This thesis is concerned with the study of nonstandard models in measure theory and in functional analysis. In measure theory, we define elementary numerosities, that are additive measures that take on values in a non-archimedean field and for which the measure of every singleton is 1. We have shown that, by taking the ratio with a suitable unit of measurement, from a numerosity it can be defined a non-atomic real-valued measure, and that every non-atomic measure can be obtained from a numerosity by this procedure. We then used numerosities to develop a model for the probability of infinite sequences of coin tosses coherent with the original ideas of Laplace. In functional analysis, we introduce a space of functions of nonstandard analysis with a formally finite domain, that extends both the space of distributions and the space of Young measures. Among the applications of this space of functions, we develop a continuous-in-time, discrete-in-space nonstandard formulation for a class of ill-posed forward-backward parabolic equations, and on the study of the regularity and asymptotic behaviour of its nonstandard solutions. This approach proved to be a viable alternative to the study of the vanishing viscosity limit of the solution of a pseudoparabolic regularization of the original problem.
Nonstandard Models in Measure Theory and in functional Analysis / Bottazzi, Emanuele. - (2017), pp. 1-110.
Nonstandard Models in Measure Theory and in functional Analysis
Bottazzi, Emanuele
2017-01-01
Abstract
This thesis is concerned with the study of nonstandard models in measure theory and in functional analysis. In measure theory, we define elementary numerosities, that are additive measures that take on values in a non-archimedean field and for which the measure of every singleton is 1. We have shown that, by taking the ratio with a suitable unit of measurement, from a numerosity it can be defined a non-atomic real-valued measure, and that every non-atomic measure can be obtained from a numerosity by this procedure. We then used numerosities to develop a model for the probability of infinite sequences of coin tosses coherent with the original ideas of Laplace. In functional analysis, we introduce a space of functions of nonstandard analysis with a formally finite domain, that extends both the space of distributions and the space of Young measures. Among the applications of this space of functions, we develop a continuous-in-time, discrete-in-space nonstandard formulation for a class of ill-posed forward-backward parabolic equations, and on the study of the regularity and asymptotic behaviour of its nonstandard solutions. This approach proved to be a viable alternative to the study of the vanishing viscosity limit of the solution of a pseudoparabolic regularization of the original problem.File | Dimensione | Formato | |
---|---|---|---|
Dichiarazione_compilata.pdf
Solo gestori archivio
Tipologia:
Tesi di dottorato (Doctoral Thesis)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
458.49 kB
Formato
Adobe PDF
|
458.49 kB | Adobe PDF | Visualizza/Apri |
Tesi.pdf
accesso aperto
Tipologia:
Tesi di dottorato (Doctoral Thesis)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
814.28 kB
Formato
Adobe PDF
|
814.28 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione