A recognized consequence of population aging is a reduced level of mobility, which undermines the life quality of several senior citizens. A promising solution is represented by assisitive robotic walkers, combining the benefits of standard walkers (improved stability and physical support) with sensing and computing ability to guarantee cognitive support. In this context, classical robot control strategies designed for fully autonomous systems (such as fully autonomous vehicles, where the user is excluded from the loop) are clearly not suitable, since the user’s residual abilities must be exploited and practiced. Conversely, to guarantee safety even in the presence of user’s cognitive deficits, the responsibility of controlling the vehicle motion cannot be entirely left to the assisted person. The authority-sharing paradigm, where the control authority, i.e., the capability of controlling the vehicle motion, is shared between the human user and the control system, is a promising solution to this problem. This research develops control strategies for assistive robotic walkers based on authority-sharing: this way, we ensure that the walker provides the user only the help he/she needs for safe navigation. For instance, if the user requires just physical support to reach the restrooms, the robot acts as a standard rollator; however, if the user’s cognitive abilities are limited (e.g., the user does not remember where the restrooms are, or he/she does not recognize obstacles on the path), the robot also drives the user towards the proper corridors, by planning and following a safe path to the restrooms. The authority is allocated on the basis of an error metric, quantifying the distance between the current vehicle heading and the desired movement direction to perform the task. If the user is safely performing the task, he/she is endowed with control authority, so that his/her residual abilities are exploited. Conversely, if the user is not capable of safely solving the task (for instance, he/is going to collide with an obstacle), the robot intervenes by partially or totally taking the control authority to help the user and ensure his/her safety (for instance, avoiding the collision). We provide detailed control design and theoretical and simulative analyses of the proposed strategies. Moreover, extensive experimental validation shows that authority-sharing is a successful approach to guide a senior citizen, providing both comfort and safety. The most promising solutions include the use of haptic systems to suggest the user a proper behavior, and the modification of the perceived physical interaction of the user with the robot to gradually share the control authority using a variable stiffness vehicle handling.

Authority-Sharing Control of Assistive Robotic Walkers / Andreetto, Marco. - (2019), pp. 1-212.

Authority-Sharing Control of Assistive Robotic Walkers

Andreetto, Marco
2019-01-01

Abstract

A recognized consequence of population aging is a reduced level of mobility, which undermines the life quality of several senior citizens. A promising solution is represented by assisitive robotic walkers, combining the benefits of standard walkers (improved stability and physical support) with sensing and computing ability to guarantee cognitive support. In this context, classical robot control strategies designed for fully autonomous systems (such as fully autonomous vehicles, where the user is excluded from the loop) are clearly not suitable, since the user’s residual abilities must be exploited and practiced. Conversely, to guarantee safety even in the presence of user’s cognitive deficits, the responsibility of controlling the vehicle motion cannot be entirely left to the assisted person. The authority-sharing paradigm, where the control authority, i.e., the capability of controlling the vehicle motion, is shared between the human user and the control system, is a promising solution to this problem. This research develops control strategies for assistive robotic walkers based on authority-sharing: this way, we ensure that the walker provides the user only the help he/she needs for safe navigation. For instance, if the user requires just physical support to reach the restrooms, the robot acts as a standard rollator; however, if the user’s cognitive abilities are limited (e.g., the user does not remember where the restrooms are, or he/she does not recognize obstacles on the path), the robot also drives the user towards the proper corridors, by planning and following a safe path to the restrooms. The authority is allocated on the basis of an error metric, quantifying the distance between the current vehicle heading and the desired movement direction to perform the task. If the user is safely performing the task, he/she is endowed with control authority, so that his/her residual abilities are exploited. Conversely, if the user is not capable of safely solving the task (for instance, he/is going to collide with an obstacle), the robot intervenes by partially or totally taking the control authority to help the user and ensure his/her safety (for instance, avoiding the collision). We provide detailed control design and theoretical and simulative analyses of the proposed strategies. Moreover, extensive experimental validation shows that authority-sharing is a successful approach to guide a senior citizen, providing both comfort and safety. The most promising solutions include the use of haptic systems to suggest the user a proper behavior, and the modification of the perceived physical interaction of the user with the robot to gradually share the control authority using a variable stiffness vehicle handling.
2019
XXXI
2019-2020
Ingegneria e scienza dell'Informaz (29/10/12-)
Information and Communication Technology
Palopoli, Luigi
Fontanelli, Daniele
no
Inglese
File in questo prodotto:
File Dimensione Formato  
disclaimer.pdf

Solo gestori archivio

Tipologia: Tesi di dottorato (Doctoral Thesis)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 875.87 kB
Formato Adobe PDF
875.87 kB Adobe PDF   Visualizza/Apri
PhD_Thesis.pdf

Open Access dal 02/01/2020

Tipologia: Tesi di dottorato (Doctoral Thesis)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 27.24 MB
Formato Adobe PDF
27.24 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/368304
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact