The recent realization of synthetic spin-orbit coupling represents an outstanding achievement in the physics of ultracold quantum gases. In this thesis we explore the properties of spin-orbit-coupled Bose-Einstein condensates with equal Rashba and Dresselhaus strengths. These systems present a rich phase diagram, which exhibits a tricritical point separating a single-minimum phase, a spin-polarized plane-wave phase, and a stripe phase. In the stripe phase translational invariance is spontaneously broken, in analogy with supersolids. Spin-orbit coupling also strongly affects the dynamics of the system. In particular, the excitation spectrum exhibits intriguing features, including the suppression of the sound velocity, the emergence of a roton minimum in the plane-wave phase, and the appearance of a double gapless band structure in the stripe phase. Finally, we discuss a combined procedure to make the stripes visible and stable, thus allowing for a direct experimental detection.

Static and dynamic properties of spin-orbit-coupled Bose-Einstein condensates / Martone, Giovanni Italo. - (2014), pp. 1-91.

Static and dynamic properties of spin-orbit-coupled Bose-Einstein condensates

Martone, Giovanni Italo
2014-01-01

Abstract

The recent realization of synthetic spin-orbit coupling represents an outstanding achievement in the physics of ultracold quantum gases. In this thesis we explore the properties of spin-orbit-coupled Bose-Einstein condensates with equal Rashba and Dresselhaus strengths. These systems present a rich phase diagram, which exhibits a tricritical point separating a single-minimum phase, a spin-polarized plane-wave phase, and a stripe phase. In the stripe phase translational invariance is spontaneously broken, in analogy with supersolids. Spin-orbit coupling also strongly affects the dynamics of the system. In particular, the excitation spectrum exhibits intriguing features, including the suppression of the sound velocity, the emergence of a roton minimum in the plane-wave phase, and the appearance of a double gapless band structure in the stripe phase. Finally, we discuss a combined procedure to make the stripes visible and stable, thus allowing for a direct experimental detection.
2014
XXVII
2013-2014
Fisica (29/10/12-)
Physics
Stringari, Sandro
no
Inglese
Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici
Settore FIS/03 - Fisica della Materia
File in questo prodotto:
File Dimensione Formato  
Martone_thesis.pdf

accesso aperto

Tipologia: Tesi di dottorato (Doctoral Thesis)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.61 MB
Formato Adobe PDF
2.61 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/367751
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact