The goal of this thesis is the discovery of a bioinformatics solution for network-based predictive analysis of NGS data, in which network structures can substitute gene lists as a more rich and complex signature of disease. I have focused on methods for network stability, network inference and network comparison, as additional components of the pipeline and as methods to detects outliers in high-throughput datasets. Besides a first work on GEO datasets, the main application of my pipeline has been on original data from the FDA SEQC (Sequencing Quality Control)project. Here I will report some initial findings to which I have contributed with methods and analysis: as the corresponding papers are being submitted. My goal is to provide a comprehensive tool for network reconstruction and network comparison as an R package and user-friendly web service interface available on-line at https://renette.fbk.eu The goal of this thesis is the discovery of a bioinformatics solution for network-based predictive analysis of NGS data, in which network structures can substitute gene lists as a more rich and complex signature of disease. I have focused on methods for network stability, network inference and network comparison, as additional components of the pipeline and as methods to detects outliers in high-throughput datasets. Besides a first work on GEO datasets, the main application of my pipeline has been on original data from the FDA SEQC (Sequencing Quality Control)project. Here I will report some initial findings to which I have contributed with methods and analysis: as the corresponding papers are being submitted. My goal is to provide a comprehensive tool for network reconstruction and network comparison as an R package and user-friendly web service interface available on-line at https://renette.fbk.eu.

A network medicine approach on microarray and Next generation Sequencing data / Filosi, Michele. - (2014), pp. 1-142.

A network medicine approach on microarray and Next generation Sequencing data

Filosi, Michele
2014-01-01

Abstract

The goal of this thesis is the discovery of a bioinformatics solution for network-based predictive analysis of NGS data, in which network structures can substitute gene lists as a more rich and complex signature of disease. I have focused on methods for network stability, network inference and network comparison, as additional components of the pipeline and as methods to detects outliers in high-throughput datasets. Besides a first work on GEO datasets, the main application of my pipeline has been on original data from the FDA SEQC (Sequencing Quality Control)project. Here I will report some initial findings to which I have contributed with methods and analysis: as the corresponding papers are being submitted. My goal is to provide a comprehensive tool for network reconstruction and network comparison as an R package and user-friendly web service interface available on-line at https://renette.fbk.eu The goal of this thesis is the discovery of a bioinformatics solution for network-based predictive analysis of NGS data, in which network structures can substitute gene lists as a more rich and complex signature of disease. I have focused on methods for network stability, network inference and network comparison, as additional components of the pipeline and as methods to detects outliers in high-throughput datasets. Besides a first work on GEO datasets, the main application of my pipeline has been on original data from the FDA SEQC (Sequencing Quality Control)project. Here I will report some initial findings to which I have contributed with methods and analysis: as the corresponding papers are being submitted. My goal is to provide a comprehensive tool for network reconstruction and network comparison as an R package and user-friendly web service interface available on-line at https://renette.fbk.eu.
2014
XXVI
2013-2014
CIBIO (29/10/12-)
Biomolecular Sciences
Furlanello, Cesare
Jurman, Giuseppe
no
Inglese
Settore BIO/11 - Biologia Molecolare
Settore FIS/07 - Fisica Applicata(Beni Culturali, Ambientali, Biol.e Medicin)
Settore ING-INF/06 - Bioingegneria Elettronica e Informatica
Settore BIO/18 - Genetica
File in questo prodotto:
File Dimensione Formato  
thesi_main.pdf

Solo gestori archivio

Tipologia: Tesi di dottorato (Doctoral Thesis)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 8.84 MB
Formato Adobe PDF
8.84 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/367599
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact