srcopj , tgtcidj , tgtipj〉} is a set of data flow connectors

that, each, assign the output port srcopj of a source component with identifier srccidj
to an input port tgtipj of a target component identified by tgtcidj , such that srccid 6=
tgtcid.

—RES ⊆ ⋃c∈C c.OUT is the set of outputs computed by the mashup.

We exemplify our approach in the context of Yahoo! Pipes, which is well known and
comes with a large body of readily available mashup models that we can analyze. Pipes
also fits into the mashup model described above and, thus, the examples we provide
in this paper are directly applicable in the context of Yahoo! Pipes. Patterns ptype in
Pipes correspond to a simplified version of the mashup model i.e., ptype=〈C,DF,RES〉
with attributes as specified above.

2.2. Composition pattern types
Considering the typical modeling steps performed by a developer (e.g., filling input
fields, connecting components, copying/pasting model fragments) in Pipes-like mashup
tools, we specifically identify the following set of pattern types. Visual representation
of these pattern types is represented at Figure 2.

Parameter value pattern. The parameter value pattern represents a set of recurrent
value assignments V A for the input fields IN of a component c (identifiers are system-
generated):

ptypepar = 〈{c},∅∅〉;
c = 〈name, 0, type,∅, IN,∅,∅, V A,∅〉
This pattern helps filling input fields of a component with explicit user input.

Connector pattern. The connector pattern represents a recurrent connector dfxy,
given two components cx and cy, along with the respective data mapping DMy of the
output attributes OUTx to the input parameters INy:

ptypecon = 〈{cx, cy}, {dfxy},∅〉;
cx = 〈namex, 0, typex,∅,∅,∅,∅, {opx}, OUTx〉;
cy = 〈namey , 1, typey , {ipy}, INy , DMy ,∅,∅,∅〉.
This pattern helps connecting a newly placed component to the partial mashup

model in the canvas.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 S. Roy Chowdhury et al.

Component co-occurrence pattern. The component co-occurrence pattern captures
a pair of components cx and cy that occur together and comes with their connector,
parameter values, and cy ’s data mapping logic:

ptypecom = 〈{cx, cy}, {dfxy},∅〉;
cx = 〈namex, 0, typex,∅, INx,∅, V Ax, {opx}, OUTx〉;
cy = 〈namey , 1, typey , {ipy}, INy , DMy , V Ay ,∅, OUTy〉.
This pattern helps developing a mashup model incrementally, producing at each step

a connected mashup model.

Component embedding pattern. The component embedding pattern captures which
component cz is typically embedded into a component cy preceded by a component cx.
The pattern, hence, contains the three components with their connectors, data map-
pings, and parameter values:

ptypeemb = 〈{cx, cy , cz}, {dfxy , dfxz , dfzy},∅〉;
cx = 〈namex, 0, typex,∅,∅,∅, {opx}, OUTx〉;
cy = 〈namey , 1, typey , {ipy}, INy , DMy , V Ay ,∅,∅〉;
cz = 〈namez , 2, typez , {ipz}, INz , DMz , V Az , {opz}, OUTz〉.
This pattern helps, for instance, modeling loops, a task that is usually not trivial to

non-experts.

Multi-component pattern. The multi-component pattern represents recurrent model
fragments that are generically composed of multiple components. This pattern cap-
tures information about the full model fragment, along with its constituent set of com-
ponents and connectors:

ptypemul = 〈C,DF,∅〉;
C = {ci|ci.id = i; i = 0, 1, 2, ...}.
This pattern helps understanding domain knowledge and best practices as well as

keeping agreed-upon modeling conventions.
This list of pattern types is not exhaustive, but it contains the most representative

steps in mashup designs. These patterns help understanding domain knowledge and
best practices as well as keeping agreed-upon modeling conventions. To read more
about the basic intuitions behind coming up with this set of composition patterns, one
can refer to our earlier work [Roy Chowdhury et al. 2011].

2.3. Sources of reusable composition patterns
Composition patterns, as described in the previous section, may come from different
sources such as usage examples or tutorials of the modeling tool (developer knowl-
edge), best modeling practices (domain expert knowledge), or recurrent model frag-
ments (community composition knowledge) in a given repository of mashup models. In
our research, so far, we have experimented with composition patterns coming from two
of the above mentioned sources, i.e., community composition knowledge [Roy Chowd-
hury et al. 2010] and domain expert knowledge [Roy Chowdhury et al. 2013]. In
[Roy Chowdhury et al. 2012] we demonstrate how we enable reuse of composition pat-
terns that are automatically discovered from the existing Yahoo! Pipes model reposi-
tory and in [Roy Chowdhury et al. 2013] we show how our reuse approach is extended
with composition patterns that are manually provided by domain experts in Apache
Rave. The intention behind these experimentations is to verify the decoupling of the
reuse approach from the knowledge discovery approach and to determine the scalabil-
ity of our knowledge reuse approach across different sources for composition patterns.

2.4. Problem statement
Given the types of composition patterns as described in the Section 2.2, the problems
that we want to address in this paper are (i) how to interactively and contextually rec-
ommend these composition patterns inside mashup tools in order to guide users with

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Assisting Mashup Development by Reusing Community Composition Knowledge A:7

(a) Parameter value
pattern

(b) Connector pattern

Input Param4

cy

OUTx
opx

ipy

dfxy

(c) Component co-occurrence pattern

cx

OUTx.attrib1

Input Param4

cy

opx

ipy

value1
Input Param2
Input Param1

value2

(d) Component embedding pattern (e) Multi-component pattern

OUTx

dfxy

OUTy

Input Param3OUTx.attrib1Input Param3

namex namey namex

value4

namey

 cx

value1

value2

Input Param1

name

Input Param2

c

IN
VA

cx cy

cz

OUTz
OUTz.attrib1

OUTx.attrib2

Input Param6

Embedding
Component

Embedded
Component

OUTx

dfxy

opx

ipy

dfxz

Input Param7

Input Param8

dfzy

opz

namex namey

OUTx.attrib1

value6

Input Param5

namez

c0

OUT0.attrib1

Input Param4

c1

op0

ip1

value1
Input Param2
Input Param1

value2

OUT0

df01

OUT1

Input Param3

name0

value4

name1

op1

OUT1.attrib1

value6

input Param5

name2

input Param6

c2 ip2

OUT2

DMy

Fig. 2. Composition patterns to aid stepwise, automated mashup modeling

the next modeling steps, and once a user accepts a composition pattern recommenda-
tion as provided by our system (ii) how to automatically apply (weave) the selected
recommendation inside his/her current mashup design by automatically executing a
set of mashup operations on behalf of the user.

3. INTERACTIVE RECOMMENDATION OF COMPOSITION KNOWLEDGE
The research questions that we addressed in this section is how to aid users of a
mashup tool by interactively recommending him/her a set of composition patterns that
we have identified in the Section 2.2. In particular in this section we focus on defin-
ing the conceptual model for our overall interactive assistance approach, followed by a
set of recommendation algorithms that are designed to address the research questions
introduced in Section 1.

3.1. Conceptual model
The primary goal of the interactive pattern recommender is to assist users in design-
ing mashups in a step-by-step manner. The assistance comes in the form of reusable
composition knowledge that is represented as composition patterns. The structure and
types of composition patterns, that capture the typical design steps in a mashup envi-
ronment, are the core behind the development assistance supported by our recommen-
dation algorithms.

Figure 3 depicts the conceptual model of our interactive pattern recommendation
approach. The “white boxes” in the right hand side of Figure 3 represent the condi-
tion or context under which a recommendation is triggered by the recommendation
algorithm. For example, applying a modeling action fill to an object of type parameter
field triggers a recommendation that consists of a parameter value pattern. The object-
action-recommendation rule determines the type/s of recommendations to be invoked
based on the current partial composition state, modeling action and the object of the
action inside the current partial composition. “Gray boxes” in the Figure 3 represent
the concepts related to the recommendation. A recommendation can be to complete a

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 S. Roy Chowdhury et al.

Modeling
Action

Select

Drag&Drop

Connect

Fill

Delete

Embed
Object

Composition
Fragment Connector Component Parameter

Field

Partial
Composition 1..N1

Object-action-
recommendation rule

Recommendation

1..N

1
triggers

part of

1..N

1..N

applies to

1

0..N

1

0..N

10..N

Composition pattern

provides

Complete

Substitute

Highlight

Connector Component
embedding Multi-componentParameter value Component

co-occurence

------------- Context for interactive recommendations

------------- Interactive recommendation preliminaries

Fig. 3. Conceptual model of interactive pattern recommendation approach

partial composition with a composition pattern or to substitute an existing componen-
t/s in the current composition with a similar one from the composition pattern, or the
recommendation can highlight compatible components in the current modeling can-
vas. Composition pattern types are recommended to the users in order to help them to
proceed with the development steps.

3.2. Representing and storing composition knowledge: the knowledge base
The core of the interactive recommender is the pattern knowledge base KB that stores
composition patterns that are decomposed into their constituent parts, so as to enable
the incremental recommendation approach. Figure 4 illustrates the structure of the
pattern KB. This schema enables the fast retrieval of the composition patterns with a
one-shot query over a single table. The KB is partly redundant (e.g., the structure of
a complex pattern also contains components and connectors), but this is intentional.
It allows us to avoid expensive database join operations or to defer them to the mo-
ment in which we really need to retrieve all details of a pattern. In order to retrieve,
for example, the representation of a component co-occurrence pattern, it is therefore

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Assisting Mashup Development by Reusing Community Composition Knowledge A:9

1..N

DataMapping

ID
SourceOutputAttribute
TargetParameter
Usage
Date

Connectors

ID
SourceComponent
SourceOutputPort
SourceOutput
TargetComponent
TargetInputPort
Usage
Date

0..1

ParameterValues
ID
Component
Parameter
Value
Usage
Date

MultiComponent
ID
C
DF
DF'
Usage
Date

ComponentCooccur
ID
SourceComponent
TargetComponent
TargetOutput
Usage
Date

Embedding
ID
SourceComponent
EmbeddingComponent
EmbeddedComponent
Usage
Date

0..1

1..N

0..1
1..N

1..N

1..N

0..1

0..1 1..N

1..N

0..1

0..1

Fig. 4. Knowledge base structure for composition patterns

enough to query the ComponentCooccur entity for the SourceComponent and the Tar-
getComponent attributes; weaving the pattern then into the modeling canvas requires
querying ComponentCooccur ./ DataMapping ./ ParameterV alues for the details.

3.3. Retrieving and recommending composition knowledge
As our conceptual model in Figure 3 shows that the tuple of 〈object, action, pm〉 is used
as a query q by our recommendation algorithm to retrieve composition patterns from
the KB, while the object-action-recommendation (OAR) rule determines which pattern
types to be retrieved against the query (a specific type of modeling action on an Object
type always retrieves a specific type of recommendation). For the retrieval of the con-
textual composition pattern types, we use a novel exact/approximate pattern matching
algorithm that uses structural features of mashup designs during the matching pro-
cess. The retrieved patterns are then filtered based on the development profiles of a
user. The details of our pattern recommendation algorithms are explained in the fol-
lowing subsections.

3.3.1. Exact/approximate matching of composition patterns. Given the described types of
composition patterns and a query q, we retrieve composition recommendations from
the described KB in two ways: (i) we query the KB for parameter value, connector,
data mapping, and component co-occurrence patterns; and (ii) we match the object
against complex patterns. The former approach is based on exact matches with the
object, the latter leverages on similarity search. Conceptually, all recommendations
could be retrieved via similarity search, but for performance reasons we apply it only
in those cases (the complex patterns) where we don’t know the structure of the pattern
in advance and, therefore, are not able to write efficient conventional queries.

Algorithm 1 details this approach and summarizes the logic implemented by the
recommendation engine. In line 3, we retrieve the types of recommendations that can
be given (getSuitableRecTypes function), given an object-action combination. Then, for
each recommendation type, we either query for patterns (the queryPatterns function
can be seen like a traditional SQL query) or we do a similarity search (getSimilarPat-
terns function, see Algorithm 2). For each retrieved pattern, we compute a rank, e.g.,
based on the pattern description (e.g., containing usage and date), the computed simi-
larity, and the usefulness of the pattern inside the partial mashup, order and group the
recommendations by type, and filter out the best n patterns for each recommendation
type.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 S. Roy Chowdhury et al.

ALGORITHM 1: getRecommendations
Data: query q = 〈object, action, pm〉, knowledge base KB, object-action-recommendation

mapping OAR, component similarity matrix CompSim, similarity threshold Tsim,
ranking threshold Trank, number n of recommendations per recommendation type

Result: recommendations R = [〈cpi, ranki〉] with ranki ≥ Trank

1 R = array();
2 Patterns = set();
3 recTypeToBeGiven = getSuitableRecTypes(object, action,OAR);
4 foreach recType ∈ recTypeToBeGiven do
5 if recType ∈ {ParV alue, Connector,DataMapping, CompCooccur} then
6 Patterns = Patterns∪ queryPatterns(object,KB, recType) ; // exact query
7 else
8 Patterns = Patterns∪

getSimilarPatterns(object,KB.MultiComponent, CompSim, Tsim) ; // similarity
search

9 foreach pat ∈ Patterns do
10 if rank(pat.cp, pat.sim, pm) ≥ Trank then
11 append(R, 〈pat.cp, rank(pat.cp, pat.sim, pm)〉) ; // rank, threshold, remember

12 orderByRank(R);
13 groupByType(R);
14 truncateByGroup(R,n);
15 return R;

ALGORITHM 2: getSimilarPatterns
Data: query object object, set of complex patterns CP , component similarity matrix CompSim,

similarity threshold Tsim

Result: Patterns = {〈cpi, simi〉} with simi ≥ Tsim

1 Patterns = set();
2 objectStructure = getStructure(object) ; // computes object’s structure for comparison
3 foreach cp ∈ CP do
4 obj = objectStructure;
5 sim = getSimilarity(obj, cp) ; // compute similarity for exact matches
6 obj.C = obj.C − cp.C ; // eliminate all exact matches for C, DF, DF’ from obj

7 obj.DF = obj.DF − cp.DF − cp.DF ′;
8 obj.DF ′ = obj.DF ′ − cp.DF ′ − cp.DF ;
9 approxSim = 0; // will contain the best similarity for approximate matches

10 foreach c ∈ obj.C do
11 SimC = getSimilarComponents(c, CompSim) ; // get set of similar components
12 foreach simc ∈ SimC do
13 approxObj = getApproximatePattern(obj, c, simc) ; // get approx. pattern
14 newApproxSim = simc.sim∗getSimilarity(approxObj, cp) ; // get similarity
15 if newApproxSim > approxSim then
16 approxSim = newApproxSim ; // keep highest approximate similarity

17 sim = sim+ approxSim ∗ |obj.C|/|objectStructure.C| ; // normalize and aggregate
18 if sim ≥ Tsim then
19 Patterns = Patterns ∪ 〈cp, sim〉 ; // remember patterns with sufficient sim

20 return Patterns;

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Assisting Mashup Development by Reusing Community Composition Knowledge A:11

A

B

C

E

D

AB

AC

BE

CD

CE
DE

AE

AD

A

F

C
AC

AF

E
CE

(a) An example composition pattern cp

getStructure(cp) = <C,F,F'> with
C = {A,B,C,D,E},
DF = {AB,AC,BE,CD,DE}, and
DF' = {AE,AD,CE}

getStructure(object) = <C,F,F'> with
C = {A,C,E,F},
DF = {AF,AC,CE}, and
DF' = {AE}

(b) An example object of a query q

Direct connection
df ∈ DF

Indirect connection df' ∈ DF'Component c ∈ C

A
B
C
D
E
F

1 - - - - -
- 1 - - - 0.5
- - 1 - - -
- - - 1 - -
- - - - 1 -
- 0.5 - - - 1

A B C D E F

simCC(object,cp)
simDFDF(object,cp)
simDFDF'(object,cp)
simDF'DF(object,cp)

3/4 = 0.75 1/1 = 1.00

1/3 = 0.33 1/1 = 1.00

1/3 = 0.33 -

0/1 = 0.00 -

simDF'DF'(object,cp) 1/1 = 1.00 -

Exact match Approximate match

simexact = 0.75*0.5 + 0.33*0.2 + 0.33*0.1 + 1.00*0.1 = 0.57

0.50

0.20

0.10

0.10

0.10

Weight

(c) Component similarity
matrix CompSim

(d) Pattern similarity calculation

match components
match connectors
allow insertions
allow deletions
allow substitutions

meaning

simapprox = 1.00*0.5 + 1.00*0.2 = 0.70
sim = simexact + 0.5*simapprox /4 = 0.66

Fig. 5. Pattern pre-processing and example of component similarity matrix CompSim. Components are
identified with characters, connectors with their endpoints.

ALGORITHM 3: getSimilarity
Data: query object object, complex pattern cp
Result: similarity

1 initialize wi for i ∈ 1..5 with
∑

i wi = 1;
2 sim1 = |object.C ∩ cp.C|/|object.C| ; // matches components
3 sim2 = |object.DF ∩ cp.DF |/|object.DF | ; // matches connectors

4 sim3 = |object.DF ∩ cp.DF ′|/|object.DF | ; // allows insertion of a component

5 sim4 = |object.DF ′ ∩ cp.DF |/|object.DF ′| ; // allows deletion of a component

6 sim5 = |object.DF ′ ∩ cp.F ′|/|object.DF ′| ; // allows substitution of a component
7 similarity =

∑
i wi ∗ simi;

8 return similarity;

As for the retrieval of similar patterns, our goal was to help modelers, not to disori-
ent them. This led us to the identification of the following principles for the identifica-
tion of “similar” patterns: preference should be given to exact matches of components
and connectors in object, candidate patterns may differ for the insertion, deletion, or
substitution of at most one component in a given path in object, and among the non-
matching components preference should be given to functionally similar components
(e.g., it may be reasonable to allow a Yahoo! Map instead of a Google Map).

Algorithms 2 and 3 implement these requirements, although in a way that is al-
ready optimized for execution. The original, graph-like structure of patterns are pre-
processed to another pattern representation (cf. Figure 5) that increases the efficiency

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 S. Roy Chowdhury et al.

of our pattern search retrieval algorithm by saving us from the expensive graph traver-
sal approach at runtime. Figure 5(a) illustrates the pre-processing logic: each complex
pattern is represented as a tuple 〈C,DF,DF ′〉, where C is the set of components, DF
the set of direct connections, and DF ′ the set of indirect connections, skipping one com-
ponent for approximate search. This pre-processing logic is represented by the func-
tion getStructure, which can be evaluated offline for each complex pattern in the raw
pattern KB; results are stored in the Multi-component Pattern entity introduced in
Figure 4. Another input that can be computed offline is the component similarity ma-
trix CompSim, which can be set up by an expert or automatically derived by mining
the raw pattern KB. For the purpose of recommending knowledge, similarity values
should reflect semantic similarity among components (e.g., two flight search services);
syntactic differences are taken into account by the pattern structures. Figure 5(c) il-
lustrates a possible matrix for the components in the sub-figures (a) and (b); similarity
values are contained in [0..1], 0 representing no similarity, 1 representing equivalence.

Algorithm 2 now works as follows. First, it derives the optimized structure of object
(line 2). Then, it compares it with each complex pattern cp ∈ CP in four steps: (i)
it computes a similarity value for all components and connectors of obj and cp that
have an exact match (line 5); (ii) it eliminates all matching components and connec-
tors from the structure of obj (lines 6-8); (iii) it computes the best similarity value
for the so-derived obj by approximating it with other components based on CompSim
(lines 9-16); and it aggregates to two similarity values (line 17). Specifically, the algo-
rithm substitutes one component at a time in obj (using getApproximatePattern in line
13), considering all possible substitutes simc and their similarity values simc.sim ob-
tained from CompSim. The actual similarity value between two patterns is computed
by Algorithm 3.

Let’s consider the pattern, object, and similarity matrix in Figure 2. If in Algorithm
3 we use the weights wi ∈ {0.5, 0.2, 0.1, 0.1, 0.1} in the stated order, sim in line 4 of
Algorithm 2 is 0.57 (exact matches for 3 components and 2 connectors). After the
elimination of those matches, obj = 〈{F}, {AF},∅〉, and substituting F with B as
suggested by CompSim allows us to obtain an additional approximate similarity of
approxSim = 0.35 (two matches and simc.sim = 0.5), which yields a total similarity of
sim = 0.57 + 0.35/4 = 0.66. Figure 2(c) demonstrates these similarity calculation steps
that are performed by our recommendation algorithm.

3.3.2. Automated filtering of composition patterns based upon user’s development profile. A
Close investigation of users’ development histories in Yahoo! Pipes reveals that users
tend to use the same set of modules/data sources across all applications he/she devel-
ops. Shani and Gunawardana [2011] suggested to recommend items that the user al-
ready knows and likes in order to gain users trust on the recommendation system. Our
earlier user study [De Angeli et al. 2011] also concluded that users like to get person-
alized recommendations that take into consideration their development preferences.
Being motivated by these observations, in this paper, we hypothesized that filtering
of recommendations by considering user’s preferences improves the overall accuracy
of the system. The user’s preferences can be derived by analyzing his/her past devel-
opment history (cf. Figure 6), which includes the number of modules or data-sources
he/she used, the set of tags he/she used for describing his applications etc. However, in
this work we develop users’ development profiles that only captures information about
the number of modules/data sources that users have used in their published mashup
designs. We derived these user development profiles in order to apply collaborative-
filtering algorithms as a filtering technique for our recommendation algorithm. In the
state of the art recommendation methods (e.g., [Sarwar et al. 2000]), which leverages
user profiles for personalizing recommendations, the user-item matrix is used as a

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Assisting Mashup Development by Reusing Community Composition Knowledge A:13

News related Pipes

user's development
history

details of a Pipe
authored by the user

modules used in the
Pipe design

detailed meta data of a pipe
authored by the userother metadata

sources used in the
Pipe design

Fig. 6. Screenshot depicting the development profile information for a user in Yahoo! Pipes

basis for calculating personalized recommendation. This user-items matrix are calcu-
lated based upon the explicit rating of an item provided by an user. However, in an
application composition domain, such as Yahoo! Pipes, such an explicit rating infor-
mation is not available. As an alternative to this, collecting users’ implicit ratings by
analyzing their development behavior [Hu et al. 2008], is the solution we explored in
our approach. Hence, we designed a method to capture users’ preferences on module
and data sources as implicit rating metrics. We further normalized these implicit rat-
ing value so that it ranges between (0, 1). Rating value 0 means that a user has never

123 23 0.12

123

123

124

46

51

0.24

0.43

11 0.23

userId moduleId implicit rating

developers name are
represented by

unique numeric ids

modules/component
 names are

represented by
unique numeric ids

implicit ratings derived from the
normalized usage count for modules
used by Yahoo! Pipes developers
among all pipes they developed

Fig. 7. Snapshot of the extracted user profile data stored in our knowledge base.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 S. Roy Chowdhury et al.

used a particular module/data source in any of his designed mashup and the rating
value 1 means that the current users uses the particular module or data source in
highest number of time, compared to all users who have ever used that module or data
sources in their mashups.

3.3.3. User profile generation. To verify our claims on the personalized recommendation,
we collected development profiles information for the users of Yahoo! Pipes. Figure 6
shows how we crawled Yahoo! Pipes existing pipes catalog to search for users’ develop-
ment histories. As shown in the figure, we first crawled all pipes in a given application
domain e.g., Pipes that are annotated with news tag, then for each of the crawled news
pipes we extracted the author’s preference information i.e., number of modules/compo-
nents and data sources they have used in their pipes by crawling their development
profile page containing information about pipes they have developed. By following this
procedure, totally we collected development profiles information for 441 unique Yahoo!
Pipes users. The development profile for each user contains two matrices, one of which
(cf. Figure 7) captures the association between the users (#441) and the modules (#51)
and the other matrix contains the association between the users (#441) and the data-
sources (#4781). From these association metrics we derived an implicit rating matrix
for the users-modules and the users-data-sources.

This implicit rating data is found to be highly sparse (most of the users never used
one or more modules/sources in any of his/her applications) in our dataset. The weak-
ness of other collaborative filtering techniques (e.g., pearson nearest neighbor [Su and
Khoshgoftaar 2009]) for large, sparse dataset led us to explore a variant of singu-
lar value decomposition (SVD) algorithm alternating least square (ALS) [Koren et al.
2009] a well known matrix factorization technique that efficiently handles implicit rat-
ing dataset with high sparsity. [Berry et al. 1995] point out that the reduced orthogonal
dimensions resulting from SVD are less noisy than the original data and captures the
latent associations between the items based upon their feature associations at differ-
ent dimensions.

3.3.4. Singular value decomposition. Singular value decomposition (SVD) is a well-
known matrix factorization technique that discovers latent features from an user-item

0.26 0 - 0.22

0.21 0.12 - 0

- - - -

0.22 0 - 0.46

user Id 1

user Id 2

user Id m

moduleId 1 moduleId 2

.

.

. . moduleId n

m X n
R

0.34 0.22 - 0.11

0.24 0.13 - 0.22

- - - -

0.4 0.15 - 0.44

feature
1

feature
 2

feature
 m

user id 1

user id 2

.

.

user id m

m X m
U

.

.

0.45 - - 0.0

0.0 0.32 - 0.0

- - 0.24 -

0.00 0.0 0.0 0.0

feature
1

feature
 2

feature
 n

feature id1

feature id 2
.
.

feature id m

m X n
S

.

.

2 Step 2 : Matrix decomposition

0.14 0.16 - 0.20

0.13 0.12 - 0.40

- - - -

0.03 0.01 - 0.10

feature id1

feature id 2

.

.

feature id n

n X n

.
module
Id n

module
Id 1

module
Id 2

VT

1 Step 1 : Sparse rating matrix as input

3 Step 3 : Dimension reduction (|r| < |m|, |n|)

0.34 0.22 - 0.10

0.24 0.13 - 0.12

- - - -

0.4 0.15 - 0.34

feature
1

feature
 2

feature
 r

user id 1

user id 2

.

.

user id m

m X r
U

.

.

0.45 - - 0.0

0.0 0.32 - 0.0

- - 0.29 -

0.0 0.0 0.0 0.24

feature
1

feature
 2

feature
 r

feature id1

feature id 2
.
.

feature id r

r X r
S

.

.

0.14 0.16 - 0.20

0.13 0.12 - 0.40

- - - -

0.02 0.2 - 0.11

feature id1

feature id 2

.

.

feature id r

r X n

.
module
Id n

module
Id 1

module
Id 2

VT

4 Step 4 : Reduced dimension matrix after multiplication

0.24 0.13 - 0.27

0.23 0.14 - 0.31

- - - -

0.22 0.12 - 0.52

user Id 1

user Id 2

user Id m

moduleId 1 moduleId 2

.

.

. . moduleId n

m X n
R'

Fig. 8. Example of the matrix-factorization steps in SVD algorithm.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Assisting Mashup Development by Reusing Community Composition Knowledge A:15

rating matrix [Koren et al. 2009]. In its basic form, SVD characterizes both items and
users by vectors of features inferred from the rating matrix. High correlation between
item features and user features leads to a specific rating pattern, and during the ma-
trix factorization SVD algorithm learns this pattern and accordingly it predicts the
rating for an item for a particular user. Technically, SVD factors an m × n matrix R
into three matrices:

R = U · S · V T (1)

where, U and V T are two orthogonal matrices of size m × r and r × n respectively;
r is the rank of the matrix R. In Appendix B with a help of an example we show
the logic of the algorithms behind SVD. In our application scenario, if we consider
matrix R as the rating matrix which captures the implicit ratings (as described in
Subsection 3.3.2) of users on modules, then it can be decomposed to 3 reduced matrices
in which matrix U contains the association metrics between users × features, matrix S
contains the association metrics between features × features and matrix V T contains
the association metrics for feature×modules. S is a diagonal matrix of size r×r having
all singular values of matrix R as its diagonal entries. All the entries of matrix S are
positive and stored in decreasing order of their magnitude. By SVD calculation we
aim at finding r independent feature vectors that represent the whole feature space.
By using SVD’s dimension reduction technique shown in Figure 8, we find a the best
lower rank approximation (R

′
) of the original matrix R. For example, if every user

who used module1 also used module2; then the features of these two modules are
linearly dependent and would contribute to a single combined feature and thus we
reduce the dimension of matrix S. Figure 8 demonstrates how do we use the matrix
factorization property of SVD algorithm to remove the sparsity in our user-module
and user-data source ranking data. As shown in Figure 8, we start with the sparse
rating matrix (Step 1), then by using the SVD algorithm we factorize the input rating
matrix to produce 3 matrices U , S and V T (Step 2). With the help of the ALS algorithm
as discussed in the Section 3.3, we then do the dimension reduction steps (Step 3) and
finally we calculate the dot product of the reduced matrices to produce final non-sparse
rating matrices (Step 4).

In our experiment to tackle the sparsity of our implicit ratings data, we implemented
the ALS variant of SVD algorithm as defined in the paper [Zhou et al. 2008]. To find
the optimal values for the free parameters in the ALS algorithm we used trial and
error method. The best performance is achieved for our dataset with the following
settings: number of hidden features nf= 30, λ regularization metric to prevent over
fitting = 0.05f, and the number of iterations is set to 20. To calculate the accuracy
for the rating prediction part of our recommendation algorithm, we used a standard
accuracy measure metric, i.e., root mean square error (RMSE).

RMSE =

√
1/|Stest|

∑

(m,u)∈Stest

(Rm,u − Pm,u)2 (2)

in which Rm,u denotes the rating of a module m for a user u in the input rating matrix
for the ALS algorithm and Pm,u denotes the predicted rating for the same module
for the same user as produced by the ALS algorithm. As a test data set Stest for the
accuracy measure calculation, we consider those entries in the original rating matrix
(before running the ALS algorithm) that have non-zero rating value i.e., for which we
already know the rating. The calculated RMSE measures for the prediction of modules
and data source ranking by the ALS based implementation are 0.1206 and 0.2711
respectively. RMSE values close to 0 (i.e., ¡ 0.5) determine the good quality of our rating

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 S. Roy Chowdhury et al.

ALGORITHM 4: getPesonalizedRecommendations
Data: query q = 〈object, action, pm〉, knowledge base KB, object-action-recommendation mapping OAR, component

similarity matrix CompSim, similarity threshold Tsim, ranking threshold Trank, number n of recommendations
per recommendation type, user-module rating matrix R′, current user id uid

Result: recommendations R = [〈cpi, ranki〉] with ranki ≥ Trank

1 R = array();
2 Patterns = set();
3 recTypeToBeGiven = getSuitableRecTypes(object, action,OAR);
4 foreach recType ∈ recTypeToBeGiven do
5 if recType ∈ {ParV alue, Connector,DataMapping, CompCooccur} then
6 Patterns = Patterns∪ queryPatterns(object,KB, recType) ; // exact query
7 else
8 Patterns = Patterns∪ getSimilarPatterns(object,KB.MultiCompPattern, CompSim, Tsim) ;

// similarity search

9 foreach pat ∈ Patterns do
10 if rank(pat.cp, pat.sim, pm) ≥ Trank then
11 append(R, 〈pat.cp, rank(pat.cp, pat.sim, pm)〉) ; // rank, threshold, remember

12 foreach r ∈ R do
13 foreach module ∈ r.pat.cp do
14 r.rank += getPersonalizedRank(uid,module,M) ; // rank a pattern based upon user ratings for its

constituent modules

15 sortByRank(R);
16 groupByType(R);
17 truncateByGroup(R,K); // filter top-K patterns based upon their rank value
18 return R;

prediction algorithm i.e., it says that the predicted ratings, for those items for which
we already knew the rating before running the algorithm, are closer to the expected
ratings.

These predicted rating matrices, which already incorporate users’ preference infor-
mation, are then used as an input by our recommendation algorithm. Algorithm 4
shows how we incorporate this rating matrix information in the filtering of the re-
trieved composition patterns based upon user’s development preferences. As shown in
lines (12-14) in Algorithm 4, each retrieved pattern is assigned a rank based on the
sum of rating values for it’s constituent modules for the given user. These ratings in-
formation are retrieved from the non-sparse matrix produced by of the ALS algorithm.
Patterns are then sorted based upon the assigned rank value (line 15) and finally the
top-k patterns are selected from the sorted list and are recommended to the user.

3.3.5. Evaluation

— Test setting. We implemented the recommendation engine, the KB access API, and
the client-side pattern KB along with the recommendation and similarity search al-
gorithms, in order to perform a detailed performance analysis. The prototype im-
plementation is entirely written in JavaScript and has been tested with a Firefox
3.6.17 web browser. The implementation of the client-side KB is based on SQLite
(http://www.sqlite.org) for storing data on the client’s in-browser memory. Given
that SQLite does not support set data types, we serialize the representation of com-
plex patterns 〈C,DF,DF ′〉 in JSON and store them as strings in the respective Com-
plexPattern table in the KB; doing so slightly differs from the KB model in Figure 4,
without however altering its spirit. The implementation of the persistent pattern KB
is based on MySQL, and it is accessed by the KB loader through a dedicated RESTful
Java API running inside an Apache 2.0 web server. The prototype implementation is
installed on a MAC machine with OS X 10.6.1, a 2.26 GHz Intel Core 2 Duo processor,

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Assisting Mashup Development by Reusing Community Composition Knowledge A:17

0"

100"

200"

300"

400"

500"

600"

700"

10" 100" 1000"

Re
tr
ie
va
l)*

m
e)
[m

s]
)

Number)of)complex)pa7erns)in)KB)

(a))Similarity)search)*mes)for)varying)KB)and)
object)sizes)

|obj.C|=1"

|obj.C|=2"

|obj.C|=3"

|obj.C|=4"

|obj.C|=5"

|obj.C|=6"

|obj.C|=7"

Average"

500#
520#
540#
560#
580#
600#
620#
640#
660#

0# 1# 2# 3# 4# 5# 6# 7# 8#

Re
tr
ie
va
l)*

m
e)
[m

s]
)

Number)of)components)in)object'

(b))Retrieval)*mes)of)complex)pa:erns)for)varying)
object)sizes)for)1000)complex)pa:erns)in)KB)

0"

100"

200"

300"

400"

500"

600"

700"

10" 100" 1000"

Re
tr
ie
va
l)*

m
e)
[m

s]
)

Number)of)complex)pa7erns)in)KB)

(c))Total)recommenda*on)*mes)in)case)the)
modeler)adds)a)new)component)to)the)mashup)

Connector"

Par"value"

Co6occurrence"

Mul8"comp"

Total"

Fig. 9. Performance evaluation of the client-side knowledge recommender.

and 2 GB of memory. Response times are measured with the FireBug 1.5.4 plug-in
for Firefox.
For the generation of realistic test data, we assumed to be in the presence of a
mashup editor with 26 different components (A−Z), with a random number of input
and configuration parameters (ranging from 1 − 5) and a random number of output
attributes (between 1− 5). To obtain an upper bound for the performance of the exact
queries for parameter value, connector, data mapping, and component co-occurrence
patterns, we generated, respectively, 26 ∗ 5 = 130 parameter values for the 26 com-
ponents, 26 ∗ 25 = 650 directed connectors, 650 ∗ 5 = 3250 data mappings, and 650
component co-occurrences. To measure the performance of the similarity search algo-
rithms, we generated 5 different KBs with 10, 30, 100, 300, 1000 complex patterns,
where the complexity of patterns ranges from 3 − 9 components. The patterns make
random use of all available components and are equally distributed in the generated
KBs. Finally, we generated a set of query objects with |obj.C| ∈ {1..7}.

— Performance of recommendation algorithms. In Figure 9, we illustrate the tests
we performed and the respective results. The first test in Figure 9(a) studies the per-
formance in terms of pattern retrieval times of Algorithm 2 for different KB sizes; the
figure plots the retrieval times for different object sizes. Considering the logarithmic
scale of the x-axis, we note that the retrieval time for complex patterns grows almost
linearly. This somehow unexpected behavior is due to the fact that, compared to the
number of patterns, the complexity of patterns is similar among each other and lim-
ited and, hence, the similarity calculation can almost be considered a constant. We
also observe that there are no significant performance differences for varying object
sizes. In Figure 9(b) we investigate the effect of the object size on the performance

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 S. Roy Chowdhury et al.

of Algorithm 2 only for the KB with 1000 complex patterns (the only one with no-
table differences). Apparently, also the size of the query object does not affect much
retrieval time. Figure 9(c), finally, studies the performance of Algorithm 1, i.e., the
performance perceived by the user, in a typical modeling situation: in response to the
user placing a new component into the canvas, the recommendation engine retrieves
respective parameter value, connector, co-occurrence, and complex patterns (we do
not recommend data mappings for single components); the overall response time is
the sum of the individual retrieval times. As expected, the response times of the sim-
ple queries can be neglected compared to the one of the similarity search for complex
patterns, which basically dominates the whole recommendation performance.
In summary, the above tests confirm the validity of the proposed pattern recommen-
dation approach and even outperform our own expectations. The number of compo-
nents in a mashup or composition tool may be higher, yet the number of really mean-
ingful patterns in a given modeling domain only unlikely will grow beyond several
dozens or 100. Recommendation retrieval times of fractions of seconds will definitely
allow us – and others – to develop more sophisticated, assisted composition environ-
ments.

— Recommendation Accuracy. To evaluate the accuracy of our recommendation al-
gorithms (with and without users’ development preference based filtering), we follow
the widely accepted recommendation system evaluation metrics such as precision
and recall metrics. To calculate these metrics we had to calculate the true positive,
false positive and false negative metrics for our test results. If the expected modules
are found in the top-k list as returned by the recommendation engine then we mark
the result as true positive (TP), if the expected module is not found in the recom-
mended top-k list then we mark the result as false positive (FP), and if algorithm
doesn’t return any recommendation for a step then we mark the result as false neg-
ative (FN). The precision, recall and the F1 measures are calculated by using the
standard formula.

precision =
|TP |

|TP |+ |FP |

recall =
|TP |

|TP |+ |FN |

(3)

For our test purpose we selected 100 working pipes models, from the crawled pipes set
that we used for building the user development profiles. For the test purpose we made
sure that those pipes are not considered as input while building our pattern KB. The
reasons for doing so were: firstly we wanted to filter the recommendations based
upon the user preferences that we have already built and secondly we didn’t want to
recommend patterns to the same pipe that we might have used while extracting the
pattern information. Doing so also verified the coverage of our pattern KB to a certain
extent. The strategy that we followed to perform the evaluation test is described
in Figure 10. We decomposed a subset of 100 working pipes (pipes that were not
considered as input for our pattern mining algorithm) into subgraphs and then used
them as query for our recommendation algorithm. Based upon the retrieved results
we calculate the precision and recall measures for our algorithms. We use the same
evaluation strategy for both of our recommendation algorithms, with and without
preference based filtering algorithm and the results of the evaluations: varying object
size and with fixed k=10 is shown in Figure 11. In all of our tests, the recommendation
algorithm variant that includes user preference based filtering approach out performs

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Assisting Mashup Development by Reusing Community Composition Knowledge A:19

Original mashup model in Yahoo! Pipes

subgraphs with varying size

A

CAC
E

CE

DED

A C AC
A C

AC
CE

E

AC
A

C CE

E D
ED

(1) (2)

(3)

A C

query Object expected
 recommendation

A C

query Object expected
 recommendation

retrieved patterns Top K (cp.C) = {B,C,F,G}
TP=1
FP=0
FN=0

E

retrieved patterns Top K (cp.C) = {M,N,F,G}
TP=0
FP=1
FN=0

A C

query Object expected
 recommendation

E D

retrieved patterns Top K (cp.C) = {}
TP=0
FP=0
FN=1

Decomposed into subgraphs

Step 1. for |obj.C|=1 Step 2. for |obj.C|=2 Step 3. for |obj.C|=3

C E
CE

E D
ED

CE
C E ED

D

Fig. 10. Evaluation strategy for calculating the accuracy of our recommendation algorithms

--- |obj.c|=4

--- |obj.c|=3

--- |obj.c|=2

--- |obj.c|=1

algo. w/o
personalization

algo. with
personalization

Recall precision graph for the two variants of our
recommendation algorithm (k=10)

0.59%

0.48%

0.3%

0%

0.78%0.79%

0.72%

0.11%

0%

0.1%

0.2%

0.3%

0.4%

0.5%

0.6%

0.7%

0.8%

0% 0.1% 0.2% 0.3% 0.4% 0.5% 0.6% 0.7% 0.8% 0.9% 1%

pr
ec
is
io
n)

recall)

Fig. 11. Accuracy measures for the top-10 recommendations by our algorithms

the naive version. This verifies our claim of incorporating the personalization aspects
in the recommendation algorithm to improve the accuracy of the overall system.
In the test result as shown in Figure 11, one may observe that the accuracy falls
sharply once we go beyond object size 3, this is due to the fact that in our pattern KB
we hardly have patterns with size greater than 4. This limitation can be addressed by
extending the coverage of our pattern knowledge base. One may also observe that the
precision and recall of both algorithms fall sharply once we go below 7 for the k value
(cf. Figure 12). One may also observe in Figure 11, that the recall values calculated
for both our algorithms with object size =1 and varying k, are always 1. This is due
to the fact that in Yahoo! Pipes there are a limited number of modules (#51), so for

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 S. Roy Chowdhury et al.

0.00#

0.10#

0.20#

0.30#

0.40#

0.50#

0.60#

0.70#

0.80#

0.00# 0.10# 0.20# 0.30# 0.40# 0.50# 0.60# 0.70#

pr
ec
is
io
n)

recall)

Recall precision graph for the two variants of our
recommendation algorithm with varying k and fixed object

size = 3

Recall precision graph for the two variants of our
recommendation algorithm with varying k and fixed object

size = 2

0.40$

0.45$

0.50$

0.55$

0.60$

0.65$

0.70$

0.75$

0.80$

0.85$

0.40$ 0.50$ 0.60$ 0.70$ 0.80$

pr
ec
is
io
n)

recall)

Recall precision graph for the two variants of our
recommendation algorithm with varying k and fixed object

size = 1

0.40$

0.45$

0.50$

0.55$

0.60$

0.65$

0.70$

0.75$

0.80$

0.85$

0.4$ 0.5$ 0.6$ 0.7$ 0.8$ 0.9$ 1$ 1.1$

pr
ec
is
io
n)

recall)

algo. w/o
personalization

algo. with
personalization

--- k=7

--- k=8

--- k=9

--- k=10

Fig. 12. Accuracy measures for our algorithms under different parameters settings

each object (each modules in this case) in the test pipes model, we have at least one
pattern to be recommended in our KB.

4. AUTOMATED WEAVING OF COMPOSITION PATTERNS
We don’t limit our system functionality to only recommending patterns that can be
applied to the current composition context, but we also help users in progressing their
development task by applying a selected pattern in the current model on behalf of the
user. We call this functionality automated weaving of composition patterns. In order to
assist the modeler in this task, we desinged pattern weaving algorithms that enable
our system to take an active role in the modeling process and applying a selected
pattern to the partial mashup model in the modeling canvas on behalf of the user.
Doing so is not trivial at all and requires solving a set of peculiar modeling issues
automatically.

Weaving a given pattern cp into a partial mashup model pm is not straightforward
and it requires a thorough analysis of both pm and cp, in order to understand how to

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Assisting Mashup Development by Reusing Community Composition Knowledge A:21

apply cp to the constructs already present in pm without resulting in modeling con-
flicts. The problem is not as simple as just copying and pasting the pattern, in that
new identifiers of all constructs of cp need to be generated, connectors must be rewrit-
ten based on the new identifiers, and connections with existing constructs must be
defined by satisfying the modeling constraints. We have defined the below strategies
and algorithms in order to achieve the automated weaving functionality in Baya.

4.1. Basic Weaving Strategy
Given an object and the pattern cp of a recommendation, the basic weaving strat-
egy BS provides the sequence of mashup operations that are necessary to weave cp
into the object. The basic weaving strategy tells how to expand object into cp (object
being a part of cp) without taking into consideration pm. The basic weaving strategy
is static for each pattern type. The key ingredient of the BS is therefore the basic
mashup operations available to express the strategy. In Table I, we define the set of
mashup operations that resemble the operations a developer can typically perform in
the modeling canvas when designing a mashup. Mashup operations modify the partial
mashup pm and produce an updated version pm′. All operations assume that the pm
is globally accessible. The internal logic of these operations is highly platform-specific,
in that they need to operate inside the target modeling environment; in our case, our
implementation manipulates the JSON representation of Yahoo! Pipe’s mashup mod-
els. In Table II, we provide the basic strategies for the patterns introduced in Section
2.2 in the form of a function getBasicStrategy(cp, object)→ BS. For instance, the basic
weaving strategy for a component co-occurrence pattern of type ptypecomp is as follows
(we assume object=compx with compx.type=cx.type, where cx is the first component of
the selected pattern): To weave the pattern, a new component cy must be added to the
composition. This step is denoted by the instruction $newcid4=addComponent(cy.type),
which is followed by connecting the existing component compxwith the new compo-
nent (addConnector(〈compx.id, compx.op,$newcid,cy.ip〉)). Then, we apply the respec-
tive data mappings of cy and value assignments for the parameters of both cx and
cy.

4.2. Conflict Resolution and Contextual Weaving Strategy
Applying the mashup operations in the basic strategy may require the resolution of
possible conflicts among the constructs of pm and those of cp. For instance, if we want
to add a new component of type ctype to pm, but pm already contains a component comp
of type ctype, we are in the presence of a conflict; either we decide to reuse comp, which
is already there, or we decide to create a new instance of ctype. In the former case, we
say, we apply a soft conflict resolution policy, in the latter case a hard policy. In Table
III, we describe our hard conflict resolution policy for the conflicts that may arise when
weaving a pattern, while the soft conflict policy can be found at Appendix A. Given an
object, a pattern cp, and a partial mashup pm, the contextual weaving strategy WS
is the sequence of mashup operations that are necessary to weave cp into pm.

The core logic of our pattern weaver is expressed in Algorithm 5. First, it derives
a basic strategy BS for a given composition pattern cp and the object from pm (line
2). Then, for each of the mashup operations instr in BS, it checks for possible con-
flicts with the current modeling context pm (line 4). In case of a conflict, the function
resolveConflict(pm, instr) derives the corresponding contextual weaving instructions
CtxInstr replacing the conflicting, basic operation instr. CtxInstr is then applied to
the current pm to compute the updated mashup model pm′ (line 5), which is then used

4We highlight identifier place holders (variables) that can only be resolved when executing the operation
with a “$” prefix.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 S. Roy Chowdhury et al.

Table I. Data-flow based mashup operations for the definition of basic strategies

addComponent(ctype) → cid′: produces a pm′ with a new component of type ctype added to pm; the
operation returns cid′, i.e., the identifier of the newly created component.

deleteComponent(cid): produces pm′ with the component identified by cid and all references to it or
elements thereof (e.g., connectors with other components, data mappings) deleted from pm.

assignValues(cid, V A): produces pm′ with the value assignments V A added to component cid.

deleteAllValues(cid): produces pm′ with all input parameters of component cid emptied.

deleteValue(cid, in): produces pm′ with the input parameter in for component cid emptied.

addConnector(dfxy): produces pm′ with the output port opx of the component with identifier cidx con-
nected to the input port iny of the component identified by cidy (remember dfxy = 〈cidx, opx, cidy , ipy〉).
deleteConnector(dfxy): produces pm′ with data flow dfxy and the possible data mapping defined in the
target component deleted from pm.

assignDataMappings(cid,DM): produces pm′ with a data mapping DM for component cid.

deleteAllDataMappings(cid): produces pm′ with data mappings deleted from component cid.

deleteDataMapping(cid, in): produces pm′ with the data mapping for the input parameter in deleted
from the component identified by cid.

embedComponent(hostid, embid): produces pm′ with the component with identifier embid embedded
in the component with identifier hostid.

ALGORITHM 5: getWeavingStrategy
Data: partial mashup model pm, composition pattern cp, object object that triggered the

recommendation
Result: contextual weaving instructions WS, i.e., a sequence of abstract mashup operations;

updated mashup model pm′

1 WS = array();
2 BS = getBasicStrategy(cp, object);
3 foreach instr ∈ BS do
4 CtxInstr = resolveConflict(pm, instr);
5 pm = apply(pm,CtxInstr);
6 append(WS,CtxInstr);
7 return 〈WS, pm〉;

as basis for weaving the next instr of BS. The contextual weaving structure WS is
constructed as concatenation of all conflict-free instructions CtxInstr. Note that Al-
gorithm 5 returns both the list of contextual weaving instructions WS and the final
updated mashup model pm′. The former can be used to interactively weave cp into pm,
the latter to convert pm′ into native formats.
Example. Let’s see a concrete example of how the contextual weaving strategy is built
starting from the basic strategy, the conflict resolution policy, the partial mashup, and
the pattern to be woven. We use the modeling situation illustrated in Figure 1. Let
us assume an intermediate modeling step, in which the modeler’s last modeling action
was placing the Fetch Feed component and connecting it with the output of the URL
Builder component. Let us further assume that our pattern recommender recommends
a set of patterns in response to this modeling action. Among the recommended set of
composition patterns suppose the modeler wants to accept a component co-occurrence
recommendation that suggest to add a Filter component with the existing Fetch Feed
component in the current composition context, similar to the scenario as shown in
Figure 1. Applying this pattern to the partial model in the canvas requires: (i) adding

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Assisting Mashup Development by Reusing Community Composition Knowledge A:23

Table II. Function getBasicStrategy(cp, object)→ BS

Object Basic Strategy

Parameter value pattern ptypepar

comp with comp.type=c.type assignValues(comp.id, V A);

Connector pattern ptypecon

compx, compy with
compx.type=cx.type and
compy .type=cy .type

addConnector(compx.id, cx.op, compy .id, cy .ip);
assignDataMappings(compy .id, cy .DM);

Component co-occurence pattern ptypecom

compx with
compx.type= cx.type

$newcid=addComponent(cy .type);
addConnector(〈compx.id, cx.op, $newcid, cy .ip〉);
assignDataMapping($newcid, cy .DM);
assignValues(compx.id, cx.V A);
assignValues($newcid, cy .V A);

Component embedding pattern ptypeemb

compx, compy , dfxy with
compx.type= cx.type and
compy .type = cy .type

$embcid=addComponent(cz .type);
addConnector(〈compx.id, cx.op, $embcid, cz .ip〉);
addConnector(〈$embcid, cz .op, compy .id, cy .ip〉);
embedComponent(compy .id, $embcid);
assignDataMappings(compy .id, cy .DM);
assignDataMappings($embcid, cz .DM);
assignValues(compx.id, cx.V A);
assignValues(compy .id, cy .V A);
assignValues($embcid, cz .V A);

Multi component pattern ptypemul

comp with
comp.type ∈ Types(C)

∀ci ∈ (C − {comp}) $newcid[i] = addComponent(ci.type);
compidx = i with ci.type=comp.type;
$newcid[compidx] = comp.id;
∀fxy ∈ DF
addConnector(〈$newcid[srccid], srcop, $newcid[tgtcid], tgtip〉);
∀i ∈ $newcid assignDataMappings($newcid[i], ci.DM);
∀i ∈ $newcid assignValues($newcid[i], ci.V A);

a new Filter component, (ii) connecting the Filter component with the output of the
Fetch Feed component, (iii) applying the data mapping stored in the pattern to the
newly created Filter component, (iv) resolving the conflict among the values of the
URL parameter of the Fetch Feed component in the partial mashup and in the pattern,
(v) assigning parameter values to the Filter component. While these steps can be done
also manually, but our goal is to perform them automatically.

Applying Algorithm 5 to this weaving situation produces the contextual weaving
strategy in Figure 13, which resembles the modeling steps described above in terms of
the basic mashup operations introduced in Table I. Line 1 adds the new Filter compo-
nent and stores the respective identifier in the variable $newcid. Line 2 connects the
new component to the Fetch Feed component. In order to do so, the pattern weaver re-
trieves the id of the Fetch Feed component from the JSON representation of the partial
mashup model (in our test with Yahoo! Pipes this specifically produced the id “sw-100”;
for different runs, this identifier will change) and invokes the function addConnector,
passing the id “sw-100”, the type of the output port “ OUTPUT” for Fetch Feed, the
id of the newly created Filter component, and the type of the respective input port
(“ INPUT”) for Filter component to it. The output and input port types are stored in
the pattern, they are replaced with their ids at runtime.

Line 3 assigns the data mappings to the Filter component in the form of three name-
value pairs. the name identifies the input field (e.g., “conf.Rule[0].field”), while the

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 S. Roy Chowdhury et al.

Table III. Hard conflict resolution policy resolveConflict(pm, instr)→ CtxInstr

Basic instruction instr Conflict with pm Contextual instr. CtxInstr

assignValues(cid, V A); We want to apply only the
new value assignment, indepen-
dently of possible existing value
assignments.

deleteAllValues(cid);
assignValues(cid, V A);

addConnector(dfxy); The connector dfxy already ex-
ists.

—

addConnector(dfxy); A connector dfzy 6= dfxy from
a component compz to the same
input port ipy of dfxy already ex-
ists, and iny allows only one con-
nector in input.

deleteConnector(dfzy);
addConnector(dfxy);

$var=addComponent(ctype); A component comp of type ctype
already exists, and we don’t
want to reuse existing compo-
nents.

$var=addComponent(ctype);

assignDataMappings(cid,
DM)

We want to apply only the new
data mapping to the component.

deleteAllDataMappings(cid);
assignDataMappings(cid,
DM);

embedComponent(hostid,
embid);

A component with identifier
oldid has already been embed-
ded into the component hostid.

deleteComponent(oldid);
embedComponent(hostid,
embid);

1 $newcid=addComponent(“Filter”);
2 addConnector(〈“sw-100”,“ OUTPUT”,$newcid,“ INPUT”〉);
3 assignDataMapping($newcid,{〈“conf.Rule[0].field”,“item.description”〉,
〈“conf.Rule[1].field”,“item.description”〉,〈“conf.Rule[2].field”,“item.description”〉});
4 deleteAllValues(“sw-100”);
5 assignValues(“sw-100”,〈“conf.URL”,“url[wired]”〉);
6 assignValues($newcid,{〈“conf.MODE”,“permit”〉,
〈“conf.COMBINE”,“any”〉,
〈“conf.RULE[0].op”,“contains”〉 ,〈“conf.RULE[0].value”,“Apple”〉,
〈“conf.RULE[1].op”,“contains”〉,〈“conf.RULE[1].value”,“AppleMac”〉,
〈“conf.RULE[2].op”,“contains”〉,〈“conf.RULE[2].value”,“iPhone”〉});

Fig. 13. Contextual weaving strategy for weaving a composition pattern

value is the data mapping (e.g., “item.description”). Both values are stored in the pat-
tern.

Lines 4 and 5 assign the value to the URL parameter (identified internally via
“conf.URL”) of the Filter component. Actually, the two lines are the result of the res-
olution of a conflict. The conflict resolver therefore expands the assignValues function
as described in Table III, first deleting the old value and then assigning the new one.
Incidentally, in our example the old and the new values are the same; this is not true
in general.

Finally, line 6 applies the value assignments to the Filter component and thus the
pattern is successfully woven into the partial mashup model in the canvas.

5. IMPLEMENTATION
Figure 14 (adapted from the architecture diagram presented in our previous work
[Daniel et al. 2012]) details the internals of our pattern recommender and weaving
approach. We distinguish between client and server side, where the pattern mining
logic and the user’s development profile creation logic are located in the server and the
recommendation and weaving logic resides in the client. We also distinguish between
the online and offline steps involved in our system.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Assisting Mashup Development by Reusing Community Composition Knowledge A:25

Interactive modeling environment in client browser

Event busKB loader

 cp

Recom-
mendation
 R

Query q

Patterns

Co
m

po
sit

io
n

pa
tte

rn
, u

se
rs

 ra
tin

gs

Pa
tte

rn
 u

sa
ge

 s
ta

tis
tic

s

User
selection

cp

Modeling
instructions
instr

Object-action-
recommend. mapping

Similarity
metrics

Ranking
algos

pm

Modeling action
<object,action>

pm

Modeling action
<object,action>

Modeling
instructions

instr

 object

Interactive modeling environment

Modeling canvas

Re
co

m
en

da
tio

n
pa

ne
l

Partial mashup
model

 pm

Event
interceptor

Mashup
operation
enactor

Client-side
knowledge base

Conflict
resolver

Weaving
instructor

Basic
strategy
selectorBasic

strategies

Conflict
res. policies Basic

strategy
Contextual
Strategy

<c
p,

ob
je

ct
>

Synchronization
of client side and
server side pattern
knowledge base

Pattern weaver

Pa
tte

rn
in

st
an

ce

cp
'

us
er

se

le
ct

io
n

cp

Recommendation
engine

pattern KBuser-ratings

Composition server

<mashup>
...
</mashup>

Native mashup
models

User
development

history
Users dev.

profile creator
 Implicit rating

calculator

pattern KBuser-ratings

user ratings matrix

Server-side
knowledge base

steps related to recommendation steps related to weaving

----- sole part of the work presented in this paper

----- not a part of the work presented in this paper

composition
pattern

on
lin

e
st

ep
s

of
fli

ne
 s

te
ps

Model adapter
(native to
canonical)

Canonical models

<mashup>
...
</mashup>

Pattern
miner

Canonical patterns

<mashup>
...
</mashup>

Model adapter
(canonical to

native)

online steps offline steps

Fig. 14. Functional architecture of the interactive pattern recommendation and automated weaving ap-
proach

In the recommendation server, a model adapter imports the native mashup mod-
els into the canonical format. The pattern miner then extracts reusable composition
knowledge in the form of composition patterns, which is then handed to a second
model adapter to convert the canonical patterns into native patterns and load them
into a knowledge base (KB). To know more about the pattern-mining algorithms, we
encourage the reader to refer to the work [Rodrı́guez et al. 2013]. The Development pro-
file creator creates the development profiles (containing information about the compo-
nents and sources used by the user in his/her mashups) for users as explained in Sec-
tion 3.3.2. Based on this information the implicit rating calculator then calculates the
preference ratings for all components and sources for all users of the system. Implicit

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 S. Roy Chowdhury et al.

rating calculator implements matrix-factorization based collaborative filtering algo-
rithm SVD to generate the user-component and user-source rating matrices. These
matrices are then stored inside the server-side knowledge base along with the pattern
KB.

The client-side pattern KB runs on an in-browser database implementation. This
eliminates performance overheads of client-server communication for retrieving rec-
ommendation patterns at runtime. Client and server-side pattern KBs are synchro-
nized once upon loading the client-side interactive recommender inside the client
browser. From then on, all queries triggered by the recommendation engine to retrieve
composition patterns from the KB are directed to the client-side only.

The interactive modeling environment runs in the client-side browser. It is here
where the pattern recommendation logic reacts to modeling actions performed by the
modeler on a construct (the object of the action) in the canvas. For instance, we can
drop a component onto the canvas, or we can select a parameter. Upon each interac-
tion, the action and its object are published on a browser-internal event bus, which
forwards them to the recommendation engine. With this information and the partial
mashup model pm the engine queries the client-side KB for recommendations, where
an object-action-recommendation mapping tells the engine which types of recommen-
dations are to be retrieved. The list of patterns retrieved from the KB are then ranked
based upon the user’s preferences on the constituent components in a pattern. Finally
the ranked patterns are rendered in the recommendation panel.

Upon the selection of a pattern from the recommendation panel, the pattern weaver
weaves it into the partial mashup model. The pattern weaver first retrieves a basic
weaving strategy (a set of modelagnostic mashup instructions) and then derives a con-
textual weaving strategy (a set of model-specific instructions), which is used to weave
the pattern. Deriving the contextual strategy from the basic one may require the res-
olution of possible conflicts among the constructs of the partial model and those of the
pattern to be weaved. The pattern weaver resolves them according to a configurable
conflict resolution policy.

5.1. Baya for Yahoo! Pipes
We have implemented the algorithms, policies, and architectural components de-
scribed in Figure 14 as a Mozilla FireFox add-on for the Yahoo! Pipes mashup en-
vironment; the tool is called Baya5 [Roy Chowdhury et al. 2012]. We didn’t want to
develop yet another mashup environment; so we opted for an extension of an existing
mashup tool (as a first step, we focused on Yahoo! Pipes; other tools will follow). In
Baya we used community composition knowledge i.e., composition patterns that are
mined from the exisiting Yahoo! Pipes models, as the source for the recommendation
knowledge.

Baya seamlessly integrates the interactive recommendation panel with the Pipes
modeling canvas, allowing the modeler to inspect recommendations and to choose
which pattern to weave. The implementation is based on JavaScript for the business
logic (e.g., the pattern search, retrieval, and matching algorithms and the pattern
weaving algorithm) and XUL (XML User Interface Language, https://developer.
mozilla.org/En/XUL) for the UI development. The use of JavaScript is the basis for
the implementation of custom event listeners that intercept modeling events on el-
ements in the DOM tree (e.g., dropping a new component) and of the mashup op-
erations described in Table I. Mashup operations are written in JavaScript to ma-
nipulate the mashup model’s JSON representation. We save the modified version in
the Pipe’s server by using the HTTP Post method of Pipe’s client-side environment.

5The Baya weaver is a weaverbird that weaves its nest with long strips of leaves.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Assisting Mashup Development by Reusing Community Composition Knowledge A:27

Yahoo! Pipes
modeling canvas

Newly added component

Baya recommendation panel

Recommended
patterns

Details about
selected pattern

Component
toolbar

Fig. 15. Screenshot of Baya

Both the weaving strategies (basic and contextual) are encoded as JSON arrays of
mashup operations, which enables us to use the native eval() command for fast and
easy parsing of the weaving logic. The implementation of the KB is based on SQLite
(http://www.sqlite.org).

5.2. Extension of Baya for other mashup tools

In the context of the EU project OMELETTE (http://www.ict-omelette.eu/), we ex-
tended towards extending Baya’s recommendation and weaving algorithms to sup-
port W3C widget based mashup development in and open-source mashup platform
Apache Rave (http://rave.apache.org/). To aid users of Apache Rave in building
their mashups by reusing existing composition knowledge, we developed a pattern rec-
ommender widget (cf. Figure 16). Currently, the pattern recommender widget supports
two composition pattern types: widget co-occurence and multi widget patterns. For
this version of Baya for Apache Rave, we used expert composition knowledge i.e., com-
position patterns manually provided by domain experts. Our pattern knowledge base
contains compositon patterns (i.e., instances of widget co-occurence and multi widgets)
that covers different application scenarios that we support in our tool. Similar to Baya,
the pattern recommender reacts to user modeling actions (adding, deleting, or selecting
a widget, etc.) on widgets (the object of an action) in the workspace (current mashup
design). The pattern recommender widget contains recommendation and weaving al-
gorithms implemented in JavaScript. The client-side pattern KB runs on an in-browser
SQLite (http://www.sqlite.org/) implementation. JavaScript event listeners capture
the triggering events for pattern retrieval, i. e., DOM modifications (e.g., adding a wid-
get, deleting a widget) of the workspace model. The composition patterns are stored as

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 S. Roy Chowdhury et al.

Newly added widget

Recommended patterns

Rate the pattern

Weave
 the pattern

reacts to addition of

click and get details

Fig. 16. Screen shot of workspace pattern recommender: an assistance utility that supports step-by-step
widget mashups

JSON model in the pattern KB. The pattern recommender widget implementation ex-
tends Apache Rave’s native APIs for accessing the current mashup model information
and for weaving of a selected pattern into the current workspace model.

6. USER STUDIES
To asses the effectiveness of Baya, two user studies were performed during the course
of this research work.

6.1. Baya in Yahoo! Pipes
. The first user study was performed by us, with the help of Amazon’s Mechanical
Turk crowd sourcing platform (https://www.mturk.com/mturk/welcome). We specifi-
cally tested the following hypotheses:

HYPOTHESIS 1. (H1) Baya speeds up development. That is, the average development
time by users with Baya is lower than that by users without Baya.

HYPOTHESIS 2. (H2) Pipe design with Baya requires less user interactions (number
of clicks) than without Baya.

HYPOTHESIS 3. (H3) Pipe design with Baya requires less thinking time (time be-
tween two user interactions) to take modeling decisions than without Baya.

In order to collect data for the evaluation, we elaborated a scenario to be developed
in Yahoo! Pipes and designed two different test settings: a control group developed
the scenario without Baya, a test group developed the same scenario with the help
of Baya. A google form replica for the questionnaire that we used for control group
can be found at http://goo.gl/9UnZW and similarly for the test group can be found at
http://goo.gl/B3ZEO. Both groups had to install the Baya add-on, in order to objec-
tively measure the development time and number of user interactions; for the control
group, the recommendation panel was disabled. After the development task, partici-

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Assisting Mashup Development by Reusing Community Composition Knowledge A:29

50
0

10
00

15
00

20
00

25
00

10
0

20
0

30
0

40
0

50
0

60
0

Control Group Test Group

D
ev

el
op

m
en

t t
im

e
in

 s
ec

on
ds

N
um

be
r o

f u
se

r i
nt

er
ac

tio
ns

Control Group Test Group

(a) Mean development time in
designing a pipe without and with Baya

(b) Mean number of user interactions in
designing a pipe without and with Baya

50
0

10
00

15
00

 2

00
0

 2

50
0

10
0

20

0

30
0

40

0

50
0

60

0

Control Group Test Group

3
4

5
6

7
8

Th
in

ki
ng

 ti
m

e
(d

ev
. t

im
e

/ n
um

be
r

of
 in

te
ra

ct
io

ns
) i

n
se

co
nd

s

(c) Mean thinking time for designing
a pipe without and with Baya

3

4

5

6

7

8

Fig. 17. User study with 30 participants split into a control and a test group

pants were asked to fill an on-line questionnaire, probing their satisfaction with their
development experience (we used a five-point Likert scale ranging from strongly agree
- strongly disagree to collect feedback). In three days (from May 16 - May 18, 2012) and
with a reward of 1$ for developing the pipe and filling the questionnaire and 0.10$ for
additional, free feedback, we could attract 32 participants, out of which 30 provided
useful data (15 in each group). Each participant had to pass a qualification test with
questions about Yahoo! Pipes, in order to assure that we only enrolled people with
some minimum level of development knowledge and to prevent junk answers.

The data collected are illustrated in Figure 17. In order to accept or reject our hy-
potheses, we used Welch’s t-test for equal sample sizes and unequal variance:

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 S. Roy Chowdhury et al.

50
10
0

15
0

20
0

0
50

10
0

15
0

D
ev

el
op

m
en

t t
im

e
in

 s
ec

on
ds

Control Group Test Group

50

10

0

15

0

20

0

 Mean development time in extending a
workspace without and with pattern

recommender

(a) Results of user study conducted
in China

D
ev

el
op

m
en

t t
im

e
in

 s
ec

on
ds

50

10
0

15
0

Control Group Test Group

 Mean development time in extending a
workspace without and with pattern

recommender

(b) Results of user study conducted in
Germany

Fig. 18. Results for usability validation test executed in China and in Germany to evaluate the benefit of
pattern recommender tool

— H1: Figure 17(a) shows the collected development times, with µdev,ctrl = 1027.1s and
µdev,test = 384.9s. The null hypothesis is µdev,test - µdev,ctrl = 0, i.e., there is no sig-
nificant difference between the two development times. The p-value for this null hy-
pothesis is 0.00045, which is very small. Hence, we reject the null hypotheses, which
proves that Baya speeds up development.

— H2: Figure 17(b) shows the number of interactions; µint,ctrl = 258.9 and µint,test =
74.3. The null hypothesis is µint,text - µint,ctrl = 0. The p-value for this hypothesis
is 0.00009, which is again a very small, and we have to reject the null hypothesis.
Hence, Baya requires less user interactions.

— H3: Figure 17(c) shows the thinking times; µth,ctrl = 4.0s and µth,test = 5.5s, i.e., the
control group has lower thinking time (against H3). The null hypothesis is µth,test -
µth,ctrl = 0. The p-value for this hypothesis was 0.00209, which is again a very small
probability. Hence, Baya increases thinking time.

The feedback collected via the questionnaire further reinforced these conclusions:
73% of the control group agreed that understanding which module to use in their pipe
took most of their time, whereas 100% (27% strongly agreed and 73% agreed) agreed
that assigning the right parameter values to a module took most of their design time.
73% of the control group agreed that some form of automated assistance would have
helped them in their task. Out of the test group subjects, 80% strongly agreed that the
interactive recommendations saved their time, whereas 73% agreed that the automatic
weaving feature saved their time (27% expressed a neutral view on that). As for the
tested scenario, 80% of the control group and 73% of the test group strongly agreed that
the scenario was non-trivial, a property we required to be able to collect meaningful
data.

6.2. Baya in Apache Rave
. To cross-validate the result of our first user study another follow-up study was con-
ducted with our protype system by T-Systems (http://www.t-systems-mms.com/) and
Huwaei (http://www.huawei.com/en/) in the context of the OMELETTE project. The
aim of that study was again to evaluate the usefulness of our assisted development

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Assisting Mashup Development by Reusing Community Composition Knowledge A:31

approach in an end-user mashup design scenario. The study was conducted in China
and in Germany and totally 22 participants took part in that study. The data collected
during the study are illustrated in Figure 18. Again we used Welch’s t-test for equal
sample sizes and unequal variance to verify our hypotheses. In this study, however, due
to organizational reasons and because the test was performed without our involvement
only H1 was tested. In this study the control and the test group were asked to extend
an existing mashup (workspace) with new design requirements with and without the
help of our pattern recommendation tool. This task required them to add at least two
new widgets in their existing workspace in order to meet the design requirement. The
development time for both the groups were collected in order to test the validity of our
hypothesis.

H1: Figure 18(a) shows the collected development times, with µdev,ctrl = 139.8s and
µdev,test = 54.6s for Chinese users. Figure 18(b) shows the collected development times,
with µdev,ctrl = 132.1s and µdev,test = 58.9s for German users. The null hypothesis in
both the tests is µdev,test - µdev,ctrl = 0, i.e., there is no significant difference between the
two development times. The p-value for the null hypotheses for China and Germany
tests were measured as 0.0001 and 0.0007 respectively, which is very small. Hence, we
reject the null hypotheses, which reconfirms that Baya speeds up development also in
Apache Rave. 67% of all users agreed that this feature was important or even essential
for a mashup environment. Few users also reported that Baya’s assistance helped them
to learn the usage of new widgets, which they were unaware of. We refer our readers
to this document (http://goo.gl/JLjAu) to read in details about this study.

These two user study results not only back our claims about the usefulness of Baya
in the end-user development paradigm, but they also reveal the didactic value of our
interactive step-by-step assistance mechanism.

7. RELATED WORK
In the context of web mashups, several works aim to assist less skilled developers in
the design of mashups. Syntactic approaches [Wong and Hong] suggest modeling con-
structs based on syntactic similarity (comparing output and input data types), while
semantic approaches [Ngu et al. 2010] annotate modeling constructs with semantic
descriptions to support suggestions of composition design based on the user’s specified
composition goal. In programming by demonstration [Cypher et al. 1993], the system
aims to auto complete a process definition, starting from a set of user-selected model
examples. Goal-oriented approaches [Riabov et al. 2008] aim to assist the user by au-
tomatically deriving compositions that satisfy user-specified goals. Hybrid approaches
[Elmeleegy et al. 2008] extends both the semantic and the goal based techniques. In
this approach an interactive goal recommended suggests a set of composition goals
to users based upon his/her current composition context. If the user accepts a system
specified goal, the mashup engine auto completes the partial composition with the help
of a AI planner to meet his specified goal. Pattern-based development [Deutch et al.
2010] aims at recommending connector patterns (so-called glue patterns) in response
to user selected components (so-called mashlets) in order to autocomplete the partial
mashup. The limitation of these approaches is that they partly over estimate the skills
of less skilled developers, as they either still require advanced modeling skills (which
users don’t have), or they expect the user to specify complex rules for defining goals
(which they are not able to), or they expect domain experts to specify and maintain
complex semantic networks describing modeling constructs (which they don’t do).

The business process management community more specifically focuses on patterns
as a means for knowledge reuse. Among the related works for applying or weaving
recommended patterns, the automated pattern application approach [Gschwind et al.
2008] uses structural properties of the current composition model to tell the user which

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 S. Roy Chowdhury et al.

pattern (simple merge, exclusive choice, parallel branch, and similar) among the work-
flow patterns introduced by Van Der Aalst et al. [Van Der Aalst et al. 2003] are ap-
plicable in the current modeling context. The structural properties of the workflow
patterns are verified against the current process model structure to check their appli-
cability. These control flow patterns are not able to capture domain knowledge of the
underlying mashup applications, and hence are not contextual.

The syntax-based assistance approach proposed in [Mazanek and Minas 2009] rec-
ommends the user a set of workflow patterns based on his current process model, and,
once a user selects one of the recommended patterns, weaves the pattern by consider-
ing the structural compatibility among modeling constructs (e.g., a gateway must be
followed by an activity in the current composition). However, this approach is limited
to only block-structured models, and also the instance level information of a composi-
tion model (e.g., an activity of type A must be followed by an activity of type B, and so
on) is not captured in the recommended patterns.

To address the limitations as identified in the existing related works, in our research,
we designed a more generic knowledge reuse approach, that can also be applicable
to design models that are not strictly block-structured. In addition to the structural
compatibility, we also considered the underlying mashup language and application do-
main (data flow based mashup) while capturing the knowledge to be reused for the
assistance. Further in our research we also addressed challenges related to the auto-
mated application of a selected recommendation in the current composition context, in
a way by auto-completing mashup design steps on behalf of a user. However, unlike
existing auto-completion approaches that work at the application level, our automated
weaving approach operates at different granularity levels of a model (e.g., adding a
component, adding a connector or adding a multi components etc.), also keeping the
current composition context into consideration. This provides more flexibility to a user
in designing a mashup according to his intent.

8. CONCLUSION AND FUTURE WORK
This paper presents our work in supporting the reuse of pattern-based composition
knowledge for mashup development. Our study provides the theoretical foundation of
the assisted mashup development and introduces an efficient mechanism (interactive
recommendation of composition patterns and automated weaving of composition pat-
terns) to provide contextual development assistance to less skilled users. We designed
and implemented two research prototype tools that realize our interactive develop-
ment recommendation approach for two different mashup platforms. We performed
thorough performance and accuracy evaluation tests to demonstrate the efficiency of
our recommendation algorithms. We also reported the results of two evaluation tests,
which were performed to assess the value of our approach for two different mashup
tools and target users. The results of the tests confirm the applicability and the use-
fulness of our approach in the mashup development domain.

Some of the limitations that we have identified and that we will be addressing in our
future work are:

— Coverage of the pattern KB. As reported in Figure 11, the accuracy of our recom-
mendation algorithm falls down sharply once we go beyond the query object size of
3. This is due to the low coverage of our pattern KB for patterns with size more than
4. This is partly because while building the knowledge base for the initial prototype
system, we only considered a subset of pipes (tagged as “most popular” pipes) as an
input for the pattern mining algorithm, that we considered as the source for the com-
position pattern. The high support value required for identifying multi-component

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Assisting Mashup Development by Reusing Community Composition Knowledge A:33

patterns with many components (more than 4) by the pattern mining algorithm also
contribute to this low coverage problem.
To address the pattern KB’s coverage issue, in our future work we are planning to
crawl the entire mashup repository of Yahoo! Pipes, which has several thousands of
pipes models available. We also wish to explore other sources for composition pat-
tern knowledge (e.g., knowledge contributed by domain experts) in the future design
of our system. As a step towards that, we are working towards defining algorithms
for finding expert users in a development platform like Yahoo! Pipes. By analyzing
these expert users’ mashup designs we can further identify knowledge for our recom-
mendation algorithm. This process is not straight-forward and has it’s own research
challenges. In our future work we are going to address them one-by-one. We also want
to cross-verify the effect of different sources of composition knowledge (e.g., knowl-
edge from the expert users vs knowledge mined from the repository) on the quality
of recommendations.

— Usability issues for the consumption of recommendations. Accepting/rejecting
a recommendation as suggested by any recommendation system requires users to
understand the recommended pattern (details of what is recommended and why it is
recommended). In our tool we show users the details of a recommended patterns in
the form of a preview of a pattern and the associated meta data (e.g., how many users
used a pattern or liked a pattern). However, we believe, that to enhance the usability
and transparency of our recommendation approach, more work is required in terms
of representation of recommendations in the UI.
As a solution for this limitation, more work is required to understand the most user
friendly and intuitive representation for composition patterns inside the UI. How-
ever, this is a highly tool-specific issue and, hence, requires different solutions for
different mashup environments. In addition to this, we are also working on improv-
ing the usability of our recommendation system by providing more explanations (why
a pattern is suggested, and what would a pattern do in the current context) about the
suggested recommendations. We believe that an explanation along with each recom-
mended steps will increase the transparency of our recommendation system to users.

— Limiting the novelty of recommendations. Personalization or preference-based
filtering of recommendations certainly increases the relevance of recommendations to
a user, but it also limits the novelty of recommendations (only preferred modules/data
sources always appear in the top-k recommended list). This may limit the usefulness
and the didactic aspects of a recommendation system.
To address this issue, we are working on techniques to introduce diversity into rec-
ommendations. We hypothesize that a right balance of novelty and personalization
in recommendations can make our recommendation system more valuable to users.

— Scalability of the personalized recommendation algorithm. New users (for
whom the system doesn’t have the development preference information) of our as-
sisted development platform poses challenges to the personalized recommendation
algorithm. Since the system has no knowledge about the ratings for modules and
data-sources for such users, it can’t calculate the preference metrics for them. In
order to get their development preference information, the system is required to re-
execute the implicit-rating matrices calculation for all users. Re-doing this matrix
factorization step for a large dataset is an expensive process, and may hinder the
overall performance of our recommendation system.
To address the scalability issue of our personalized recommendation algorithm, in
our future work we will explore the applicability of incremental singular value de-
composition algorithm [Sarwar et al. 2002] and other state-of-the-art collaborative
filtering techniques in the context of our recommendation algorithm.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34 S. Roy Chowdhury et al.

ACKNOWLEDGMENTS

We thank Carlos Rodrı́guez for providing the access to mashup patterns that are mined from Yahoo! Pipes
mashup models. We thank the T-Systems MMS team and Huawei team and especially Matthias Nieder-
hausen and Stefan Pietschmann of T-Systems team for carrying out the user study of Baya in Apache Rave
and making the result available to us for the analysis. We thank Saravanan Thirumuruganathan for his
extensive help during the data collection for user development-profiles building steps. This work was sup-
ported by the European Commission (project OMELETTE, contract 257635).

REFERENCES
BERRY, M. W., DUMAIS, S., O’BRIEN, G., BERRY, M. W., DUMAIS, S. T., AND GAVIN. 1995. Using linear

algebra for intelligent information retrieval. SIAM Review 37, 573–595.
CYPHER, A., HALBERT, D. C., KURLANDER, D., LIEBERMAN, H., MAULSBY, D., MYERS, B. A., AND TUR-

RANSKY, A., Eds. 1993. Watch what I do: programming by demonstration. MIT Press, Cambridge, MA,
USA.

DANIEL, F., CASATI, F., BENATALLAH, B., AND SHAN, M.-C. 2009. Hosted Universal Composition: Models,
Languages and Infrastructure in mashArt. In ER’09. Springer, 428–443.

DANIEL, F., RODRIGUEZ, C., ROY CHOWDHURY, S., MOTAHARI NEZHAD, H. R., AND CASATI, F. 2012.
Discovery and reuse of composition knowledge for assisted mashup development. In Proceedings of the
21st international conference companion on World Wide Web. WWW ’12 Companion. ACM, New York,
NY, USA, 493–494.

DE ANGELI, A., BATTOCCHI, A., CHOWDHURY, S. R., RODRÍGUEZ, C., DANIEL, F., AND CASATI, F. 2011.
End-user requirements for wisdom-aware eud. In IS-EUD. 245–250.

DEUTCH, D., GREENSHPAN, O., AND MILO, T. 2010. Navigating in complex mashed-up applications. Proc.
VLDB Endow. 3, 1-2, 320–329.

ELMELEEGY, H., IVAN, A., AKKIRAJU, R., AND GOODWIN, R. 2008. Mashup advisor: A recommendation
tool for mashup development. In ICWS’08. IEEE Computer Society, 337–344.

GSCHWIND, T., KOEHLER, J., AND WONG, J. 2008. Applying patterns during business process modeling. In
BPM’08. Springer, 4–19.

HU, Y., KOREN, Y., AND VOLINSKY, C. 2008. Collaborative filtering for implicit feedback datasets. In Pro-
ceedings of the 2008 Eighth IEEE International Conference on Data Mining. ICDM ’08. IEEE Computer
Society, Washington, DC, USA, 263–272.

KOREN, Y., BELL, R., AND VOLINSKY, C. 2009. Matrix factorization techniques for recommender systems.
Computer 42, 8, 30–37.

MAZANEK, S. AND MINAS, M. 2009. Business Process Models as a Showcase for Syntax-Based Assistance
in Diagram Editors. In MODELS ’09. 322–336.

NGU, A., CARLSON, M., SHENG, Q., AND YOUNG PAIK, H. 2010. Semantic-based mashup of composite
applications. IEEE TSC 3, 1, 2 –15.

RIABOV, A. V., BOILLET, E., FEBLOWITZ, M. D., LIU, Z., AND RANGANATHAN, A. 2008. Wishful search:
interactive composition of data mashups. In WWW’08. ACM, 775–784.

RODRÍGUEZ, C., ROY CHOWDHURY, S., DANIEL, F., R. MOTAHARI NEZHAD, H., AND CASATI, F. 2013. As-
sisted Mashup Development: On the Discovery and Recommendation of Mashup Composition Knowledge
– In Press. Springer, 683–708.

ROY CHOWDHURY, S., BIRUKOU, A., DANIEL, F., AND CASATI, F. 2011. Composition patterns in data flow
based mashups. In Proceedings of EuroPLoP 2011. 27–28.

ROY CHOWDHURY, S., CHUDNOVSKYY, O., NIEDERHAUSEN, M., PIETSCHMANN, S., SHARPLES, P.,
DANIEL, F., AND GAEDKE, M. 2013. Complementary assistance mechanisms for end user mashup
composition– submitted. In WWW ’ 13. WWW ’13 Companion.

ROY CHOWDHURY, S., DANIEL, F., AND CASATI, F. 2011. Efficient, Interactive Recommendation of Mashup
Composition Knowledge. In ICSOC’11. 374–388.

ROY CHOWDHURY, S., RODRÍGUEZ, C., DANIEL, F., AND CASATI, F. 2010. Wisdom-aware computing: On
the interactive recommendation of composition knowledge. In WESOA’10. Springer, 144–155.

ROY CHOWDHURY, S., RODRÍGUEZ, C., DANIEL, F., AND CASATI, F. 2012. Baya: assisted mashup develop-
ment as a service. In Proceedings of the 21st international conference companion on World Wide Web.
WWW ’12 Companion. ACM, New York, NY, USA, 409–412.

SARWAR, B., KARYPIS, G., KONSTAN, J., AND RIEDL, J. 2002. Incremental singular value decomposition
algorithms for highly scalable recommender systems. In Fifth International Conference on Computer
and Information Science. 27–28.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Assisting Mashup Development by Reusing Community Composition Knowledge A:35

SARWAR, B. M., KARYPIS, G., KONSTAN, J. A., AND RIEDL, J. T. 2000. Application of dimensionality re-
duction in recommender system – a case study. In IN ACM WEBKDD WORKSHOP.

SHANI, G. AND GUNAWARDANA, A. 2011. Evaluating recommendation systems. In Recommender Systems
Handbook. 257–297.

SU, X. AND KHOSHGOFTAAR, T. M. 2009. A survey of collaborative filtering techniques. Adv. in Artif. In-
tell. 2009, 4:2–4:2.

VAN DER AALST, W. M. P., TER HOFSTEDE, A. H. M., KIEPUSZEWSKI, B., AND BARROS, A. P. 2003.
Workflow patterns. Distrib. Parallel Databases 14, 5–51.

WONG, J. AND HONG, J. I. Making mashups with marmite: towards end-user programming for the web. In
CHI’07. 1435–1444.

ZHOU, Y., WILKINSON, D., SCHREIBER, R., AND PAN, R. 2008. Large-scale parallel collaborative filtering
for the netflix prize. In Proceedings of the 4th international conference on Algorithmic Aspects in Infor-
mation and Management. AAIM ’08. Springer-Verlag, Berlin, Heidelberg, 337–348.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Online Appendix to:
Interactive Recommendation and Weaving of Mashup Model Patterns
for Assisted Mashup Development

Soudip Roy Chowdhury, University of Trento, Italy
Florian Daniel, University of Trento, Italy
Fabio Casati, University of Trento, Italy

A. SOFT CONFLICT RESOLUTION POLICY
During weaving steps, we are in the presence of a conflict if we want to add a new con-
struct to the partial mashup model pm, but the partial mashup model already contains
the same or a similar construct. Unlike hard conflict resolution policy which resolves
the conflict by re-assigning the constructs with the new values from the patterns, soft
conflict resolution policy aims to maximize reuse.

Table IV. Soft conflict resolution policy for the function resolveConflict(pm, instr)→ CtxInstr

Instruction instr Conflict with pm
Contextual instruc-
tions CtxInstr

Description

assignValues(cid, V A);

We want to preserve
possible value assign-
ments, if they are not
in conflict with any of
the values in V A.

assignValues(cid, V A);

We keep existing pa-
rameter values. Yet,
new parameter values
prevail over old ones,
and the assignValue()
operation simply over-
writes the old value as-
signments.

addConnector(dfxy); The connector dfxy al-
ready exists. — No need to add the con-

nector again.

addConnector(dfxy);

A connector dfzy 6=
dfxy from a component
compz to the same in-
put port ipy of dfxy al-
ready exists, and iny

allows only one connec-
tor in input.

deleteConnector(dfzy);
addConnector(dfxy);

Before adding the new
connector, we delete
the old one.

$var1=addComponent(
ctype);

A component comp of
type ctype already ex-
ists, and we want to
reuse existing compo-
nents.

$var=comp.id;

We reuse the exist-
ing instance of the
required component
type, without creating
a new one.

assignDataMappings(cid,
DM)

We want to preserve
possible data map-
pings data are not in
conflict with the data
mappings in DM .

assignDataMappings(cid,
DM);

We keep existing data
mappings and apply
the ones in DM . New
data mappings over-
write old ones, preserv-
ing those without con-
flict.

embedComponent(hostid,
embid);

A component with
identifier oldid has al-
ready been embedded
into the component
hostid.

deleteComponent(oldid);
embedComponent(hostid,
embid);

Before embedding the
new component, we
need to delete the
already embedded
component.

c© YYYY ACM 1559-1131/YYYY/01-ARTA $15.00
DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

App–2 S. Roy Chowdhury et al.

1 We use the notation $var to denote placeholders for variables, in order to keep
the policy independent of variable names, such as newcid in the above basic weaving
strategy.

B. SINGULAR VALUE DECOMPOSITION- A RUNNING EXAMPLE
SVD is based on a theorem from linear algebra which says that a rectangular matrix
R can be broken down into the product of three matrices - an orthogonal matrix U , a
diagonal matrix S, and the transpose of an orthogonal matrix V . i.e.,
R = U · S · V T

where, UTU = I, V TV = I; the columns of U are orthonormal eigenvectors of RRT ,
the columns of V are orthonormal eigenvectors of RTR, and S is a diagonal matrix
containing the square roots of eigenvalues from U or V in descending order.

To explain the steps involved in the SVD matrix factorization technique, let us start
with a small rating matrix R.

R =

[
0.2 0.4 0
0.1 0 0.5
0.2 0.3 0.6

]
, when RT =

[
0.2 0.1 0.2
0.4 0 0.3
0 0.5 0.6

]
.

As one may observe that the matrix R has lot of zero values (sparse matrix) in it.
The main motivation behind applying the SVD algorithm is to reduce the sparsity of
the original matrix R; by factorizing it to sub-matrices and by reducing its dimension
to get a better lower rank approximation of the original matrix R. The dot product of
R and RT is

RRT =

[
0.2 0.02 0.16
0.02 0.26 0.32
0.16 0.32 0.49

]

The eigen values of RRT are λ = 0.756, λ = 0.196 and λ = 0.001. The column vectors
of U are taken from the orthonormal eigenvectors of RRT , and ordered right to left
from largest corresponding eigenvalue to the least. And hence the value for U matrix
is calculated as,

U =

[−0.253 0.879 −0.405
−0.534 −0.476 −0.699
−0.806 0.040 0.590

]

To calculate the value for the V T matrix, we follow to same procedure as for the cal-
culation of U , i.e., we do a dot product of matrices RTR and then we find the orthonor-
mal eigenvectors for RRT . Finally we transpose this eigenvector to get the value for
the V T matrix. The calculation steps are explained below.

RTR=

[
0.09 0.14 0.17
0.14 0.25 0.18
0.17 0.18 0.61

]
, where the eigen value for RTR are calculated as λ = 0.756,

λ = 0.001 and λ = 0.196. The orthonormal eigen vector V is:

V =

[−0.306 −0.901 −0.307
−0.396 0.414 −0.820
−0.866 0.129 0.483

]

and the transpose matrix is:

V T =

[−0.306 −0.396 −0.866
−0.901 0.414 0.129
−0.307 −0.820 0.483

]

For S matrix value, we take the square roots of the non-zero eigenvalues and pop-
ulate the diagonal with them, putting the largest in s11 , the next largest in s22 and
so on until the smallest value ends up in smm . The non-zero eigenvalues of U and V

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Assisting Mashup Development by Reusing Community Composition Knowledge App–3

are always the same, so thats why it doesnt matter which one we take them from. By
following this process we can get the value of singular value matrix S as:

S =

[
0.867 0 0
0 0.443 0
0 0 0.036

]

In order to illustrate the effect of dimensionality reduction on this data set, we’ll
restrict S to the first two singular values:

S′ =

[
0.867 0
0 0.443

]

For the matrix multiplication in the reduced dimension, we have to eliminate the
corresponding column vectors of U and corresponding row vectors of V T to give us an
approximation of R using 2 dimensions instead of the original 3. The result of this
dimension reduction step is: R′ = U ′ · S′ · V T ′

=

[−0.253 0.879
−0.534 −0.476
−0.806 0.040

]
·
[
0.867 0
0 0.443

]
·
[
−0.306 −0.396 −0.866
−0.901 0.414 0.129

]

=

[
0.283 0.248 0.240
0.332 0.096 0.374
0.198 0.284 0.608

]

One can notice that in the resultant matrix R′ the sparsity is reduced for the lower
rank approximation. Hence by this process we get the best lower rank approximation
of the original sparse rating matrix R.

C. QUESTIONNAIRE FOR THE USER STUDY
Figure 19 depicts the snapshot of the tasks that we had asked our test group partici-
pants in Mechanical Turk to perform. One may observe that the test group participants
are asked to download our assistance tool Baya and they had given the option to use
Baya’s interactive recommendations in their designs. The control group participants
were also asked to download Baya, but in that version of Baya we de-activated the
recommendation feature.

Figure 20 shows a snapshot of the questionnaire form that we used to collect data
from the users during our study. To collect the feedback from users we used such ques-
tionnaire form containing questions and corresponding multiple choice answers to cap-
ture users’ views and criticism on our tool (for the answers we used a five-point Likert
scale ranging from strongly agree - strongly disagree) and a free-form text field for
collecting more detailed feedback from users.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

App–4 S. Roy Chowdhury et al.

Fig. 19. Screen shot capturing a snapshot of the task details that we asked our users (test group) to perform

Fig. 20. Screen shot capturing a snapshot of questionnaire that we used in our user study

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

	Thesis Summary
	Motivating scenario and problem statement
	State of the art
	Research challenges
	Research steps followed
	Contributions
	Theoretical foundation for the assisted re-use of pattern based composition knowledge
	Efficient, Interactive recommendation of composition patterns
	Filtering of recommended patterns by user preferences
	Automated weaving of composition patterns
	System design for our assisted mashup development platform
	User studies and validation

	Structure of the thesis
	Conclusion
	Dissemination
	Limitations and future work

	Bibliography
	Appendix Wisdom-Aware Computing: On the Interactive Recommendation of Composition Knowledge
	Appendix End-user requirements for wisdom-aware EUD
	Appendix Composition Patterns in Data Flow Based Mashups
	Appendix Efficient, Interactive Recommendation of Mashup Composition Knowledge
	Appendix Discovery and Reuse of Composition Knowledge for Assisted Mashup Development
	Appendix Baya: Assisted Mashup Development as a Service
	Appendix Assisting End-User Development in Browser-Based Mashup Tools
	Appendix Assisted Mashup Development: On the Discovery and Recommendation of Mashup Composition Knowledge
	Appendix Complementary Assistance Mechanisms for End User Mashup Composition
	Appendix Interactive Recommendation and Weaving of Mashup Model Patterns for Assisted Mashup Development

