Gamma-ray and Fluorescence Lifetime Spectroscopies are driving the development of non-imaging silicon photon sensors and, in this context, Silicon Photo-Multipliers (SiPM)s are leading the starring role. They are 2D array of optical diodes called Single Photon Avalanche Diodes (SPAD)s, and are normally fabricated with a dedicated silicon process. SPADs amplify the charge produced by the single absorbed photon in a way that recalls the avalanche amplification exploited in Photo-Multiplier Tubes (PMT)s. Recently 2D arrays of SPADs have been realized also in standard CMOS technology, paving the way to the realization of completely custom sensors that can host ancillary electronic and digital logic on-chip. The designs of scientific apparatus have been influenced for years by the bulky PMT-based detectors. An overwhelming interest in both SiPMs and CMOS SPADs lies in the possibility of displacing these small sensors realizing new detectors geometries. This thesis examines the potential deployment of SiPM-based detector in an apparatus built for the study of the Time-Of-Flight (TOF) of Positronium (Ps) and the displacement of 2D array of CMOS SPADs in a lab-on-chip apparatus for Fluorescence Lifetime Spectroscopy. The two design procedures are performed using Monte-Carlo simulations. Characterizations of the two sensor have been carried out, allowing for a performance evaluation and a validation of the two design procedures.

Simulation and Characterization of Single Photon Detectors for Fluorescence Lifetime Spectroscopy and Gamma-ray Applications / Benetti, Michele. - (2012), pp. 1-135.

Simulation and Characterization of Single Photon Detectors for Fluorescence Lifetime Spectroscopy and Gamma-ray Applications

Benetti, Michele
2012-01-01

Abstract

Gamma-ray and Fluorescence Lifetime Spectroscopies are driving the development of non-imaging silicon photon sensors and, in this context, Silicon Photo-Multipliers (SiPM)s are leading the starring role. They are 2D array of optical diodes called Single Photon Avalanche Diodes (SPAD)s, and are normally fabricated with a dedicated silicon process. SPADs amplify the charge produced by the single absorbed photon in a way that recalls the avalanche amplification exploited in Photo-Multiplier Tubes (PMT)s. Recently 2D arrays of SPADs have been realized also in standard CMOS technology, paving the way to the realization of completely custom sensors that can host ancillary electronic and digital logic on-chip. The designs of scientific apparatus have been influenced for years by the bulky PMT-based detectors. An overwhelming interest in both SiPMs and CMOS SPADs lies in the possibility of displacing these small sensors realizing new detectors geometries. This thesis examines the potential deployment of SiPM-based detector in an apparatus built for the study of the Time-Of-Flight (TOF) of Positronium (Ps) and the displacement of 2D array of CMOS SPADs in a lab-on-chip apparatus for Fluorescence Lifetime Spectroscopy. The two design procedures are performed using Monte-Carlo simulations. Characterizations of the two sensor have been carried out, allowing for a performance evaluation and a validation of the two design procedures.
2012
XXIV
2011-2012
Ingegneria e scienza dell'Informaz (29/10/12-)
Information and Communication Technology
Stoppa, David
Dalla Betta, Gian-Franco
no
Inglese
Settore ING-INF/07 - Misure Elettriche e Elettroniche
Settore FIS/07 - Fisica Applicata(Beni Culturali, Ambientali, Biol.e Medicin)
Settore ING-INF/01 - Elettronica
Settore FIS/04 - Fisica Nucleare e Subnucleare
File in questo prodotto:
File Dimensione Formato  
main.pdf

accesso aperto

Tipologia: Tesi di dottorato (Doctoral Thesis)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 10.55 MB
Formato Adobe PDF
10.55 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/367882
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact