This work aims at presenting different approaches to epidemics modelling. It consists of two main topics, which cover both theoretical and computational approaches to the development and analysis of mathematical models of infectious diseases. The first half regards the formulation and the analysis of SAIRS (Susceptible - Asyptomatics infected - Infected symptomatic - Recovered - Susceptible) epidemic models, including the possibility of vaccination. The model is formulated as a system of ordinary differential equations (ODEs), for which we provided a complete global stability analysis, combining two different approaches: the classical Lyapunov stability theorem, and a geometric approach, which generalises the Poincaré-Bendixon theorem. Afterwards, the model has been generalised using heterogeneous networks, which may describe different groups of individuals or different cities. For this model, the global stability analysis has been developed using the graph-theoretic approach to find Lyapunov functions. The second part of the thesis covers simulations based approaches to modelling heterogeneous humans interactions in epidemics. The first example we provide is an application with synthetic data. We investigate a stochastic SIR (Susceptible - Infected symptomatic - Recovered) dynamics on a network, by using a specialised version of the Gillespie algorithm. The other two examples we show consist of real data applications. Both regard the cost-benefit analysis of the introduction of new influenza vaccines. Both analyses have been performed using a multi-group SEIR (Susceptible - Exposed - Infected - Recovered) epidemiological model divided by age classes.

Different approaches to epidemics modelling: from theoretical analysis to real data / Sottile, Sara. - (2023 Jan 23), pp. 1-144. [10.15168/11572_364764]

### Different approaches to epidemics modelling: from theoretical analysis to real data

#### Abstract

This work aims at presenting different approaches to epidemics modelling. It consists of two main topics, which cover both theoretical and computational approaches to the development and analysis of mathematical models of infectious diseases. The first half regards the formulation and the analysis of SAIRS (Susceptible - Asyptomatics infected - Infected symptomatic - Recovered - Susceptible) epidemic models, including the possibility of vaccination. The model is formulated as a system of ordinary differential equations (ODEs), for which we provided a complete global stability analysis, combining two different approaches: the classical Lyapunov stability theorem, and a geometric approach, which generalises the Poincaré-Bendixon theorem. Afterwards, the model has been generalised using heterogeneous networks, which may describe different groups of individuals or different cities. For this model, the global stability analysis has been developed using the graph-theoretic approach to find Lyapunov functions. The second part of the thesis covers simulations based approaches to modelling heterogeneous humans interactions in epidemics. The first example we provide is an application with synthetic data. We investigate a stochastic SIR (Susceptible - Infected symptomatic - Recovered) dynamics on a network, by using a specialised version of the Gillespie algorithm. The other two examples we show consist of real data applications. Both regard the cost-benefit analysis of the introduction of new influenza vaccines. Both analyses have been performed using a multi-group SEIR (Susceptible - Exposed - Infected - Recovered) epidemiological model divided by age classes.
##### Scheda breve Scheda completa Scheda completa (DC)
23-gen-2023
XXXV
2021-2022
Matematica (29/10/12-)
Mathematics
Pugliese, Andrea
Inglese
Settore MAT/05 - Analisi Matematica
File in questo prodotto:
File
TESI_PHD.pdf

accesso aperto

Tipologia: Tesi di dottorato (Doctoral Thesis)
Utilizza questo identificativo per citare o creare un link a questo documento: `https://hdl.handle.net/11572/364764`