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Abstract

This work aims at presenting different approaches to epidemics modelling. It consists
of two main topics, which cover both theoretical and computational approaches to the
development and analysis of mathematical models of infectious diseases.

The first half regards the formulation and the analysis of SAIRS (Susceptible - Asyp-
tomatics infected - Infected symptomatic - Recovered - Susceptible) epidemic models,
including the possibility of vaccination. In such a model, the presence of asymptomatic
cases allows for a wider circulation of the disease in the population, since they often re-
main unidentified. The model is formulated as a system of ordinary differential equations
(ODEs), for which we provided a complete global stability analysis. In particular, the
rigorous proof of the global stability for the endemic equilibrium is a challenging math-
ematical problem, which we solved combining two different approaches: the classical
Lyapunov stability theorem, and a geometric approach, which generalises the Poincaré-
Bendixon theorem. Afterwards, the model has been generalised using heterogeneous
networks, which may describe different groups of individuals or different cities. Thus,
the role of asymptomatic and symptomatic infectious individuals is explicitly considered
in the transmission pattern of the disease among the groups in which the population
is divided. For this model, the global stability analysis has been developed using the
graph-theoretic approach to find Lyapunov functions.

The second part of the thesis covers simulations based approaches to modelling het-
erogeneous humans interactions in epidemics. The first example we provide is an ap-
plication with synthetic data. We investigate a stochastic SIR (Susceptible - Infected
symptomatic - Recovered) dynamics on a network, by using a specialised version of the
Gillespie algorithm. We provide a theoretical result on the probability of the extinc-
tion of the disease. Then, we demonstrate how important epidemic indices change as a
function of the contagiousness of the disease and the connectivity of the network. The
other two examples we show consist of real data applications. Both regard the cost-
benefit analysis of the introduction of new influenza vaccines. The first one analysed
the Italian scenario of the introduction of the Laive attenuated influenza vaccine quadri-
valent (LAIVq) vaccine in the paediatric age (2-6 years). The second one analysed the
Spanish scenario of the introduction of the Adjuvanted QIV (aQIV) vaccine in the older
population (65+ years). Both analyses have been performed using a multi-group SEIR
(Susceptible - Exposed - Infected - Recovered) epidemiological model divided by age
classes. The real data used regard the demography, the disease related data and costs
of the events in the considered country.
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1. Introduction

Starting with the research of Kermack and McKendrick [1], in the last century a huge
amount of mathematical epidemic models have been formulated, analysed and applied
to a variety of infectious diseases. The recent Covid-19 pandemic has demonstrated
the extent to which the study of mathematical models of infectious disease is crucial
to provide particularly effective tools to help policy-makers combat the spread of the
disease. Many large scale data-driven simulations have been used to examine and forecast
aspects of the current epidemic spreading [2, 3], as well as in other past epidemics [4, 5, 6].
However, the study of theoretical epidemic models able to catch the salient transmission
patterns of an epidemic, but that are yet mathematical tractable, offers essential insight
to understand the qualitative behaviour of the epidemic, and provides useful information
for control policies.

1.1 The stability analysis problem

The most common mathematical approach to the subject of epidemics is the so called
compartmental approach. This approach considers the population partitioned into com-
partments with respect to an ongoing epidemic. Usually, the evolution of infectious dis-
ease is formulated in terms of systems of ordinary differential equations (ODEs) [7, 8].
These models are named for the compartments involved and their evolution, such as
SIR (Susceptible – Infected – Recovered), SIRS (Susceptible – Infected – Recovered –
Susceptible), SEIR (Susceptible – Exposed – Infected – Recovered), and so on. The
classical first step in the analysis of an epidemic model is the search for equilibria points,
defined as the constant solutions of the model. Usually, epidemic models admit a single
disease-free equilibrium and one or more endemic equilibria, characterised by a positive
number of infected individuals. These models may exhibit various long-term behaviours,
depending on the stability of such equilibria or on the existence of periodic solutions [9].
For models which do not admit periodic solutions, we may still observe different asymp-
totic behaviour. The simplest case occurs when the model admits at most two equilibria
in the biologically relevant region, and their existence and stability depend on a thresh-
old quantity, called basic reproduction number [10]. More complicated cases are, for
examples, models where the endemic equilibria lose stability through Hopf bifurcation,
or models with multiple endemic equilibria, possibly arising through the presence of a
backward bifurcation [11]. However, also in the simplest cases determining the asymp-
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totic behaviour could be arduous. The rigorous proof of global stability, especially for
the positive endemic equilibrium, is a challenging mathematical problem for many dis-
ease models due to their complexity and high dimension [12]. The classical, and most
commonly used method for global asymptotic stability (GAS) analysis is provided by
the Lyapunov stability theorem and LaSalle’s invariance principle. These approaches
have been successfully applied, for example, to the SIR, SEIR and SIRS models (see,
e.g. [12, 13, 14]). Unfortunately, it is often difficult to construct such Lyapunov func-
tions and no general method is available. However, some classes of Lyapunov functions
have proven useful. For example, a well known form of Lyapunov functions used in the
literature of mathematical biology is

V (x) =
∑

i=1,...,n

cix
∗
i

(
xi
x∗i
− 1− ln

xi
x∗i

)
,

coming from the first integral of a Lotka–Volterra system [15, 16]. Shuai and van den
Driessche [12] have presented some general methods for building Lyapunov functions for
epidemic models: a matrix-theoretic method using the Perron eigenvector, applied to
prove the global stability of the disease-free equilibrium and a graph-theoretical method,
discussed below, to prove the global stability of the endemic equilibrium.

Other techniques have appeared in literature and were successfully applied to prove
global stability arguments for various epidemic models. For example, the Li–Muldowney
geometric approach [17, 18] was used to determine the global asymptotic stability of the
SEIR and SEIRS models [19, 20, 21], of some epidemic models with bi-linear incidence
[22], as well as of SIR and SEIR epidemic models with information dependent vaccina-
tion [23, 24]. Applications of Li–Muldowney geometric approach can also be found in
population dynamics [25].

The stability analysis get more complicated as we relax the assumptions on the model,
e.g. if we consider heterogeneity in the interactions. As in the homogeneous mixing case,
the stability analysis of the equilibrium points of the system under investigation allows
to understand its long-term behaviour and, hence, to obtain some insight into how the
prevalence of an endemic disease depends on the parameters of the model [26] and, in
this case, also on the network topology. The problem of existence and global stability,
especially for the endemic equilibrium, for many complex multi-group models remains
an open question, or requires cumbersome conditions [27]. In this framework, Guo et
al. [28, 29] and Li and Shuai [30] developed a graph-theoretic method to find Lyapunov
functions for some multi-group epidemic models which has allowed to obtain various
results on the global dynamics of SIRS-type models [31, 32] and SEIRS-type models
[33]. In this thesis, an example is provided in Chapter 3.

The investigation of the global stability has not only a theoretical mathematical
interests. Indeed, understanding the behaviour of a relatively simple epidemic models
can be useful also for interpreting results from data-driven models [34].
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1.2 The role of asymptomatic infections

Unlike the more famous and studied epidemic models, much less attention has been paid
to SAIR(S)-type models, i.e. models that include asymptomatic infections. Thus, we
think that a deeper understanding of these kind of models is needed, and could prove
to be very useful in the epidemiological field. Indeed, in various communicable diseases,
such as influenza, cholera, shigella and Covid-19, an understanding of the infection
transmission by asymptomatic individuals may be crucial in determining the overall
pattern of the epidemic dynamics [35, 36]. In our interpretation an SAIRS models differs
from SEIRS models, since individuals in A can transmit the infection. It differs from
models that distinguish between severe and mild infections, since individuals from A
may other enter I or directly recover entering R; in this sense, the class A includes both
pre-symptomatic and asymptomatic infected, considered in several models for Covid-19
infections (see, for instance, [3]).

Although models incorporating asymptomatic individuals already exist in the liter-
ature [37, 38, 35], they have not been analytically investigated as thoroughly as more
famous compartmental models. Since these types of models have been receiving much
more attention lately, we believe they deserve a deeper understanding from a theoretical
point of view. Thus, we aim to partially fill this gap and provide a stability analysis
of both the SAIRS epidemic model and its multi-group counterpart, presented in the
first two chapters of this work. We remark that our primary aim is to provide a global
stability analysis under different mathematical assumptions to study some variations of
the original SAIRS model, which is lacking in the literature. However, we think that
this study may reveal useful also for data-driven models, in which the assumptions con-
sidered should be those that best fit the disease under investigation and the available
medical knowledge.

1.3 Heterogeneity in epidemic models

Classic epidemiological models are generally based on the assumption of the “mass-
mixing”, which means all the individuals have a uniform contact pattern. While such
an assumption considerably simplifies the models, it can be more realistic to take into
account heterogeneous interactions among the population.

Heterogeneity may enter in several aspects of disease transmission processes [39, 40,
41], such as spatial distribution of populations, different susceptibility among age groups
or different social behaviour among groups for sexually transmitted diseases.

One of the simplest techniques of introducing heterogeneity effects is to divide the
population into sub-populations [42], which describe different cities, species, or age
groups. In this context, individuals are subdivided into groups, but are identical within
each group and assumed to be homogeneously mixing within the compartment, and
equally connected outwards the compartments.

These kind of models, although more complex than models for a homogeneously
mixing population, are still amenable theoretical analysis. An example of this kind is
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presented in Section 3.1.

However, the heterogeneity presented by such models is limited. Indeed, in practice,
some individuals have more social interactions than others, and contacts with family
members, friends, and co-workers are much more likely than interactions with any other
random person in the population. With the advent of increasing computational power
and the availability of specific data, models which describe contacts between individuals
are becoming more popular. In this setting, graph theory and network theory are used
to describe these interactions. In this framework, individuals are modelled as the nodes
of the network and the edges represent their contacts. The theoretical analysis of epi-
demic spreading in heterogeneous networks require the development of novel techniques,
described e.g. in [43]. A disadvantage of such models is that a complete description of a
population would require the knowledge of every individual and its relationships, which
is not possible. The use of synthetic networks can be helpful to understand the interplay
between network properties and disease characteristics on the spread [44]. Towards this
aim, in Section 4.1 we analyse (using both theoretical methods and analysis of simulation
results) SIR epidemics on scale-free networks to infer how properties of an epidemic (e.g.
probability of a major epidemic, infected fraction, infection peak) depend on network
structure and node of epidemic introduction.

1.4 Public health analysis using mathematical models

Starting from theoretical models, the mathematical research in epidemic spreading offers
the possibility to investigate real scenarios for public health analysis. In particular, it
can provide guidance and advice to public health policymakers [45].

In recent years, thanks to the electronic data management and the availability of
these data over the internet, surveillance of infectious diseases has become widespread.
Digital traces also use data from volunteer users, e.g. influenzanet in Europe [46] or Flu
near you in USA [47].

These ongoing developments have increased the application of mathematical models
to design practical strategies for disease control. It could be a common thought that
such analysis regard only critical situations, such as the outbreak of Ebola in Africa [48]
or the emergence of COVID-19 as a global pandemic [3, 49]. However, the analysis of
control strategies for well-known transmissible diseases remains useful to prevent the re-
emergence of localised outbreak. In this context, some examples come from the seasonal
influenza [50, 51] or sexually transmitted diseases [52, 53].

In particular, for disease for which a vaccination is available, one of the most impor-
tant goal is the understanding of the efficient vaccination strategies for achieving herd
immunity and disease elimination. A different problem concerns infections, such as in-
fluenza, where vaccination cannot lead to disease elimination because of viral mutations
that ensure infection persistence over the seasons. In that case, the aim of vaccination is
to decrease disease burden; the problem then becomes establishing the cost-effectiveness
of vaccination strategies, or of the introduction of new vaccines. Such analysis are gener-
ally performed in terms of Quality-Adjusted Life Years gained and economic cost [54, 55].

4



Two examples of this kind are shown in Chapters 5 and 6 for different influenza vaccines
and countries.

While models are therefore useful for public health policy questions, a major problem
faced by scientists is the question of model choice. There is not an objective way to
evaluate the quality of a model. More complex models could better fit real-world data
than simpler models, however parameters can be practically unidentifiable, or anyway
estimation can be unsuccessful. On the contrary, complexity can be important to include
to understand whether uncertain factors are central to infection dynamics. In many
cases, different model structures can appear reasonable to answer to the same problem.
New developed methods in this field may help to build models from the best available
information for any given policy question.

1.5 Outline

The original results presented in this thesis are based on the research outputs produced
during the last three years.

The first theoretical part consists on two papers, both co-authored with Stefania
Ottaviano and Mattia Sensi. The first one, published on the journal “Nonlinear Analy-
sis: Real World Applications”, focused on the analysis of SAIRS epidemic models with
vaccination [56]. The global stability analysis of the model, formulated as a system
of ODEs, is provided. In particular, we solved the problem of the global stability for
the endemic equilibrium, combining two different approaches: the classical Lyapunov
stability theorem, and a geometric approach, which generalises the Poincaré-Bendixon
theorem. The second paper, submitted to the journal “Mathematical Methods in the Ap-
plied Sciences”, is a generalisation of the previous model to multi-group compartmental
models [57]. For this model, the global stability analysis has been developed using the
graph-theoretic approach to find Lyapunov functions. These papers constitute Chapter
2 and Chapter 3 of this thesis, respectively.

The second part of the thesis regards some applications of modelling heterogeneity
in humans interactions. Chapter 4 deals with spreading processes of infectious diseases
over networks. In particular, we analyse a stochastic SIR model on scale-free random
network. We first provide an approximate result on the probability of a minor epidemic,
and later we validate it by running simulations on different instances of the model.
These results are published on the “Journal of Simulations”, in a paper co-authored
with Ozan Kahramanoğulları and Mattia Sensi [58]. The last two chapters provide
applications of epidemic models to public health policy. Both concern the cost-benefit
analysis of the introduction of new influenza vaccines. The model used to perform the
analysis is a SEIR multi-group model, in which groups represent the different age-classes
of the population. In Chapter 5 it is analysed the Italian scenario of the introduction of
the Laive attenuated influenza vaccine quadrivalent (LAIVq) vaccine in the paediatric
age (2-6 years). This study has been carried on in collaboration with Caterina Rizzo, my
supervisor Andrea Pugliese and Fasika Molla Abreha and has been published (in Italian)
on the “Journal of Preventive Medicine and Hygiene” [59, Chapter 6]. Finally, Chapter
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6 presents the scenario of introducing the Adjuvanted QIV (aQIV) vaccine in the older
population (65+ years) in Spain. This work has been performed in collaboration with
Anna Fochesato, Andrea Pugliese and researchers from the Evidera’s team and published
on the journal “Vaccines” [60].
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2. Global stability of SAIRS
epidemic models

2.1 Introduction and Outline

Once an infectious disease starts circulating in a population, the main goal is to con-
tain its spread. Several control strategies may be applied to control a disease, such
as detection and isolation of infectious individuals or vaccination. However, the detec-
tion of infectious individuals is far from being an easy task: various diseases, such as
influenza, cholera, shigella or Covid-19, are often spread by asymptomatic individuals
[35, 36, 37, 61]. These “asymptomatic” individuals, despite showing no symptoms, are
able to transmit the infection (see e.g., [62, 63, 64, 65], where a considerable fraction of
SARS-Cov-2 infections have been attributed to asymptomatic individuals). This is one
of the main aspects that has allowed the virus to circulate widely in the population, since
asymptomatic cases often remain unidentified and presumably have more contacts than
symptomatic cases, since lack of symptoms often implies a lack of quarantine. Hence,
the contribution of the so-called “silent spreaders” to the infection transmission dynam-
ics should be considered in mathematical epidemic models. Models that incorporate an
asymptomatic compartment already exist in literature [35, 37, 38], but have not been
analytically studied as thoroughly as more famous compartmental models. In this chap-
ter, we consider an SAIRS (Susceptible - Asymptomatic infected - symptomatic Infected
- Recovered - Susceptible) model based on the one proposed in [61, Sec. 2], in which
the authors provide only a local stability analysis. An SAIR-type model is studied in
[66] with application to SARS-CoV-2. After a global stability analysis of the model,
the authors present a method to estimate the parameters. They apply the estimation
method to Covid-related data from several countries, demonstrating that the predicted
epidemic trajectories closely match actual data. The global stability analysis in [66]
regards only a simplified version of the model in [61]: first, recovered people do not lose
their immunity; moreover, the infection rates of the asymptomatic and symptomatic
individuals are equal, as well as their recovery rates, while in [61] these parameters are
considered to be potentially different. Thus, the main scope of our work is to provide a
global stability analysis of the model proposed in [61], and for some variations thereof.
In addition, we include in our model the possibility of vaccination. In the investigation
of global stability, we answer an open problem left in [66]. In particular, we study the

7



global asymptotic stability (GAS) of the disease-free equilibrium (DFE) and provide
results related to the global asymptotic stability of the endemic equilibrium (EE) for
many variations of the model, as we will explain in detail later.

In our model, the total population N is partitioned into four compartments, namely
S, A, I, R, which represent the fraction of Susceptible, Asymptomatic infected, symp-
tomatic Infected and Recovered individuals, respectively, such that N = S +A+ I +R.
The infection can be transmitted to a susceptible through a contact with either an
asymptomatic infectious individual, at rate βA, or a symptomatic individual, at rate βI .
This aspect differentiates an SAIR-type model from the more used and studied SEIR-
type model, where once infected a susceptible individual enters an intermediate stage
called “Exposed” (E), but a contact between a person in state E and one in state S
does not lead to an infection.

In this context instead, once infected, all susceptible individuals enter an asymp-
tomatic state, indicating in any case a delay between infection and symptom onset. We
include in the asymptomatic class both individuals who will never develop the symptoms
and pre-symptomatic who will eventually become symptomatic. The pre-symptomatic
phase seems to have a relevant role in the transmission: for example, in the case of
Covid-19, empirical evidence shows that the serial interval tends to be shorter than the
average incubation period, suggesting that a significant proportion of secondary trans-
mission can occur prior to symptoms onset [3]; the importance of the pre-symptomatic
phase in the transmission is underlined also for other diseases, such as dengue [67], and
H1N1 influenza [68].

From the asymptomatic compartment, an individual can either progress to the class
of symptomatic infectious I, at rate α, or recover without ever developing symptoms,
at rate δA. An infected individuals with symptoms can recover at a rate δI . We assume
that the recovered individuals do not obtain a long-life immunity and can return to the
susceptible state after an average time 1/γ. We also assume that a proportion ν of sus-
ceptible individuals receive a dose of vaccine which grants them a temporary immunity.
We do not add a compartment for the vaccinated individuals, not distinguishing the
vaccine-induced immunity from the natural one acquired after recovery from the virus.
Moreover, we consider the vital dynamics of the entire population and, for simplicity, we
assume that the rate of births and deaths are the same, equal to µ; we do not distinguish
between natural deaths and disease-related deaths.

The chapter is organized as follows. In Sec. 2.2, we present the system of equations
for the SAIRS model with vaccination, providing its positive invariant set. In Sec. 2.3,
we determine the value of the basic reproduction number R0 and prove that if R0 < 1,
the disease-free equilibrium (DFE) is globally asymptotically stable (GAS) and unstable
if R0 > 1.

In Sec. 2.4, we discuss the uniform persistence of the disease, the existence and
uniqueness of the endemic equilibrium (EE), and we investigate its stability properties.
In particular, first we provide the local asymptotic stability of the EE, then we investigate
its global asymptotic stability for some variations of the original model under study.
We start by considering the open problem left in [66], where the global stability of
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an SAIR model with vital dynamics is studied. The authors consider a disease which
confers permanent immunity, meaning that the recovered individuals never return to
the susceptible state. Moreover, they impose the restrictions βA = βI and δA = δI , and
leave the global stability of the endemic equilibrium when βA 6= βI and δA 6= δI , as
an open problem. Thus, in Sec. 2.5.1, we directly solve the open problem left in [66],
by considering an SAIR model (i.e., γ = 0), with βA 6= βI and δA 6= δI , including in
addition the possibility of vaccination. We consider the basic reproduction number R0

for this model and prove that if R0 > 1 the EE is GAS. In Sec. 2.5.2, we study the
GAS of the EE for an SAIRS model (i.e., γ 6= 0) with vaccination, with the restrictions
βA = βI and δA = δI , proving that if R0 > 1 the EE is GAS. Thus, we extend the global
analysis in [66] to a model including vaccination and loss of immunity. In Sec. 2.5.3, we
investigate the global stability of the SAIRS model with βA 6= βI or δA 6= δI , i.e., the
model proposed in [61], with in addition the possibility of vaccination. In this case, we
use a geometric approach to global stability for nonlinear autonomous systems due to
Lu and Lu [69], that generalises the criteria developed by Li and Muldowney [17, 18].
We prove that if R0 > 1 and βA < δI , the EE is GAS.

In Sec. 2.6, we are able to prove the GAS of the DFE also in the caseR0 = 1, assuming
that no vaccination campaign is in place. In Sec. 2.7, we validate our analytical results
via several numerical simulations and deeper explore the role of parameters.

2.2 The SAIRS model with vaccination

We consider an extension of the SAIRS model presented in [61].

The system of ODEs which describes the model is given by

dS(t)

dt
= µ−

(
βAA(t) + βII(t)

)
S(t)− (µ+ ν)S(t) + γR(t),

dA(t)

dt
=

(
βAA(t) + βII(t)

)
S(t)− (α+ δA + µ)A(t),

dI(t)

dt
= αA(t)− (δI + µ)I(t),

dR(t)

dt
= δAA(t) + δII(t) + νS(t)− (γ + µ)R(t),

(2.1)

with initial condition (S(0), A(0), I(0), R(0)) belonging to the set

Γ̄ = {(S,A, I,R) ∈ R4
+|S +A+ I +R = 1}, (2.2)

where R4
+ is the non-negative orthant of R4. The flow diagram for system (2.1) is given

in Figure 2.1.
Assuming initial conditions in Γ̄, S(t) + A(t) + I(t) + R(t) = 1, for all t ≥ 0; hence,
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Figure 2.1: Flow diagram for system (2.1).

system (2.1) is equivalent to the following three-dimensional dynamical system

dS(t)

dt
= µ−

(
βAA(t) + βII(t)

)
S(t)− (µ+ ν + γ)S(t) + γ(1−A(t)− I(t)),

dA(t)

dt
=

(
βAA(t) + βII(t)

)
S(t)− (α+ δA + µ)A(t),

dI(t)

dt
= αA(t)− (δI + µ)I(t),

(2.3)

with initial condition (S(0), A(0), I(0)) belonging to the set

Γ = {(S,A, I) ∈ R3
+|S +A+ I ≤ 1}.

System (2.3) can be written in vector notation as

dx(t)

dt
= f(x(t)),

where x(t) = (S(t), A(t), I(t)) and f(x(t)) = (f1(x(t)), f2(x(t)), f3(x(t))) is defined ac-
cording to (2.3).

Theorem 2.2.1. Γ is positively invariant set for system (2.3). That is, for all initial
values x(0) ∈ Γ, the solution x(t) of (2.3) will remain in Γ for all t > 0.

Proof. A compact set C is invariant for the system dx(t)/dt = f(x(t)) if at each point
y ∈ ∂C (the boundary of C), the vector f(y) is tangent or pointing into the set [70].

The boundary ∂Γ consists of the following 4 hyperplanes:

H1 = {(S,A, I) ∈ Γ | S = 0}, H2 = {((S,A, I) ∈ Γ | A = 0},
H3 = {(S,A, I) ∈ Γ | I = 0}, H4 = {(S,A, I) ∈ Γ | S +A+ I = 1}

whose respective outer normal vectors are:
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η1 = (−1, 0, 0), η2 = (0,−1, 0), η3 = (0, 0,−1), η4 = (1, 1, 1).

Thus, let us consider a point x ∈ ∂Γ. To prove the statement, we distinguish among
four cases.

Case 1: S = 0. Then, since A+ I ≤ 1

〈f(x), η1〉 = −µ− γ(1−A− I) ≤ 0.

Case 2: A = 0. Then, since S ≥ 0, I ≥ 0

〈f(x), η2〉 = −βIIS ≤ 0.

Case 3: I = 0. Then, since A ≥ 0

〈f(x), η3〉 = −αA ≤ 0.

Case 4: S +A+ I = 1. Then, since S ≥ 0, A ≥ 0, I ≥ 0

〈f(x), η4〉 = −νS − δAA− δII ≤ 0.

Thus, any solution that starts in ∂Γ will remain inside Γ.

2.3 Disease Elimination

In this section, we provide the value of the basic reproduction number, that is defined as
the expected number of secondary infections produced by an index case in a completely
susceptible population [71, 72]. This numerical value gives a measure of the potential
for disease spread within a population [73]. Then, we investigate the stability properties
of the disease-free equilibrium of the system (2.3), that is equal to

x0 = (S0, A0, I0) =

(
µ+ γ

µ+ ν + γ
, 0, 0

)
. (2.4)

Lemma 2.3.1. The basic reproduction number R0 of (2.3) is given by

R0 =

(
βA +

αβI
δI + µ

)
γ + µ

(α+ δA + µ)(ν + γ + µ)
. (2.5)

Proof. Let us use the next generation matrix method [74] to find R0. System (2.3) has
2 infected compartments, denoted by A and I. We can write

dA(t)

dt
= F1(S(t), A(t), I(t))− V1(S(t), A(t), I(t)),

dI(t)

dt
= F2(S(t), A(t), I(t))− V2(S(t), A(t), I(t)),
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where

F1(S(t), A(t), I(t)) =

(
βAA(t) + βII(t)

)
S(t), V1(S(t), A(t), I(t)) = (α+ δA + µ)A(t),

F2(S(t), A(t), I(t)) = 0, V2(S(t), A(t), I(t)) = −αA(t) + (δI + µ)I(t).

Thus, we obtain

F =


∂F1

∂A
(x0)

∂F1

∂I
(x0)

∂F2

∂A
(x0)

∂F2

∂I
(x0)

 =

(
βAS0 βIS0

0 0

)
, where S0 =

γ + µ

γ + µ+ ν
, (2.6)

V =


∂V1
∂A

(x0)
∂V1
∂I

(x0)

∂V2
∂A

(x0)
∂V2
∂I

(x0)

 =

(
α+ δA + µ 0
−α δI + µ

)
, (2.7)

from which

V −1 =


1

α+ δA + µ
0

α

(α+ δA + µ)(δI + µ)

1

δI + µ

 .

The next generation matrix is defined as M := FV −1, that is

M =


βAS0

α+ δA + µ
+

αβIS0
(α+ δA + µ)(δI + µ)

βIS0
δI + µ

0 0

 .

The basic reproduction number R0 is defined as the spectral radius of M , denoted by
ρ(M). Thus, with a direct computation, we obtain (2.5).

In the following, we recall some results that we will use to prove the global asymptotic
stability of the disease-free equilibrium x0 of (2.3).

Lemma 2.3.2. The matrix (F − V ) has a real spectrum. Moreover, if ρ(FV −1) < 1,
all the eigenvalues of (F − V ) are negative.

Proof. From (2.6) and (2.7)

(F − V ) =

(
βAS0 − (α+ δA + µ) βIS0

α −(δI + µ)

)
. (2.8)

Since (F − V ) is a 2 × 2 matrix whose off-diagonal elements have the same sign, it is

easy to see that its eigenvalues are real. Indeed, for a generic matrix A =

(
a b
c d

)
with
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sign(b) = sign(c), the eigenvalues can be easily shown to be real by explicitly computing
them:

λ1,2 =
(a+ d)±

√
(a− d)2 + 4bc

2
,

and noticing that the radicand is the sum of two non-negative values. Now, if ρ(FV −1) =
R0 < 1 all eigenvalues of (F − V ) are negative as a consequence of [73, Lemma 2].

Theorem 2.3.3. The disease-free equilibrium x0 of (2.3) is locally asymptotically stable
if R0 < 1, and unstable if R0 > 1.

Proof. See [73, Theorem 1].

Theorem 2.3.4. The disease-free equilibrium x0 of (2.3) is globally asymptotically stable
in Γ if R0 < 1.

Proof. Since Γ is an invariant set for (2.3) and in view of Theorem 2.3.3, it is sufficient
to show that for all x(0) ∈ Γ

lim
t→∞

A(t) = 0, lim
t→∞

I(t) = 0, and lim
t→∞

S(t) = S0,

with S0 as in (2.4). From the first equation of (2.3) follows that

dS(t)

dt
≤ µ+ γ − (µ+ ν + γ)S(t).

It easy to see that S0 is a global asymptotically stable equilibrium for the comparison
equation

dy(t)

dt
= µ+ γ − (µ+ ν + γ)y(t).

Then, for any ε > 0, there exists t̄ > 0, such that for all t ≥ t̄, it holds

S(t) ≤ S0 + ε, (2.9)

hence

lim sup
t→∞

S(t) ≤ S0. (2.10)

Now, from (2.9) and second and third equation of (2.3), we have that for t ≥ t̄

dA(t)

dt
≤
(
βAA(t) + βII(t)

)
(S0 + ε)− (α+ δA + µ)A(t),

dI(t)

dt
= αA(t)− (δI + µ)I(t).
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Let us now consider the comparison system

dw1(t)

dt
=

(
βAw1(t) + βIw2(t)

)
(S0 + ε)− (α+ δA + µ)w1(t),

dw2(t)

dt
= αw1(t)− (δI + µ)w2(t), w1(t̄) = A(t̄), w2(t̄) = I(t̄),

that we can rewrite as
dw(t)

dt
= (Fε − Vε)w(t),

where w(t) = (w1(t), w2(t))
T and Fε − Vε is the matrix in (2.8), computed in x0(ε) =

(S0 + ε, 0, 0). Let us note that if R0 = ρ(FV −1) < 1, we can choose a sufficiently
small ε > 0 such that ρ(FεV

−1
ε ) < 1. Then, by applying Lemma 2.3.2 to (Fε − Vε), we

obtain that it has a real spectrum and all its eigenvalues are negative. It follows that
limt→∞w(t) = 0 , whatever the initial conditions are (see, e.g., [75]), from which

lim
t→∞

A(t) = 0, and lim
t→∞

I(t) = 0.

Now, for any ε > 0 there exists t̄1 such that for any t ≥ t̄1, I(t) < ε and A(t) < ε. So,
for t ≥ t̄1 we have

dS(t)

dt
≥ µ− ε(βA + βI)S(t)− (µ+ ν + γ)S(t) + γ(1− 2ε).

It easy to see that
µ+ γ(1− 2ε)

ε(βA + βI) + (µ+ ν + γ)
is a global asymptotically stable equi-

librium for the comparison equation

dy(t)

dt
= µ− ε(βA + βI)y(t)− (µ+ ν + γ)y(t) + γ(1− 2ε).

Thus, for any ζ > 0, there exists t̄2 > 0 such that for all t ≥ t̄2,

S(t) ≥ µ+ γ(1− 2ε)

ε(βA + βI) + (µ+ ν + γ)
− ζ.

Then, for any ε > 0, we have

lim inf
t→∞

S(t) ≥ µ+ γ(1− 2ε)

ε(βA + βI) + (µ+ ν + γ)
.

Letting ε go to 0, we have lim inft→∞ S(t) ≥ S0, that combined with (2.10) gives us

lim
t→∞

S(t) = S0.
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2.4 Existence and uniqueness of endemic equilibrium

In this section, we discuss the uniform persistence of the disease, the existence and
uniqueness of an endemic equilibrium, and we investigate its stability properties.

We say that the disease is endemic if both the asymptomatic and infected fractions
in the population remains above a certain positive level for a sufficiently large time. The
notion of uniform persistence can be used to represent and analyse the endemic scenario
[19]. In the following, with the notation Θ̊, we indicate the interior of a set Θ.

Definition 1. System (2.3) is said to be uniformly persistent if there exists a constant
0 < ε < 1 such that any solution x(t) = (S(t), A(t), I(t)) with x(0) ∈ Γ̊ satisfies

min{lim inf
t→∞

S(t), lim inf
t→∞

A(t), lim inf
t→∞

I(t)} ≥ ε. (2.11)

To address the uniform persistence of our system, we need the following result.

Lemma 2.4.1. The DFE x0 is the unique equilibrium of (2.3) on ∂Γ.

Proof. Let us assume that x̄ = (S̄, Ā, Ī) is an equilibrium of (2.3) on ∂Γ. Then, there
are three possibilities:

Case 1: S̄ = 0. It follows from the second equation of (2.3) that Ā = 0 and, conse-
quently, from the third equation that Ī = 0. Then, from the first equation of (2.3) we
have γ(Ā+ Ī) = µ+ γ > 0, and a contradiction occurs.

Case 2: Ā = 0. It follows from the third equation of (2.3) that Ī = 0, and from the first
that S̄ = S0.

Case 3: Ī = 0. Analogously to Case 2, we find that Ā = 0 and S̄ = S0.

Case 4: S̄+ Ā+ Ī = 1. By summing the equations in (2.3), we have δAĀ+δI Ī+νS̄ = 0,
a contradiction.

By combining the above discussions the statement follows.

Theorem 2.4.2. If R0 > 1, system (2.3) is uniformly persistent and there exists at
least one endemic equilibrium in Γ̊.

Proof. By Lemma 2.4.1, the largest invariant set on ∂Γ is the singleton {x0}, which is
isolated. If R0 > 1, we know from Theorem 2.3.3 that x0 is unstable. Then, by using
[76, Thm 4.3], and similar arguments in [19, Prop. 3.3], we can assert that the instability
of x0 implies the uniform persistence of (2.3). The uniform persistence and the positive
invariance of the compact set Γ imply the existence of an endemic equilibrium in Γ̊ (see,
e.g., [77, Thm 2.8.6] or [12, Thm. 2.2]).
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Lemma 2.4.3. There exists an endemic equilibrium x∗ = (S∗, A∗, I∗) in Γ̊ for system
(2.3) if and only if R0 > 1. Furthermore, this equilibrium is unique.

Proof. We equate the right hand sides of (2.3) to 0, and assume A∗, I∗ 6= 0. From the
third equation we obtain

A∗ =
δI + µ

α
I∗, (2.12)

and replace it in the second equation(
βA
δI + µ

α
+ βI

)
I∗S∗ − (α+ δA + µ)

δI + µ

α
I∗ = 0.

Since I∗ 6= 0, it follows that

S∗ =
(α+ δA + µ)(δI + µ)

βA(δI + µ) + βIα
. (2.13)

Let us substitute the expressions (2.12) and (2.13) in the first equation, then we obtain

µ−
(
βA

δI + µ

α
+ βI

)
(α+ δA + µ)(δI + µ)

βA(δI + µ) + βIα
I∗−(µ+ν+γ)

(α+ δA + µ)(δI + µ)

βA(δI + µ) + βIα
+γ

(
1− δI + µ

α
I∗ − I∗

)
= 0,

which implies that

I∗ =

µ− (µ+ ν + γ)
(α+ δA + µ)(δI + µ)

βA(δI + µ) + βIα
+ γ

1

α
(βA(δI + µ) + βIα)

(α+ δA + µ)(δI + µ)

βA(δI + µ) + βIα
+ γ

δI + µ

α
+ γ

=
(µ+ γ)(βA(δI + µ) + βIα)− (µ+ ν + γ)(α+ δA + µ)(δI + µ)

βA(δI + µ) + βIα

α
((α+ δA + µ+ γ)(δI + µ) + γα)

=

(δI + µ)

(
(µ+ γ)

(
βA + βI

α

δI + µ

)
− (µ+ ν + γ)(α+ δA + µ)

)
βA(δI + µ) + βIα

α
((α+ δA + µ+ γ)(δI + µ) + γα)

=

(δI + µ)(µ+ ν + γ)(α+ δA + µ)

(
(µ+ γ)

(µ+ ν + γ)(α+ δA + µ)

(
βA + βI

α

δI + µ

)
− 1

)
βA(δI + µ) + βIα

α
((α+ δA + µ+ γ)(δI + µ) + γα)

=
α(δI + µ)(µ+ ν + γ)(α+ δA + µ)

(βA(δI + µ) + βIα) ((α+ δA + µ+ γ)(δI + µ) + γα)
(R0 − 1). (2.14)
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The endemic equilibrium in Γ̊ exists if A∗ > 0 and I∗ > 0. We obtain that I∗ > 0,
and consequently A∗ > 0, if and only if R0 − 1 > 0.

Theorem 2.4.4. The endemic equilibrium x∗ = (S∗, A∗, I∗) is locally asymptotically
stable in Γ̊ for system (2.3) if R0 > 1.

Proof. Note that the expression of (2.13) and (2.14) may be written as a function of R0;
using the expression found in (2.5), we obtain

S∗ =
h4
R0

, (2.15)

I∗ =
αh0h1h2(R0 − 1)

h3(βAh2 + βIα)
, (2.16)

where we have set h0 = µ+ ν + γ, h1 = α+ δA + µ, h2 = δI + µ, h3 = γα+ (h1 + γ)h2,

h4 =
γ + µ

h0
≤1. Moreover, we can compute

βAA
∗ + βII

∗ =
βAh2 + βIα

α
I∗ =

h0h1h2(R0 − 1)

h3
. (2.17)

To determine the stability of the endemic equilibrium x∗, we need to compute the Jaco-
bian matrix of (2.3) evaluated in x∗, that is

J|x∗ =


−h0h1h2(R0 − 1)

h3
− h0 −βAh4

R0
− γ −βIh4

R0
− γ

h0h1h2(R0 − 1)

h3

βAh4
R0

− h1
βIh4
R0

0 α −h2

 ,

where we have used (2.15-2.17). With the same arguments as in [61, Sec. 2.1], we can
conclude that x∗ is locally asymptotically stable if R0 > 1.

2.5 Global stability of the endemic equilibrium

2.5.1 Global stability of the endemic equilibrium in the SAIR model.

In this section, we focus on the global asymptotic stability of the endemic equilibrium
of the SAIR model, i.e., system (2.3) with γ = 0, representing a disease which confers
permanent immunity. Here, we answer directly to the open problem left in [66]. Let us
note that in our model we have in addition, with respect to the model proposed in [66],
the possibility of vaccination.
The dynamic of an SAIR model of this type is described by the following system of
equations:
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dS(t)

dt
= µ−

(
βAA(t) + βII(t)

)
S(t)− (µ+ ν)S(t), (2.18)

dA(t)

dt
=

(
βAA(t) + βII(t)

)
S(t)− (α+ δA + µ)A(t),

dI(t)

dt
= αA(t)− (δI + µ)I(t),

The basic reproduction number is

R0 =

(
βA +

αβI
δI + µ

)
µ

(α+ δA + µ)(ν + µ)
.

The endemic equilibrium x∗ = (S∗, A∗, I∗) satisfies the equation

µ =

(
βAA

∗ + βII
∗
)
S∗ + (µ+ ν)S∗, (2.19)

(α+ δA + µ)A∗ =

(
βAA

∗ + βI(r)I
∗
)
S∗, (2.20)

αA∗ = (δI + µ)I∗. (2.21)

Theorem 2.5.1. The endemic equilibrium x∗ = (S∗, A∗, I∗) of (2.18) is globally asymp-
totically stable in Γ̊ if R0 > 1.

Proof. For ease of notation, we will omit the dependence on t. Let us consider c1, c2 > 0
and the function

V = c1V1 + c2V2 + V3,

where

V1 = S∗ · g
(
S

S∗

)
, V2 = A∗ · g

(
A

A∗

)
, V3 = I∗ · g

(
I

I∗

)
,

and g(x) = x− 1− lnx ≥ g(1) = 0, for any x > 0. Let us introduce the notation

u =
S

S∗
, y =

A

A∗
, z =

I

I∗
.

Differentiating V along the solutions of (2.18), and using (2.19), (2.20), (2.21), we have

c1
dV1
dt

=c1

(
1− S∗

S

)[
µ− (βAA+ βII)S − (µ+ ν)S

]
= c1

(
1− S∗

S

)[
− (µ+ ν)(S − S∗)− βA(AS −A∗S∗)− βI(IS − I∗S∗)

]
= c1

(
1− 1

u

)[
− (µ+ ν)S∗(u− 1)− βAA∗S∗(uy − 1)− βII∗S∗(uz − 1)

]
,

(2.22)
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c2
dV2
dt

=c2

(
1− A∗

A

)[
(βAA+ βII)S − (α+ δA + µ)A

]
= c2

(
1− 1

y

)[
βAA

∗S∗uy + βII
∗S∗uz − (βAA

∗ + βII
∗)S∗y

]
= c2

(
1− 1

y

)[
βAA

∗S∗(uy − y) + βII
∗S∗(uz − y)

]
,

(2.23)

dV3
dt

=

(
1− I∗

I

)[
αA− (δI + µ)I

]
=

(
1− I∗

I

)(
αA− αIA∗

I∗

)
= αA∗

(
1 +

A

A∗
− I

I∗
− AI∗

A∗I

)
≤ αA∗

(
− ln y + y − z + ln z

)
= αA∗(g(y)− g(z)),

(2.24)

where we have used the inequality 1 − y/z ≤ − ln(y/z). Thus, from (2.22),(2.23), and
(2.24),

dV

dt
=− c1

(
1− 1

u

)
(µ+ ν)S∗(u− 1) + c1βAA

∗S∗
[(

1− 1

u

)
(1− uy) +

c2
c1

(
1− 1

y

)
(uy − y)

]
+ c1βII

∗S∗
[(

1− 1

u

)
(1− uz) +

c2
c1

(
1− 1

y

)
(uz − y)

]
+ αA∗(g(y)− g(z)).

(2.25)

Now, for the second and third term in (2.25), we have

(
1− 1

u

)
(1− uy) +

c2
c1

(
1− 1

y

)
(uy − y)

=

(
1 +

c2
c1

)
− 1

u
− uy

(
1− c2

c1

)
+ y

(
1− c2

c1

)
− c2
c1
u

= −g
(

1

u

)
− g (uy)

(
1− c2

c1

)
+

(
g(y)

(
1− c2

c1

)
− g(u)

)
,

(2.26)

and (
1− 1

u

)
(1− uz) +

c2
c1

(
1− 1

y

)
(uz − y)

=

(
1 +

c2
c1

)
− 1

u
+ z − uz

(
1− c2

c1

)
− c2
c1
y − c2

c1

uz

y

=− g
(

1

u

)
− c2
c1
g

(
uz

y

)
+

(
g(z)− c2

c1
g(y)

)
− uz

(
1− c2

c1

)
.

(2.27)
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Thus, substituting (2.26) and (2.27) in (2.25), we obtain

dV

dt
=− c1

(
1− 1

u

)
(µ+ ν)S∗(u− 1)

− c1βAA∗S∗
[
g

(
1

u

)
+ g(uy)

(
1− c2

c1

)]
+ c1βAA

∗S∗
[
g(y)

(
1− c2

c1

)
− g(u)

]
− c1βII∗S∗

[
g

(
1

u

)
+
c2
c1
g

(
uz

y

)]
+ c1βII

∗S∗
[
g(z)− c2

c1
g(y)− uz

(
1− c2

c1

)]
+ αA∗(g(y)− g(z)).

Now, by taking c1 = c2 =
αA∗

βII∗S∗
, we have

dV

dt
=− c1

(u− 1)2

u
(µ+ ν)S∗ − c1βAA∗S∗

(
g

(
1

u

)
+ g(u)

)
− c1βII∗S∗

(
g

(
1

u

)
+ g

(
uz

y

))
.

Hence,
dV

dt
≤ 0. Moreover, the set where

dV

dt
= 0 is Z = {(S,A, I) : S = S∗, I =

AI∗

A∗
},

and the only compact invariant subset of Z is the singleton {x∗}. The claim follows by
LaSalle’s Invariance Principle [78].

2.5.2 Global stability of the SAIRS model with equal transmission
rates and recovery rates

In this section, we conduct a global stability analysis in the case βA = βI := β and
δA = δI := δ. In [66], the authors study a SAIR model (without vaccination) in this
specific case, i.e. when the disease transmission and the recovery rates are the same
for asymptomatic and symptomatic individuals. Here, we extend their analysis to the
SAIRS model with vaccination.

In this case, from (2.5), the expression of the basic reproduction number becomes

R0 =
β(γ + µ)

(δ + µ)(ν + γ + µ)
.

Theorem 2.5.2. Let us assume that βA = βI =: β and δA = δI =: δ. The endemic
equilibrium x∗ = (S∗, A∗, I∗) is globally asymptotically stable in Γ̊ for system (2.3) if
R0 > 1.

Proof. Let us define M(t) := A(t) + I(t), for all t ≥ 0. Then, we can rewrite (2.3) as

dS(t)

dt
= µ− βM(t)S(t)− (µ+ ν + γ)S(t) + γ(1−M(t)),

dM(t)

dt
= βM(t)S(t)− (δ + µ)M(t).
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At the equilibrium it holds that

µ+ γ = βM∗S∗ + (µ+ ν + γ)S∗ + γM∗, (2.28)

δ + µ = βS∗, (2.29)

where M∗ = A∗+ I∗. In the following, for ease of notation, we will omit the dependence
on t. Consider the following positively definite function

V =
1

2
(S − S∗)2 + w

(
M −M∗ −M∗ ln

(
M

M∗

))
,

where w is a non negative constant.

Differentiating along (2.3) and using the equilibrium conditions (2.28-2.29) we obtain

dV

dt
=(S − S∗) (β(M∗S∗ −MS)− (µ+ ν + γ)(S − S∗) +

+ γ(M∗ −M)) + w

(
1− M∗

M

)
βM(S − S∗)

= β(S − S∗)(M∗S∗ −MS∗ +MS∗ −MS)− (µ+ ν + γ)(S − S∗)2+
+ γ(M∗ −M)(S − S∗) + wβ(M −M∗)(S − S∗)

= βS∗(S − S∗)(M∗ −M)− (βM + µ+ ν + γ)(S − S∗)2+
+ γ(M∗ −M)(S − S∗) + wβ(M −M∗)(S − S∗)
≤ (βS∗ + γ − wβ) (S − S∗)(M −M∗).

Choosing w :=
βS∗ + γ

β
> 0, it follows that

dV

dt
≤ 0. The claim follows from the same

argument used in [66, Thm 7].

2.5.3 Global stability of the SAIRS model: a geometric approach

In this section, we use a geometric approach for the global stability of equilibria of
nonlinear autonomous differential equations proposed in [69], that is a generalisation of
the approach developed by Li and Muldowney [17, 18]. We briefly report the salient
concepts in Appendix 2.A.

Theorem 2.5.3. Under the assumptions (H1)-(H4), the unique endemic equilibrium x∗

of (2.35) is globally asymptotically stable in D ⊂ Ω.

For our system (2.1), we have that the invariant manifold (2.36) is the set Γ̄ in (2.2),
so n = 4, m = 1, and N(x) = −µ. It is easy to see that (H1) holds, and that for R0 > 1,
by Theorem 2.4.2 and Lemma 2.4.3, (H2)-(H3) follows.

Theorem 2.5.4. Assume that R0 > 1 and βA < δI . Then, the endemic equilibrium x∗

is globally asymptotically stable in ˚̄Γ for system (2.1).
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Proof. Let us recall that from (2.11), there exists T > 0 such that for t > T ,

ε ≤ S(t), A(t), I(t), R(t) ≤ 1− ε. (2.30)

The Jacobian matrix of (2.1) may be written as

J = −µI4×4 + Φ,

where I4×4 is the 4× 4 identity matrix and

Φ =


−(βAA+ βII + ν) −βAS −βIS γ

βAA+ βII βAS − (δA + α) βIS 0
0 α −δI 0
ν δA δI −γ

 .

From the definition of the third additive compound matrix (see, e.g., [19, Appendix]),
we have

J [3] = Φ[3] − 3µI4×4,

with

Φ[3] =
(
φ
[3]
1 , φ

[3]
2 , φ

[3]
3 , φ

[3]
4

)T
,

where

φ
[3]
1 = (−(βAA+ βII + ν) + βAS − (δA + α)− δI , 0, 0, γ)T ,

φ
[3]
2 = (δI , −(βAA+ βII + ν) + βAS − (δA + α)− γ, βIS, βIS)T ,

φ
[3]
3 = (−δA, α, −(βAA+ βII + ν)− δI − γ, −βAS)T ,

φ
[3]
4 = (ν, 0, βAA+ βII, βAS − (δA + α+ δI + γ))T .

Let P (x) be such that

P (x) = diag(R, cI,A, S),

where c is a constant such that
δI + µ

βIε+ ν + δI + µ
< c < 1, then from (2.37) by direct

computation we have

B(t) = PfP
−1 + PJ [3]P−1 + µI4×4 = diag

(
R′

R
,
I ′

I
,
A′

A
,
S′

S

)
+ PΦ[3]P−1 − 2µI4×4,

where

PΦ[3]P−1 =
(
ζ
[3]
1 , ζ

[3]
2 , ζ

[3]
3 , ζ

[3]
4

)T
,

and

ζ
[3]
1 =

(
−(βAA+ βII + ν) + βAS − (δA + α)− δI , 0, 0, γ

R

S

)T
,
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ζ
[3]
2 =

(
c
δII

R
, −(βAA+ βII + ν) + βAS − (δA + α)− γ, cβIIS

A
, cβII

)T
,

ζ
[3]
3 =

(
−δAA

R
,
αA

cI
, −(βAA+ βII + ν)− δI − γ, −βAA

)T
,

ζ
[3]
4 =

(
νS

R
, 0, (βAA+ βII)

S

A
, βAS − (δA + α+ δI + γ)

)T
.

From the system of equations (2.1), we obtain

γR

S
= µ

(
1− 1

S

)
+ (βAA+ βII) + ν +

S′

S
,

βIIS

A
= α+ δA +µ− βAS +

A′

A
, (2.31)

αA

I
= δI + µ+

I ′

I
,

δII

R
= γ + µ− δII

R
− νS

R
+
R′

R
. (2.32)

Consequently, by using (2.30) and (2.31)-(2.32), we have

h1(t) = b11(t) +
∑
j 6=1

|b1j(t)|

= −(βAA+ βII + ν) + βAS − (δA + α)− δI − 2µ+
R′

R
+
γR

S

= βAS − δA − α− δI −
µ

S
+
R′

R
+
S′

S

≤ βA − δA − α− δI +
R′

R
+
S′

S
=: h̄1(t),

h2(t) = b22(t) +
∑
j 6=2

|b2j(t)|

= −(βAA+ βII + ν) + βAS − (δA + α)− γ − 2µ+
I ′

I
+ c

δII

R
+ c

βISI

A
+ cβII

≤ −εβA − ν − γ − µ+ c(γ + µ) + c
I ′

I
+ c

R′

R
+
A′

A
=: h̄2(t),
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h3(t) = b33(t) +
∑
j 6=3

|b3j(t)|

= −(βAA+ βII + ν)− δI − γ − 2µ+
A′

A
+
δAA

R
+
αA

cI
+ βAA

≤ −εβI − ν − δI − µ+
δI + µ

c
+
A′

A
+
R′

R
+
I ′

cI
=: h̄3(t),

h4(t) = b44(t) +
∑
j 6=4

|b4j(t)|

= βAS − (δA + α)− δI − γ − 2µ+
S′

S
+
νS

R
+ βAS +

βISI

A

≤ −δI + βA +
S′

S
+
R′

R
+
A′

A
=: h̄4(t).

Then, we can take the matrix C in condition (H4) as

C(t) = diag
(
h̄1(t), h̄2(t), h̄3(t), h̄4(t)

)
,

based on (2.30) and by the assumption βA < δI , we can assert that

lim
t→∞

1

t

∫ t

0
h̄i(s)ds = H̄i < 0, i = 1, . . . , 4,

where

H̄1 = βA − δA − α− δI , H̄2 = −εβA − ν − γ − µ+ c(γ + µ),

H̄3 = −εβI − ν − δI − µ+
δI + µ

c
, H̄4 = −δI + βA.

Indeed, if βA < δI holds, both H̄1 and H̄4 are less than zero; moreover, H̄2 and H̄3 are
less than zero by the choice of c. The claim then follows from Theorem 2.5.3.

We proved the global asymptotic stability of the endemic equilibrium for the SAIRS
model with a condition on the parameters, that is βA < δI . However, supported also
by numerical simulations in Sec. 2.7, we are led to think that this assumption could be
relaxed. Thus, we state the following conjecture.

Conjecture 2.5.5. The endemic equilibrium x∗ is globally asymptotically stable in ˚̄Γ
for system (2.1) if R0 > 1.

2.6 SAIRS without vaccination

Let us note that in the SAIRS-type models proposed so far, we have obtained results for
the global stability of the DFE equilibrium when R0 < 1 and for the global stability of
the endemic equilibrium when R0 > 1 ( with further conditions), but we are not able to
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study the stability of our system in the case R0 = 1. However, if we consider the SAIRS
model without vaccination, i.e. the model (2.3) with ν = 0, we are able to study also
the case R0 = 1. From (2.5), in the case ν = 0, we have

R0 =

(
βA +

αβI
δI + µ

)
1

(α+ δA + µ)
, (2.33)

the DFE is x0 = (1, 0, 0), and we obtain the following result.

Theorem 2.6.1. The disease-free equilibrium x0 is global asymptotically stable in Γ if
R0 ≤ 1.

Proof. We follow the idea in [28, Prop. 3.1]. Let

C =

(
α+ δA + µ 0
−α δI + µ

)
,

and
Y = (A, I)T .

Thus, we have
dY

dt
= (C(M(S)− I2×2))Y,

where

M(S) =


βAS

α+ δA + µ

βIS

α+ δA + µ

αβAS

(δI + µ)(α+ δA + µ)

αβIS

(δI + µ)(α+ δA + µ)

 .

Since, in this case, S0 = 1, we have that 0 ≤ S ≤ S0, and 0 ≤ M(S) ≤ M(S0),
meaning that each element of M(S) is less than or equal to the corresponding element
of M(S0).
At this point, let us consider the positive-definite function

V (Y ) = w C−1Y,

where w is the left-eigenvector of M(S0) corresponding to ρ(S0); since M(S0) is a positive
matrix, by Perron’s theorem, w > 0. It is easy to see that ρ(M(S0)) = R0 in (2.33),
thus if R0 ≤ 1, we have

dV

dt
= w C−1

dY

dt
= w (M(S)− I2×2)Y

≤ w (M(S0)− I2×2)Y = (ρ(M(S0))− 1)wY ≤ 0.

If R0 < 1, then
dV

dt
= 0 ⇐⇒ Y = 0. If R0 = 1, then

wM(S)Y = wY. (2.34)
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Now, if S 6= S0, wM(S) < wM(S0) = ρ(M(S0))w = w: Thus, (2.34) holds if and only

if Y = 0. If S = S0, wM(S) = wM(S0) = w, and
dV

dt
= 0 if S = S0 and Y = 0. It can

be seen that the maximal compact invariant set where
dV

dt
= 0 is the singleton {x0}.

Thus, by the LaSalle invariance principle the DFE x0 is globally asymptotically stable
if R0 ≤ 1.

Remark 1. Note that the expression of R0 in (2.33), i.e. for the SAIRS model with
ν = 0, does not depend on the parameter γ. Thus, when ν = 0, the SAIR (γ = 0)
and SAIRS (γ > 0) models have the same R0. On the contrary, when we consider the
vaccination, the expression of R0 depends both by γ and ν, as in (2.5).

By denoting the expression in (2.5) as Rvacc
0 and that in (2.33) as Rno-vacc

0 , we have

Rvacc
0 = Rno-vacc

0

µ+ γ

µ+ γ + ν
.

Hence, we can find the minimum vaccination proportion of susceptible individuals that
will eradicate the disease in the long-run, namely

νcrit = (µ+ γ) (Rno-vacc
0 − 1) .

An increase of γ, meaning a shorter immunity time-window, corresponds to an increase
in the minimum vaccination effort necessary to keep R0 below 1.

2.7 Numerical analysis

In this section, we provide numerous realizations of system (2.1). In particular, to
back the claim we made in Conjecture 2.5.5, in all the figures we chose βA > δI , with
the exception of Figure 2.7, still obtaining numerical convergence towards the endemic
equilibrium when R0 > 1.
Considering all the other parameters to be fixed, R0 becomes a linear function of βA and
βI ; in particular, the line R0(βA, βI) = 1 is clearly visible in all the subfigures of Figure
2.2, in which we visualize the equilibrium values of S,A, I,R as functions of βA and βI .
When R0 < 1, the values of βA and βI do not influence the value of the equilibrium
point (2.4), and the value of the fraction of individuals in each compartment remains
constant. For values of R0 > 1, we can see the influence of the infection parameters on
each components of the endemic equilibrium (see (2.12), (2.13), (2.14)).

Figures 2.3a, 2.3b, 2.3c and 2.3d confirm our analytical results on the asymptotic
values of the fraction of individuals in each compartment. In particular, the endemic
equilibrium value of S (2.13) does not depend on γ, the loss of immunity rate, as shown
by the time series corresponding to γ = 0.01, 0.02 and 0.05, whereas the disease free
equilibrium value of S (2.4), corresponding to the γ = 0.001 plot, does. Increasing the
value of γ, which corresponds to decreasing the average duration 1/γ of the immunity
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(a) (b)

(c) (d)

Figure 2.2: Asymptotic values of S, A, I, and R as a function of βA and βI . Values of the
parameters: µ = 1/(70 · 365), meaning an average lifespan of 70 years; βA ∈ [0.01, 0.8]
βI ∈ [0.01, 0.95], ν = 0.01, γ = 1/100, meaning the immunity lasts on average 100 days;
α = 0.15, δA = 0.1, δI = 0.15.

time-window, results in bigger asymptotic values for the asymptomatic and symptomatic
infected population A and I, and in a smaller asymptotic value for the recovered pop-
ulation R. This trend is quite intuitive: indeed, by keeping the other parameters fixed,
if the average immune period decreases (i.e., γ increases), a removed individual quickly
returns to the susceptible state, hence the Behaviour of the SAIRS model approaches
that of a SAIS model.

Next, we explore the effect of changing α, the rate of symptoms onset, in three
scenarios: equally infectious asymptomatic and symptomatic individuals (βA = βI),
in Figure 2.4; asymptomatic individuals more infectious than symptomatic individuals
(βA > βI : this case can be of interest if we consider that asymptomatic individuals
can, in principle, move and spread the infection more than symptomatic ones) in Figure
2.5; and vice-versa (βA < βI), in Figure 2.6. If R0 > 1, A∗ and I∗ are related by

A∗ =
δI + µ

α
I∗ (2.12). This means that, regardless of the values of βA and βI , A

∗ > I∗ if
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(a) (b)

(c) (d)

Figure 2.3: Behaviour of system (2.1) as γ, the rate of loss of immunity, varies. Values
of the parameters: µ = 1/(70 · 365), meaning an average lifespan of 70 years; βA = 0.8
βI = 0.95, ν = 0.01, γ varying as shown; α = 0.15, δA = 0.125, δI = 0.15.

and only if
δI + µ

α
> 1. This is evident in Figures 2.4b, 2.5b and 2.6b, where the smallest

value of that ratio, corresponding to α = 0.9, is smaller than 1, results in I∗ > A∗; the
biggest value of that ratio, and the only one significantly bigger than 1 is attained for
α = 0.01, and results in I∗ < A∗. Increasing α leads to a smaller asymptotic value for A,
and a bigger asymptotic value for I. Effectively, by keeping fixed the other parameters
and increasing α leads to a decreasing of the average time-period before developing
symptoms, thus the Behaviour of the SAIRS model approaches that of the SIRS one, as
α increases.

Finally, in Figure 2.7, we compare the effect of varying ν, the vaccination rate, on the
epidemic dynamics. In particular, the parameter values chosen satisfy the assumption of
Theorem 2.5.4, i.e. R0 > 1 and simultaneously βA < δI . We observe that the asymptotic
values of A and I are decreasing in ν, whereas the endemic equilibrium value of S is
independent of this parameter, as we expect from (2.13), and the endemic equilibrium
value of R is increasing in ν.
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(a) (b)

(c) (d)

Figure 2.4: Behaviour of system (2.1) as α, the rate of symptoms onset, varies. Values of
the parameters: µ = 1/(70·365), meaning an average lifespan of 70 years; βA = βI = 0.9,
ν = 0.01, γ = 1/100, meaning the immunity lasts on average 100 days; α varying as
shown, δA = 0.125, δI = 0.15.

2.8 Summary and Outlook

We analysed the behaviour of an SAIRS compartmental model with vaccination. We
determined the value of the basic reproduction number R0; then, we proved that the
disease-free equilibrium is globally asymptotically stable, i.e. the disease eventually dies
out if R0 < 1. Moreover, in the SAIRS-type model without vaccination (ν = 0), we
were able to generalise the result on the global asymptotic stability of the DFE also in
the case R0 = 1.

Furthermore, we proved the uniform persistence of the disease and the existence of a
unique endemic equilibrium if R0 > 1. Later, we analysed the stability of this endemic
equilibrium for some sub-cases of the model.

The first case describes a disease which confers permanent immunity, i.e. γ = 0: the
model reduces to an SAIR. In this framework, we answered the open problem presented in
[66], including the additional complexity of vaccination: we proved the global asymptotic
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(a) (b)

(c) (d)

Figure 2.5: Behaviour of system (2.1) as α, the rate of symptoms onset, varies. Values
of the parameters: µ = 1/(70 · 365), meaning an average lifespan of 70 years; βA = 0.9
βI = 0.5, ν = 0.01, γ = 1/100, meaning the immunity lasts on average 100 days; α
varying as shown, δA = 0.125, δI = 0.15.

stability of the endemic equilibrium when R0 > 1.

We then proceeded to extend the results provided in [61] on the local stability analysis
for a SAIRS-type model. We first considered the SAIRS model with the assumption
that both asymptomatic and symptomatic infectious have the same transmission rate
and recovery rate, i.e., βA = βI and δA = δI , respectively. We were able to show that the
endemic equilibrium is globally asymptotically stable if R0 > 1. Moreover, we analysed
the model without restrictions; we used the geometric approach proposed in [69] to find
the conditions under which the endemic equilibrium is globally asymptotically stable.
We proved the global stability in the case R0 > 1 and βA < δI .

We leave, as an open problem, the global asymptotic stability of the endemic equilib-
rium without any restriction on the parameters: we conjecture that the global asymptotic
stability for the endemic equilibrium only requires R0 > 1, as our numerical simulations
suggest.

30



(a) (b)

(c) (d)

Figure 2.6: Behaviour of system (2.1) as α, the rate of symptoms onset, varies. Values
of the parameters: µ = 1/(70 · 365), meaning an average lifespan of 70 years; βA = 0.5
βI = 0.9, ν = 0.01, γ = 1/100, meaning the immunity lasts on average 100 days; α
varying as shown, δA = 0.125, δI = 0.15.

Many generalisations and investigations of our model are possible. For example, we
considered the vital dynamics without distinguish between natural death and disease re-
lated deaths; an interesting, although complex, generalisation of our model could explore
the implications of including disease-induced mortality.

A natural extension of our SAIRS model could take into account different groups
of individual among which an epidemic can spread. One modelling approach for this
are multi-group compartmental models, which is discussed in Chapter 3. Other more
realistic extensions may involve a greater number of compartments, for example the
“Exposed” group, or time-dependent parameters which can describe the seasonality of a
disease or some response measures from the population, as well as non-pharmaceutical
interventions.
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(a) (b)

(c) (d)

Figure 2.7: Behaviour of system (2.1) as ν, the vaccination rate, varies. Values of the
parameters: µ = 1/(70 ·365), meaning an average lifespan of 70 years; βA = 0.5 βI = 0.9,
ν varying as shown, γ = 1/50, meaning the immunity lasts on average 50 days; α = 0.9,
δA = 0.1, δI = 0.51. The condition βA < δI is satisfied.
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Appendix

2.A The geometric approach

We recall the salient concepts of the geometric approach proposed in [69] for the global
stability of equilibria of nonlinear autonomous differential equations, that generalises the
criteria developed by Li and Muldowney [17, 18].

Consider the following autonomous system

x′ = f(x), x ∈ D ⊂ Rn, (2.35)

where f : D → Rn is a continuous differentiable function on D. Let x(t, x(0)) be the
solution of system (2.35) with the initial value x(0, x(0)) = x(0). We assume that system
(2.35) has an n−m dimensional invariant manifold Ω defined by

Ω = {x ∈ Rn|g(x) = 0}, (2.36)

where g(x) is an Rm-valued twice continuously differentiable function with dim(
∂g

∂x
) = m

when g(x) = 0. In [18], Li and Muldowney proved that if Ω is invariant with respect to
system (2.35), then there exists a continuous m×m dimensional matrix-valued function
N(x), such that

gf (x) =
∂g

∂x
· f(x) = N(x) · g(x),

where gf (x) is the directional derivative of g(x) in the direction of the vector field f .
Moreover, let us define the real valued function σ(x) on Ω, by

σ(x) = tr(N(x)),

and make the following assumptions:

(H1) Ω is simply connected;

(H2) There is a compact absorbing set K ⊂ D ⊂ Ω;

(H3) x∗ is the unique equilibrium of system (2.35) in D ⊂ Ω which satisfies f(x∗) = 0.
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Now, consider the following linear differential equation, associated to system (2.35)

z′(t) =
[
PfP

−1 + PJ [m+2]P−1 − σI
]
z(t) =: B(x(t, x(0))z(t), (2.37)

where x 7→ P (x) is a C1 nonsingular
(

n
m+2

)
×
(

n
m+2

)
matrix-valued function in Ω such

that ||P−1(x)|| is uniformly bounded for x ∈ K and Pf is the directional derivative of P
in the direction of the vector field f , and J [m+2] is the m+ 2 additive compound matrix
of the Jacobian matrix of (2.35). Assume that the following additional condition holds:

(H4) for the coefficient matrix B(x(t, x(0)), there exists a matrix C(t), a large enough
T1 > 0 and some positive numbers α1, α2, . . . , αn such that for all t ≥ T1 and all x(0) ∈ K
it holds

bii(t) +
∑
i 6=j

αj
αi
|bij(t)| ≤ cii(t) +

∑
i 6=j

αj
αi
|cij(t)|,

and

lim
t→∞

1

t

∫ t

0
cii(s) +

∑
i 6=j

αj
αi
|cij(s)| ds = hi < 0,

where bij(t) and cij(t) represent entries of matrices B(x(t, x(0)) and C(t), respectively.
Basically, condition (H4) is a Bendixson criterion for ruling out non-constant periodic
solutions of system (2.35) with invariant manifold Ω. From this, by a similar argument
as in Ballyk et al. [79], based on [18, Thm 6.1], the following theorem can be deduced
(see [69, Thm 2.6]).
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3. Global stability of multi-group
SAIRS epidemic models

3.1 Introduction and Outline

One of the most common assumptions in classic population models is the homogeneity of
interactions between individuals, which then happen completely at random. While such
an assumption significantly simplifies the analysis of the models, it can be beneficial
to renounce it and to formulate models with more realistic interactions. Heterogene-
ity in the interactions among the population can depend on many factors. The most
common division regards the geographical distinction and the membership to different
communities, cities or countries, in which the same infectious disease can have a different
behaviour based on the group under study.

The division in groups can also depend on the specific disease under study. For
example, individuals can be divided into age groups to study children’s diseases, such as
measles, mumps or rubella, or can be differentiated by the number of sexual partners for
sexually transmitted infections. Multi-group models can also be useful to study disease
transmitted via vectors or multiple hosts, such as Malaria or West-Nile virus.

The concept of equitable partitions has been used to study networks partitioned
into local communities with some regularities in their structure, in the case of SIS and
SIRS models [80, 81, 82], by means of the N-Intertwined Mean-Field approximation
[83]. In the aforementioned works, the macroscopic structure of hierarchical networks
is described by a quotient graph and the stability of the endemic equilibrium can be
investigated by a lower-dimensional system with respect to the starting one. Several
authors proposed multi-group models to describe the transmission behaviour between
different communities or cities, see for example [84, 85, 86]

Due to the aforementioned motivations, in this chapter we present a multi-group
model, as extension of the SAIRS-type model proposed in Chapter 2. We assume that
each individual interacts within a network of relationships, due e.g. to different social or
spatial patterns; individuals are hence divided into groups, which are not isolated from
one another.

In our model, we denote with Si, Ai, Ii and Ri, i = 1, . . . , n, the fraction of Suscep-
tible, Asymptomatic infected, symptomatic Infected and Recovered individuals, respec-
tively, in the i−th group, such that Si + Ai + Ii + Ri = 1. We remark that, from here
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on, we will use the terms community and group interchangeably.

The disease can be transmitted by individuals in the classes Ai and Ii, within their
group, to the susceptible Si, with transmission rate βAii and βIii, respectively, but also
between different groups: e.g., individuals Aj and Ij , belonging to the j-th community,
may infect susceptible individuals Si of group i with transmission rate βAij and βIij ,
respectively. From the asymptomatic compartment, an individual can either progress to
the class of symptomatic infectious or recover without ever developing symptoms. We
assume that the average time of the symptoms developing, denoted by 1/α, and the
recovery rates from both the infectious compartments, δA and δI , do not depend on the
community of origin, i.e. these parameters depend only on the disease. Furthermore,
the average time to return to the susceptible state, 1/γ, only depends on the specific
disease under study, and not on the community to which an individual belongs. The
remaining parameters of the model depend on the community’s membership. First, the
proportion of susceptible individuals who receive the vaccine might be different for each
group; we denote with νi, i = 1, . . . , n, the proportion of susceptible in the i−th group
who receive a vaccine-induced temporary immunity. Moreover, µi, i = 1, . . . , n represent
both the birth rates and the natural death rates in community i. Finally, individuals
of different communities may have contacts each other, by direct transport, but they
never permanently move to another community. Therefore, the total population in each
group may only change through births and natural deaths; we do not distinguish between
natural deaths and disease-related deaths.

The chapter is organized as follows. In Sec. 3.2, we present the system of equations
for the multi-group SAIRS model with vaccination, providing its positive invariant set.
In Sec. 3.3, we determine the basic reproduction number R0 and prove that the disease-
free equilibrium (DFE) is globally asymptotically stable (GAS) if R0 < 1 and unstable
if R0 > 1. Moreover, we prove the GAS of the DFE also in the case R0 = 1, for the
model in which no vaccination is administered to the susceptible individuals. In Sec. 3.4,
we prove the existence and uniqueness of an endemic equilibrium (EE) by a fixed point
argument, as in [26], since there is no explicit expression for R0. Later, we provide
sufficient conditions for the local asymptotic stability of the EE. In Sec. 3.5, we discuss
the uniform persistence of the disease and we investigate the global asymptotic stability
of the EE for two variations of the original model under study. Precisely, in Thm. 3.5.2,
we study the global stability of the SAIR model (i.e. γ = 0) and we prove that the EE is
GAS if R0 > 1. In Sec. 3.5.2, we establish sufficient conditions for the GAS of the EE for
the SAIRS model (i.e., γ 6= 0) with vaccination, under the restriction that asymptomatic
and symptomatic individuals have the same average recovery period, i.e. δA = δI . The
problem of the global stability of the endemic equilibrium in the most general case, i.e.
δA 6= δI , remains open. In Sec. 3.7, we provide some numerical simulations in which
we simulate the evolution of the epidemics in four different structures of community
networks.
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3.2 The multi-group SAIRS model with vaccination

The system of ODEs which describes the evolution of the disease in the i-th community
is the following:

dSi(t)

dt
= µi −

n∑
j=1

(
βAijAj(t) + βIijIj(t)

)
Si(t)− (µi + νi)Si(t) + γRi(t),

dAi(t)

dt
=

n∑
j=1

(
βAijAj(t) + βIijIj(t)

)
Si(t)− (α+ δA + µi)Ai(t),

dIi(t)

dt
= αAi(t)− (δI + µi)Ii(t),

dRi(t)

dt
= δAAi(t) + δIIi(t) + νiSi(t)− (γ + µi)Ri(t), i = 1, . . . , n,

(3.1)

with initial condition (S1(0), A1(0), I1(0), R1(0), . . . , Sn(0), An(0), In(0), Rn(0)) belong-
ing to the set

Γ̄ = {(S1, A1, I1, R1, . . . , Sn, An, In, Rn) ∈ R4n
+ |Si+Ai+Ii+Ri = 1, i = 1, . . . , n}, (3.2)

where R4n
+ indicates the non-negative orthant of R4n. The flow diagram representing

the interaction among two groups of system (3.1), as well as their internal dynamics, is
given in Figure 1.

µi

µiSi (
βAiiAi + βIiiIi

)
Si µiAi µiIi µiRi

α

δA

δI(
βAijAj + βIijIj

)
Si

γ

νi

Si Ai Ii Ri

µj
Sj Aj Ij Rj

µjSj
µjAj

µj Ij µjRj

α

δA

δI

γ

νi

(
βAjjAj + βIjjIj

)
Sj

(
βAjiAi + βIjiIi

)
Sj

Figure 1: Flow diagram for system (3.1), depicting the interaction between communities
i and j, as well as their internal dynamics. The solid lines represent internal dynam-
ics within each group, whereas the dashed lines represent the inter-group influence of
infected individuals.
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Assuming initial conditions in Γ̄, Si(t) + Ai(t) + Ii(t) + Ri(t) = 1, for all t ≥ 0 and
i = 1, . . . , n; hence, system (3.1) is equivalent to the following 3n-dimensional dynamical
system:

dSi(t)

dt
= µi −

n∑
j=1

(
βAijAj(t) + βIijIj(t)

)
Si(t)− (µi + νi + γ)Si(t) + γ(1−Ai(t)− Ii(t)),

dAi(t)

dt
=

n∑
j=1

(
βAijAj(t) + βIijIj(t)

)
Si(t)− (α+ δA + µi)Ai(t),

dIi(t)

dt
= αAi(t)− (δI + µi)Ii(t), i = 1, . . . , n,

(3.3)

with initial condition (S1(0), A1(0), I1(0), . . . , Sn(0), An(0), In(0)) belonging to the set

Γ = {(S1, A1, I1, . . . , Sn, An, In) ∈ R3n
+ |Si +Ai + Ii ≤ 1, i = 1, . . . , n}.

System (3.3) can be written in vector notation as

dx(t)

dt
= f(x(t)), (3.4)

where x(t) = (S1(t), A1(t), I1(t), . . . , Sn(t), An(t), In(t)) and f(x(t)) = (f1(x(t)), f2(x(t)), . . . , f3n(x(t)))
is defined according to (3.3).
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We make the following assumptions:

Assumption 1.

• The matrices [βAij ]i,j=1,...,n and [βIij ]i,j=1,...,n are irreducible. This means that every
pair of communities is connected by a path.

• βAii 6= 0, βIii 6= 0, i = 1, . . . , n. This means that infection can spread within each
community.

Theorem 3.2.1. Γ is positively invariant for system (3.3). That is, for all initial values
x(0) ∈ Γ, the solution x(t) of (3.3) will remain in Γ for all t > 0.

Proof. Let us consider the boundary ∂Γ, as in Theorem 2.2.1. It consists of the following
hyperplanes:

H1,i = {(S1, A1, I1, . . . , Sn, An, In) ∈ Γ | Si = 0},
H2,i = {(S1, A1, I1, . . . , Sn, An, In) ∈ Γ | Ai = 0},
H3,i = {(S1, A1, I1, . . . , Sn, An, In) ∈ Γ | Ii = 0},
H4,i = {(S1, A1, I1, . . . , Sn, An, In) ∈ Γ | Si +Ai + Ii = 1}, i = 1, . . . , n.

Let us consider Hk,1, k = 1, 2, 3, 4. The outward normal vectors of H1,1, H2,1, H3,1, and
H4,1 are, respectively

η1,1 = (−1, 0, 0, . . . , 0, 0, 0), η2,1 = (0,−1, 0, . . . , 0, 0, 0),

η3,1 = (0, 0,−1, . . . , 0, 0, 0), η4,1 = (1, 1, 1, . . . , 0, 0, 0).

Let x ∈ Hk,1, k = 1, . . . , 4, and consider the following cases:

Case 1: S1 = 0. Then, since A1 + I1 ≤ 1,

〈f(x), η1,1〉 = −µ1 − γ(1−A1 − I1) ≤ 0.

Case 2: A1 = 0. Then, since S1 ≥ 0, Ai ≥ 0, Ii ≥ 0, i = 2, . . . , n

〈f(x), η2,1〉 = −
( n∑
j=2

βAijAj +
n∑
j=1

βIijIj

)
︸ ︷︷ ︸

≥0

S1 ≤ 0.

Case 3: I1 = 0. Then, since A1 ≥ 0

〈f(x), η3,1〉 = −αA1 ≤ 0.

Case 4: S1 +A1 + I1 = 1. Then, since S1 ≥ 0, A1 ≥ 0, I1 ≥ 0

〈f(x), η4,1〉 = −ν1S1 − δAA1 − δII1 ≤ 0.

The proof for the hyperplanes Hk,i, k = 1, . . . , 4 and i = 2, . . . , n is analogous.
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3.3 Disease Elimination

System (3.3) always admits a disease-free equilibrium, whose expression is:

x0 = (S0,1, A0,1, I0,1, . . . , S0,n, A0,n, I0,n) ,

where

S0,i =
γ + µi

γ + µi + νi
, A0,i = I0,i = 0, i = 1, . . . , n. (3.5)

Note that, in general, S0,i 6= S0,j if i 6= j.

Lemma 3.3.1. Consider the matrix

M1 =

((
βAij +

αβIij
δI + µi

)
S0,i

α+ δA + µi

)
i,j=1,...,n

. (3.6)

The basic reproduction number R0 of (3.3) is

R0 = ρ(M1) = ρ

((βAij +
αβIij

(δI + µi)

)
γ + µi

(γ + µi + νi)(α+ δA + µi)

)
i,j=1,...,n

 , (3.7)

where ρ(M1) is the spectral radius of the matrix M1.

Proof. We shall use the next generation matrix method [74] to find R0. System (3.3) has
2n disease compartments, namely Ai and Ii, i = 1, . . . , n. Rearranging the order of the
equations such that the disease compartments can be written as x = (A1, . . . , An, I1, . . . , In)T ,
we can rewrite the corresponding ODEs as

dAi(t)

dt
= F1i(Si(t), Ai(t), Ii(t))− V1,i(Si(t), Ai(t), Ii(t)),

dIi(t)

dt
= F2,i(Si(t), Ai(t), Ii(t))− V2,i(Si(t), Ai(t), Ii(t)),

where

F1,i =
n∑
i=1

(
βAijAj(t) + βIijIj(t)

)
Si(t), V1,i = (α+ δA + µi)Ai(t),

F2,i = 0, V2,i = −αAi(t) + (δI + µi)Ii(t).
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Thus, we obtain

F =



(
∂F1,i

∂Aj
(x0)

)
i,j=1,...,n

(
∂F1,i

∂Ij
(x0)

)
i,j=1,...,n(

∂F2,i

∂Aj
(x0)

)
i,j=1,...,n

(
∂F2,i

∂Ij
(x0)

)
i,j=1,...,n

 , (3.8)

V =



(
∂V1,i
∂Aj

(x0)

)
i,j=1,...,n

(
∂V1,i
∂Ij

(x0)

)
i,j=1,...,n(

∂V2,i
∂Aj

(x0)

)
i,j=1,...,n

(
∂V2,i
∂Ij

(x0)

)
i,j=1,...,n

 , (3.9)

which can be written in matrix notation

F =

(
B̃A B̃I

0 0

)
and V =

(
(α+ δA)I + µ 0

−αI δII + µ

)
,

where (B̃A)ij = βAijS0,i, (B̃I)ij = βIijS0,i, µ = diag (µ1, . . . , µn), and 0 and I are the
zero matrix and the identity matrix of order n, respectively. Since V is a block lower
triangular matrix, its inverse is the 2n× 2n block matrix:

V −1 =

 diag

(
1

α+ δA + µi

)
i=1,...,n

0

diag

(
α

(α+ δA + µi)(δI + µi)

)
i=1,...,n

diag

(
1

δI + µi

)
i=1,...,n

 .

The next generation matrix is defined as M := FV −1. By direct calculation, we
obtain

M =


((

βAij
α+ δA + µi

+
αβIij

(α+ δA + µi)(δI + µi)

)
S0,i

)
i,j=1,...,n

(
βIijS0,i

δI + µi

)
i,j=1,...,n

0 0

 .

(3.10)
The basic reproduction number R0 is defined as the spectral radius of M , denoted by
ρ(M), that is ρ(M) = max{ρ(M1), 0}, where

M1 =

((
βAij +

αβIij
δI + µi

)
S0,i

α+ δA + µi

)
i,j=1,...,n

.

As a direct consequence of the Perron Frobenius theorem [87], ρ(M1) > 0. This proves
our claim.
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In the following, we present some results to prove the global asymptotic stability of
the DFE x0.

Recall that a matrix M is called non-negative if each entry is non-negative; we simply
write M ≥ 0 to indicate this. We use the following results from [73]:

Lemma 3.3.2 ([73, Lemma 2]). If F is non-negative and V is a non-singular M-matrix,
then R0 = ρ(FV −1) < 1 if and only if all eigenvalues of (F−V ) have negative real parts.

Note that the matrices F and V defined in Lemma 3.3.1 satisfy the hypotheses of
Lemma 3.3.2, thus the following result holds:

Theorem 3.3.3. The disease-free equilibrium of (3.3) is locally asymptotically stable if
R0 < 1 and unstable if R0 > 1.

Proof. See [73, Theorem 1].

Theorem 3.3.4. The disease-free equilibrium x0 of (3.3) is globally asymptotically stable
in Γ if R0 < 1.

Proof. Let x(t) = (S1(t), . . . , Sn(t), A1(t), . . . , An(t), I1(t) . . . , In(t)) be the solutions of
system (3.3) with initial condition x(0) ∈ Γ, in which we have rearranged the order of
the equations. In view of Theorem 3.3.3, it is sufficient to prove that for all i = 1, . . . , n

lim
t→∞

Si(t) = S0,i, lim
t→∞

Ai(t) = 0, and lim
t→∞

Ii(t) = 0,

with S0,i as in (3.5). From the first n equations of (3.3), it follows that

dSi(t)

dt
≤ µi + γ − (µi + νi + γ)Si(t), i = 1, . . . , n.

Thus, S0,i is a global asymptotically stable equilibrium for the comparison equation

dzi(t)

dt
= µi + γ − (µi + νi + γ)zi(t), i = 1, . . . , n.

Then, for any ε > 0, there exists t̄i > 0, such that for all t ≥ t̄i, it holds

Si(t) ≤ S0,i + ε, (3.11)

hence
lim sup
t→∞

Si(t) ≤ S0,i, i = 1, . . . , n. (3.12)

Let t̄ = max{t1, . . . , tn}, then for all t ≥ t̄, from (3.11) and the remaining 2n equations
of (3.3) it follows that

dAi(t)

dt
≤

n∑
j=1

(
βAijAj(t) + βIijIi(t)

)
(S0,i + ε)− (α+ δA + µi)Ai(t), i = 1, . . . , n,

dIi(t)

dt
= αAi(t)− (δI + µi)Ii(t), i = 1, . . . , n.
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Let us now consider the comparison system

dvi(t)

dt
=

n∑
j=1

(
βAijvj(t) + βIijui(t)

)
(S0,i + ε)− (α+ δA + µi)vi(t),

dui(t)

dt
= αvi(t)− (δI + µ)ui(t), vi(t̄) = Ai(t̄), ui(t̄) = Ii(t̄), i = 1, . . . , n.

Let w = (v1, . . . , vn, u1, . . . , un)T , then one can rewrite this system as

dw(t)

dt
= (Fε − Vε)w(t),

where Fε and Vε are the matrices defined in (3.8) and (3.9), respectively, evaluated
in x0(ε) whose components are S0,i + ε for i = 1, . . . , n and 0 in the remaining 2n
components.

Notice that we can choose ε > 0 sufficient small such that ρ(FεV
−1
ε ) < 1 and then,

from Lemma 3.3.2, all the eigenvalues of matrix (Fε − Vε) have negative real parts. It
follows that limt→∞wi(t) = 0 from any initial conditions in Γ, from which

lim
t→∞

Ai(t) = 0 and lim
t→∞

Ii(t) = 0.

Thus, for any ε > 0, there exists t̄1 > 0 such that, for all t ≥ t̄1, we have

Ai(t) < ε and Ii(t) < ε, i = 1, . . . , n.

From that and the first n equations of system (3.3), we get that for all i = 1, . . . , n and
for t ≥ t̄1

dSi(t)

dt
≥ µi − ε

n∑
j=1

(βAij + βIij)Si(t)− (µi + νi + γ)Si(t) + γ(1− 2ε).

The comparison system

dzi(t)

dt
= µi − ε

n∑
j=1

(βAij + βIij)zi(t)− (µi + νi + γ)zi(t) + γ(1− 2ε), i = 1, . . . , n,

has a globally asymptotically stable equilibrium

z0 =

(
µ1 + γ(1− 2ε)

ε(
∑n

j=1 β
A
1j + βI1j) + (µ1 + ν1 + γ)

, . . . ,
µn + γ(1− 2ε)

ε(
∑n

j=1 β
A
nj + βInj) + (µn + νn + γ)

)
.

Thus, we get that for any ζ > 0, there exists t̄2 > 0 such that for all t ≥ t̄2,

Si(t) ≥
µi + γ(1− 2ε)

ε(
∑n

j=1 β
A
ij + βIij) + (µi + νi + γ)

− ζ, i = 1, . . . , n.
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This implies that for all ε > 0

lim inf
t→∞

Si(t) ≥
µi + γ(1− 2ε)

ε(
∑n

j=1 β
A
ij + βIij) + (µi + νi + γ)

, i = 1, . . . , n.

Letting ε go to 0, we have lim inft→∞ Si(t) ≥ S0,i for all i = 1, . . . , n, which combined
with (3.12) gives us

lim
t→∞

Si(t) = S0,i, i = 1, . . . , n.

3.4 Existence and uniqueness of endemic equilibrium

To prove the existence and uniqueness of an endemic equilibrium point, we recall the
following definition and theorem from [7].

Definition 2. A function F (x) : Rn+ → Rn+ is called strictly sublinear if for fixed
x ∈ (0,∞)n and fixed r ∈ (0, 1)n, there exists an ε > 0 such that F (rx) ≥ (1 + ε)rF (x),
where ≥ denotes the pointwise ordering in Rn.

Theorem 3.4.1 (Thm 2.2 [7]). Let F (x) : Rn+ → Rn+ be a continuous, monotone nonde-
creasing, strictly sublinear, and bounded function. Let F (0) = 0 and JF (0) exists and be
irreducible, where JF is the Jacobian matrix of F . Then F (x) does not have a nontrivial
fixed point on the boundary of Rn+. Moreover, F (x) has a positive fixed point if and only
if ρ(JF (0)) > 1. If there is a positive fixed point, then it is unique.

By using the above result, we can prove the following theorem.

Theorem 3.4.2. System (3.3) admits a unique endemic equilibrium x∗ := (S∗1 , A
∗
1, I
∗
1 , . . . , S

∗
n, A

∗
n, I
∗
n)

in Γ̊ if and only if R0 > 1.

Proof. An equilibrium point is a solution of the non linear equations obtained by setting
the right-hand side of equations (3.3) equal to zero. Then, the following must hold:

µi −
n∑
j=1

(
βAijA

∗
j + βIijI

∗
j

)
S∗i − (µi + νi + γ)S∗i + γ(1−A∗i − I∗i ) = 0, (3.13)

n∑
j=1

(
βAijA

∗
j + βIijI

∗
j

)
S∗i − (α+ δA + µi)A

∗
i = 0, (3.14)

αA∗i − (δI + µi)I
∗
i = 0, (3.15)

for i = 1, 2, . . . , n. By excluding as solution the DFE (3.5), we assume A∗i > 0, for some
1 ≤ i ≤ n. From (3.15), we immediately obtain

I∗i =
α

δI + µi
A∗i =: KiA

∗
i , (3.16)
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for all i = 1, 2, . . . , n. Substituting (3.16) in (3.14), we obtain

S∗i =
(α+ δA + µi)A

∗
i∑n

j=1(β
A
ij + βIijKj)A∗j

. (3.17)

By our assumption on x∗, the denominator of (3.17) is strictly positive. Lastly, substi-
tuting (3.16) and (3.17) into (3.13), we obtain

µi − (α+ δA + µi)A
∗
i − (µi + νi + γ)

(α+ δA + µi)A
∗
i∑n

j=1(β
A
ij + βIijKj)A∗j

+ γ(1− (1 +Ki)A
∗
i ) = 0,

which can be rearranged to give

A∗i =
(µi + γ)

∑n
j=1(β

A
ij + βIijKj)A

∗
j

(µi + νi + γ)(α+ δA + µi) + (α+ δA + µi + γ + γKi)
∑n

j=1(β
A
ij + βIijKj)A∗j

.

We can collect (µi + νi + γ)(α + δA + µi) and (µi + γ) in both the numerator and
denominator, to obtain

A∗i =

∑n
j=1(M1)i,jA

∗
j

1 + (µi + γ)−1(α+ δA + µi + γ + γKi)
∑n

j=1(M1)i,jA∗j
, (3.18)

with M1 as in (3.7).
Define a function H = (h1, . . . , hn) : Rn+ → Rn+, in the following way:

hi(y) =

∑n
j=1(M1)i,jyj

1 + (µi + γ)−1(α+ δA + µi + γ + γKi)
∑n

j=1(M1)i,jyj
, i = 1, 2, . . . , n.

Then, since
∂hj
∂yi

> 0,

for all i, j = 1, 2, . . . , n, H is monotonically increasing in all its components. Moreover,
JH(0) = M1 that is a non-negative and irreducible matrix and the function H(x) is
bounded and strictly sublinear with

ε = min
i

(1− r)ξi
∑n

j=1(M1)i,jyj

1 + rξi
∑n

j=1(M1)i,jyj
,

where
ξi = (µi + γ)−1(α+ δA + µi + γ + γKi).

Thus, by Theorem 3.4.1, we have that system (3.3) has an unique endemic equilibrium
in Γ̊.

Remark 2. From Eq. (3.16) we can note that since I∗i < 1, we have that A∗i <
δI + µi
α

.

Now, we investigate the local asymptotic stability of the endemic equilibrium.
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Theorem 3.4.3. Assume R0 > 1 and that for any fixed j, βIij = hjβ
A
ij for all i =

1, . . . , n,. Moreover, let us assume that

δA > νi, δI > νi, and (δI−νi)α ≤ 2(µi+2νi+γ+δI)
√

((µi + νi + γ)(δI + νi))+(µi+2νi+γ+δI)
2,

for i = 1, . . . , n. Then, the endemic equilibrium x∗ := (S∗1 , A
∗
1, I
∗
1 , . . . , S

∗
n, A

∗
n, I
∗
n) is local

asymptotically stable.

Proof. Usually, the asymptotic local stability of the endemic equilibrium point is studied
by linearizing system (3.4) around that point. However, it is known that the endemic

equilibrium is asymptotically stable if the linearized system
dy

dt
= Jf (x∗)y has no solution

of the form y(t) = Y ezt with

Y = (U1, . . . , Un, V1, . . . , Vn,W1, . . . ,Wn) ∈ C3n,

z ∈ C, <z ≥ 0, i.e., it means that zY = Jf (x∗)Y with Y ∈ Cn \ {0}, z ∈ C implies
<z < 0 [7, 26]. To prove our statement with this strategy, we consider the following
system, equivalent to (3.4):

dx

dt
= f(x(t)),

where x(t) = (A1(t), I1(t), R1(t), . . . , An(t), In(t), Rn(t)) and f(x(t)) = (f1(x(t)), f2(x(t)), . . . , f3n(x(t))),
with

f(x1(t)) =
n∑
j=1

(βAijAj(t) + βIijIj(t))(1−Ai(t)− Ii(t)−Ri(t))− (α+ µi + δA)Ai(t),

f(x2(t)) = αAi(t)− (µi + δI)Ii(t),

f(x3(t)) = δAAi(t) + δIIi(t) + νi(1−Ai(t)− Ii(t)−Ri(t))− (µi + γ)Ri(t).

Now, to prove the asymptotic local stability of x∗, we consider the following equations:

zUi = (1−A∗i − I∗i −R∗i )
n∑
j=1

(βAijUj + βIijVj)−
n∑
j=1

(βAijA
∗
j + βIijI

∗
j )(Ui + Vi +Wi)− (α+ µi + δA)Ui,

zVi = αUi − (δI + µi)Vi,

zWi = (δA − νi)Ui + (δI − νi)Vi − (µi + νi + γ)Wi, i = 1, . . . , n,

(3.19)

with Ui, Vi,Wi, z ∈ C. We proceed by assuming that <z ≥ 0 and showing that this
assumption leads to a contradiction.

From the second and third equation of (3.19), we have respectively

Vi =
α

z + δI + µi
Ui := K1

i (z)Ui, (3.20)

and

Wi =

[
1

z + µi + νi + γ

(
(δA − νi) +

(δI − νi)α
z + δI + νi

)]
Ui := K2

i (z)Ui. (3.21)
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Now, considering the assumption that fixed j, βIij = hjβ
A
ij for all i = 1, . . . , n, and

replacing (3.20) and (3.21) in the first equation of (3.19), we obtain

zUi = S∗i

n∑
j=1

βAij(1+hjK
1
j (z))Uj−

 n∑
j=1

βAij(A
∗
j + hjI

∗
j )(1 +K1

i (z) +K2
i (z)) + (α+ µi + δA)

Ui,
from which1 +

1

α+ µi + δA

z +

n∑
j=1

βA
ij(A

∗
j + hjI

∗
j )(1 +K1

i (z) +K2
i (z))

Ui =
S∗
i

α+ µi + δA

n∑
j=1

βA
ij(1+hjK

1
j (z))Uj .

(3.22)

Now, let

ηi(z) =
1

α+ µi + δA

z +

n∑
j=1

βAij(A
∗
j + hjI

∗
j )(1 +K1

i (z) +K2
i (z))

 ,

and consider the following transformation:

Uj =

(
1 +

hjα

z + δI + µj

)−1(
1 +

hjα

δI + µj

)
Ũj .

Then, we get

(1 + ηi(z))

(
1 +

hiα

z + δI + µi

)−1(
1 +

hiα

δI + µi

)
Ũi =

S∗i
α+ µi + δA

n∑
j=1

βAij

(
1 +

hjα

δI + µj

)
Ũj .

(3.23)
Now, let us note that if <z ≥ 0, then

<

((
1 +

hiα

z + δI + µi

)−1(
1 +

hiα

δI + µi

))
≥ 1. (3.24)

Hence, we can rewrite (3.23) in the following form:

(1 + ηi(z)) (1 + η̃i(z))Ũi = (CŨ)i. (3.25)

where C = (cij) with

cij =
S∗i

α+ µi + δA

n∑
j=1

βAij

(
1 +

hjα

δI + µj

)
, i, j = 1, . . . , n.

From (3.24), we have that <η̃i(z) ≥ 0. Moreover, the following claim, whose proof is
given in Appendix 3.A, holds:

Claim 3.4.4. If <z ≥ 0, then <ηi(z) > 0.
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Now, let us note that C is a non-negative matrix and that A∗ = CA∗, where A∗ =
(A∗1, . . . , A

∗
n). Let

η(z) = inf{<ηi(z), i = 1, . . . , n}, and |Ũ | = (|Ũ1|, . . . , |Ũn|),

and taking the absolute values in (3.25), we get

(1 + η(z))|Ũ | ≤ C|Ũ |. (3.26)

It is easy to verify that if <z ≥ 0, then <ηi(z) > 0 for all i, hence η(z) > 0. Now,
we define ε to be the minimum value for which |Ũ | ≤ εA∗. Since the components of
A∗ belong to (0, 1), ε < ∞. Hence, by (3.26), (1 + η(z))|Ũ | ≤ C|Ũ | ≤ εCA∗ = εA∗.
This inequality contradicts the minimality of ε because η(z) > 0 if <z ≥ 0, thus we can
conclude that <z < 0 and the equilibrium is stable.

As in Sec. 2.5.3, we conjecture that some, if not all, these technical assumptions
could be relaxed, as our numerical simulations suggest. However, the techniques we use
in this chapter require such assumptions on the parameters in order to reach a result,
and multigroup models often require cumbersome hypotheses [88, 89, 90].

3.5 Global stability of the endemic equilibrium

In this section, we first discuss the persistence of the disease, then we investigate the
global stability property of the endemic equilibrium for some variations of the original
model (3.1).

Definition 3. System (3.3) is said to be uniformly persistent if there exists a constant
0 < ε < 1 such that any solution x(t) with x(0) ∈ Γ̊ satisfies

min{lim inf
t→∞

Si(t), lim inf
t→∞

Ai(t), lim inf
t→∞

Ii(t)} ≥ ε, i = 1, . . . , n. (3.27)

Theorem 3.5.1. If R0 > 1, system (3.3) is uniformly persistent.

Proof. From Theorem 3.4.2 we know that DFE x0 is the unique equilibrium of (3.3)
on ∂Γ, i.e., the largest invariant set on ∂Γ is the singleton {x0}, which is isolated. If
R0 > 1, we know from Theorem 3.3.3 that x0 is unstable. Then, by using [76, Thm 4.3],
and similar arguments in [19, Prop. 3.3], we can assert that the instability of x0 implies
the uniform persistence of (3.3).

3.5.1 Global stability of the endemic equilibrium in the SAIR model

In this section, we study the global asymptotic stability of the endemic equilibrium of
the SAIR model, which describes the dynamic of a disease which confers permanent
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immunity (i.e. γ = 0). The dynamic of an SAIR model of this type is described by the
following system of equations:

dSi(t)

dt
= µi −

n∑
j=1

(
βAijAj(t) + βIijIj(t)

)
Si(t)− (µi + νi)Si(t),

dAi(t)

dt
=

n∑
j=1

(
βAijAj(t) + βIijIj(t)

)
Si(t)− (α+ δA + µi)Ai(t),

dIi(t)

dt
= αAi(t)− (δI + µi)Ii(t), i = 1, . . . , n.

(3.28)

The basic reproduction number is derived by substituting γ with 0 in (3.7):

R0 = ρ

((βAij +
αβIij

(δI + µi)

)
µi

(µi + νi)(α+ δA + µi)

)
i,j=1,...,n

 .

If R0 > 1, system (3.28) has a unique equilibrium in Γ̊, which satisfies

µi =
n∑
j=1

(
βAijA

∗
j + βIijI

∗
j

)
S∗i + (µi + νi)S

∗
i , (3.29)

(α+ δA + µi)A
∗
i =

n∑
j=1

(
βAijA

∗
j + βIijI

∗
j

)
S∗i , (3.30)

αA∗i = (δI + µi)I
∗
i . (3.31)

Theorem 3.5.2. The endemic equilibrium x∗ is globally asymptotically stable in Γ̊ if
R0 > 1.

Proof. In order to prove the statement, we use a graph-theoretic approach as in [12] to
establish the existence of a Lyapunov function. Let us define

s̃i =
Si
S∗i
, ãi =

Ai
A∗i
, ĩi =

Ii
I∗i
,

and g(x) := x − 1 − ln(x) ≥ 0 for all x > 0. Let Vi = Vi,1 + Vi,2, where Vi,1 =
S∗i · g (s̃i) , Vi,2 = A∗i · g (ãi) , and Vn+i = I∗i · g(̃ii), for i = 1, . . . , n.

Define h(x) := −g(x)− 1 = −x+ ln(x) and note that(
1− 1

x

)
(x− 1) = −2 +x+

1

x
= −1 +x− lnx− 1 +

1

x
− ln

1

x
= g(x) + g

(
1

x

)
. (3.32)
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Substituting (3.29), (3.30), and (3.31) in (3.28), we obtain

dSi(t)

dt
= −S∗i (µi + νi)(s̃i − 1) +

n∑
j=1

(
βAij
(
A∗jS

∗
i −AjSi

)
+ βIij

(
I∗j S

∗
i − IjSi

))
,

dAi(t)

dt
=

n∑
j=1

((
βAijAj + βIijIj

)
Si −

(
βAijA

∗
j + βIijI

∗
j

)
S∗i
Ai
A∗i

)
,

dIi(t)

dt
= α

(
Ai −A∗i

Ii
I∗i

)
, i = 1, . . . , n.

For i = 1, . . . , n, differentiating Vi along the solutions of (3.28) and using (3.32), we have

dVi,1
dt

=

(
1− 1

s̃i

)
dSi(t)

dt

=

(
1− 1

s̃i

)−S∗i (µi + νi)(s̃i − 1) +
n∑
j=1

(
βAij
(
A∗jS

∗
i −AjSi

)
+ βIij

(
I∗j S

∗
i − IjSi

))
=

(
1− 1

s̃i

)−S∗i (µi + νi)(s̃i − 1) +
n∑
j=1

(
βAijA

∗
jS
∗
i (1− ãj s̃i) + βIijI

∗
j S
∗
i

(
1− ĩj s̃i

))
=− S∗i (µi + νi)

(s̃i − 1)2

Si
+

n∑
j=1

(
βAijA

∗
jS
∗
i

(
1− ãj s̃i −

1

s̃i
+ ãj

)

+βIijI
∗
j S
∗
i

(
1− ĩj s̃i −

1

s̃i
+ ĩj

))
,

(3.33)

dVi,2
dt

=

(
1− 1

ãi

)
dAi(t)

dt

=

(
1− 1

ãi

) n∑
j=1

((
βAijAj + βIijIj

)
Si −

(
βAijA

∗
j + βIijI

∗
j

)
S∗i
Ai
A∗i

)
=

(
1− 1

ãi

) n∑
j=1

(
βAijA

∗
jS
∗
i (ãj s̃i − ãi) + βIijI

∗
j S
∗
i

(̃
ij s̃i − ãi

))
=

n∑
j=1

(
βAijA

∗
jS
∗
i

(
ãj s̃i − ãi −

ãj s̃i
ãi

+ 1

)
+ βIijI

∗
j S
∗
i

(
ĩj s̃i − ãi −

ĩj s̃i
ãi

+ 1

))
,

(3.34)

Thus, from (3.33) and (3.34), we obtain

dVi
dt
≤

n∑
j=1

(
βAijA

∗
jS
∗
i

(
2− 1

s̃i
+ ãj − ãi −

ãj s̃i
ãi

)
+ βIijI

∗
j S
∗
i

(
2− 1

s̃i
+ ĩj − ãi −

ĩj s̃i
ãi

))
(3.35)
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Using the fact that 1− x ≤ − ln(x), we can write

2− 1

s̃i
+ ãj − ãi −

ãj s̃i
ãi
≤ ãj − ãi − ln

(
1

s̃i

)
− ln

(
ãj s̃i
ãi

)
= h(ãi)− h(ãj),

2− 1

s̃i
+ ĩj − ãi −

ĩj s̃i
ãi
≤ ĩj − ãi − ln

(
1

s̃i

)
− ln

(
ĩj s̃i
ãi

)
= h(ãi)− h(̃ij),

Thus, we obtain

dVi
dt
≤

n∑
j=1

(
βAijA

∗
jS
∗
i (h(ãi)− h(ãj)) + βIijI

∗
j S
∗
i (h(ãi)− h(ĩj))

)
=:

2n∑
j=1

β̃ijGi,j ,

where

β̃ij =

{
βAijA

∗
jS
∗
i , 1 ≤ j ≤ n,

βIij−nI
∗
j−nS

∗
i , n+ 1 ≤ j ≤ 2n,

and Gi,j =

{
h(ãi)− h(ãj), 1 ≤ j ≤ n,
h(ãi)− h(̃ij−n), n+ 1 ≤ j ≤ 2n.

Moreover, for all i = 1, . . . , n

dVn+i
dt

=

(
1− 1

ĩi

)
dIi
dt

= α

(
1− 1

ĩi

)[
Ai −A∗i

Ii
I∗i

]
= αA∗i

(
1− 1

ĩi

)(
ãi − ĩi

)
= αA∗i

(
ãi − ĩi −

ãi

ĩi
+ 1

)
,

(3.36)

and again, using the fact that 1− x ≤ − ln(x), we have

1 + ãi − ĩi −
ãi

ĩi
≤ ãi − ĩi − ln

(
ãi

ĩi

)
= h(̃ii)− h(ãi).

Thus,
dVn+i
dt

≤ αA∗i (h(̃ii)− h(ãi)) =: β̃n+i,iGn+i,i. (3.37)

We can construct a weighted digraph G, associated with the weight matrix B̃ =
(β̃ij)i,j=1,...,2n, with β̃ij > 0 as defined above and zero otherwise; see Figure 2. Let us
note that, from Assumption 1, the digraph (G, B̃) is strongly connected. Since Gi,n+j +
Gn+j,j = −ãi + ln(ãi) + ãj − ln(ãj) = Gi,j , i, j = 1, . . . , n, it can be verified that each
directed cycle C of (G, B̃) has

∑
(s,r)∈E(C)Grs = 0, where E(C) denotes the arc set of the

directed cycle C. Thus, the assumptions of [12, Theorem 3.5] hold, hence the function

V =

n∑
i=1

(ciVi + cn+iVn+i) ,

for constants ci > 0 defined as in [12, Prop. 3.1], satisfies
dV

dt
≤ 0, meaning that V

is a Lyapunov function for system (3.28). It can be verified that the largest compact

invariant set in which
dV

dt
= 0 is the singleton {x∗}. Hence, our claim follows by LaSalle’s

Invariance Principle [78].

51



i

j

i + n

j + n
β
A ij
A
∗ j
S
∗ i

β
A j
i
A
∗ i
S
∗ j

βAi,i+nI
∗
i+nS

∗
i

αA∗i

βAj,j+nI
∗
j+nS

∗
j

αA∗j

β
A
j,i

+n
I
∗
i+
n
Sj

βA
i,j+n I ∗j+nSi

Figure 2: The weighted digraph (G, B̃) constructed for system (3.28).

Remark 3. We observe that the proof of Theorem 3.5.2 also holds for the case δA = 0 in
system (3.3). That is to say, for a model with two stages of infection I1 and I2, in which
from the first class of infection one passes to the second at the rate α and one cannot
directly pass into the compartment of recovered individuals. Then, from the second stage
of infection, one can recover at the rate δI2. It is known that, if α = δI2, the length of
the infectious period follows a gamma distribution; otherwise, the resulting distribution is
not a standard one. Moreover, we remark that Theorem 3.5.2 only requires R0 > 1, and
no additional conditions on the parameters, despite the complexity of the model under
study. Models with multiple infected compartments have been studied, e.g., in [91, 92, 93]
.

3.5.2 Global stability of the SAIRS model with equal recovery rates

In the δA = δI =: δ case, from (3.7) we have

R0 = ρ

((βAij +
αβIij

(δ + µi)

)
γ + µi

(γ + µi + νi)(α+ δ + µi)

)
i,j=1,...,n

 .

If R0 > 1, system (3.1) with δA = δI =: δ has a unique equilibrium in Γ̊, which satisfies

µi =
n∑
j=1

(
βAijA

∗
j + βIijI

∗
j

)
S∗i + (µi + νi)S

∗
i − γR∗i ,

(α+ δ + µi)A
∗
i =

n∑
j=1

(
βAijA

∗
j + βIijI

∗
j

)
S∗i ,

αA∗i = (δ + µi)I
∗
i ,

νiS
∗
i = −δ(A∗i + I∗i ) + (γ + µi)R

∗
i .

(3.38)

Theorem 3.5.3. Assume that (µi + νi)S
∗
i ≥ γR∗i and δ > νi, for each i = 1, . . . , n.

Then, the endemic equilibrium x∗ is globally asymptotically stable in Γ̊ if R0 > 1.
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Proof. Let s̃i, ãi, ĩi, Vi, and Vn+i as in Theorem 3.5.2. Let us define r̃i =
Ri
R∗i

and

Wi =
γ

S∗i (δ − νi)
(Ri −R∗i )2

2
, i = 1, . . . , n.

By using equations (3.38), and differentiating along the solution of (3.1) with δA = δI =:
δ, we obtain

dVi,1
dt

=

(
1− 1

s̃i

)
dSi(t)

dt

=

(
1− 1

s̃i

)−S∗
i (µi + νi)(s̃i − 1) + γR∗

i (r̃i − 1) +

n∑
j=1

(
βA
ijA

∗
jS

∗
i (1− ãj s̃i) + βI

ijI
∗
j S

∗
i

(
1− ĩj s̃i

))
=− S∗

i (µi + νi)

(
1− 1

s̃i

)
(s̃i − 1) + γR∗

i

(
1− 1

s̃i

)
(r̃i − 1) +

n∑
j=1

(
βA
ijA

∗
jS

∗
i

(
1− ãj s̃i −

1

s̃i
+ ãj

)

+βI
ijI

∗
j S

∗
i

(
1− ĩj s̃i −

1

s̃i
+ ĩj

))
,

(3.39)

and the derivatives
dVi,2
dt

and
dVn+i
dt

as in (3.34) and (3.36), respectively. Moreover,

dWi

dt
=

γ

S∗i (δ − νi)
(Ri −R∗i )

dRi
dt

=
γ

S∗i (δ − νi)
(Ri −R∗i ) [δ(Ai −A∗i + Ii − I∗i ) + νi(Si − S∗i )− (γ + µi)(Ri −R∗i )]

=
γ

S∗i (δ − νi)
(Ri −R∗i ) [δ(S∗i − Si +R∗i −Ri) + νi(Si − S∗i )− (γ + µi)(Ri −R∗i )]

=
γ

S∗i (δ − νi)
R∗iS

∗
i (νi − δ)(s̃i − 1)(r̃i − 1)− (γ + µi + δ)R∗i (r̃i − 1)2,

(3.40)

by assumption δ > νi, thus

dWi

dt
≤ −γR∗i (s̃i − 1)(r̃i − 1). (3.41)

Let us consider the weighted digraph G, the weight matrix B̃, and the functions Gi,j ,
for i, j = 1, . . . , 2n defined as in Theorem 3.5.2. Consider the following function:

V =

n∑
i=1

(ciVi + cn+1Vn+i) +

n∑
i=1

ciWi,
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where the constant ci > 0 are defined as in [12, Prop. 3.1]. Then, by following similar
steps as in Theorem 3.5.2 and from (3.41), we obtain

dV

dt
≤

2n∑
i=1

2n∑
j=1

ciβ̃ijGi,j −
n∑
i=1

ci(µi + νi)S
∗
i

(
1− 1

s̃

)
(s̃i − 1) +

n∑
i=1

ciγR
∗
i (r̃i − 1)

[(
1− 1

s̃i

)
− (s̃i − 1)

]
(3.42)

=
2n∑
i=1

2n∑
j=1

ciβ̃ijGi,j −
n∑
i=1

ci(µi + νi)S
∗
i

(
1− 1

s̃

)
(s̃i − 1) +

n∑
i=1

ciγR
∗
i (r̃i − 1)

(
1− 1

s̃i

)
(1− s̃i)

=

2n∑
i=1

2n∑
j=1

ciβ̃ijGi,j −
n∑
i=1

ci [(µi + νi)S
∗
i + γR∗i (r̃i − 1)]

(
1− 1

s̃

)
(s̃i − 1).

Now, since it can be verified that over each directed cycle C of (G, B̃),
∑

(s,r)∈E(C)Grs = 0,

by following the same arguments in the proof of [12, Thm 3.5], we have that
∑2n

i=1

∑2n
j=1 ciβ̃ijGi,j =

0. Moreover, by assumption (µi + νi)S
∗
i ≥ γR∗i , for each i = 1, . . . , n, hence

(µi + νi)S
∗
i + γR∗i (ri − 1) ≥ (µi + νi)S

∗
i − γR∗i ≥ 0, i = 1, . . . , n.

Thus, we have
dV

dt
≤ 0. Since the largest compact invariant set in which

dV

dt
= 0 is the

singleton {x∗}, by LaSalle invariance principle our claim follows.

Remark 4. Note that if νi = 0 for all i, we obtain the same sufficient conditions for
the GAS of the EE found for the SIRS model in [31].

3.6 SAIRS without vaccination

Let us consider the SAIRS model without vaccination, that is (3.3) with νi = 0, i =
1, . . . , n. From (3.7), the expression of the basic-reproduction number is

R0 = ρ

((βAij +
αβIij
δI + µi

)
1

α+ δA + µi

)
i,j=1,...,n

 , (3.43)

and the components of the DFE (3.5) become S0,i = 1, A0,i = I0,i = 0, for all i = 1, . . . , n.

In Theorem 3.3.3 and 3.3.4 we proved that the DFE is globally asymptotically stable
if R0 < 1 and unstable if R0 > 1. In the following theorem, which describe the case
when we do not have any vaccination, we are able to prove that the DFE is globally
asymptotically stable also when R0 = 1.

Theorem 3.6.1. The disease-free equilibrium x0 is globally asymptotically stable in Γ
for (3.3) if R0 ≤ 1.
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Proof. To prove the statement, we use the method presented in [12].
Rearranging the order of the equations such that the disease compartments can be

written as x = (A1, . . . , An, I1, . . . , In), system (3.3), restricted to these compartments,
can be rewritten as:

x′ = (F − V )x− f(x, S),

where

f(x, S) =

 n∑
j=1

(
βA1jAj + βI1jIj

)
(S0,1 − S1), . . . ,

n∑
j=1

(
βAnjAj + βInjIj

)
(S0,n − Sn), 0, . . . , 0

 ≥ 0,

and f(x, S) is a vector with non-negative elements for all (x, S) ∈ Γ and f(x, S0) = 0,
for all (x, S0) ∈ Γ.

Let ωT be the left eigenvector of M corresponding to the eigenvalue R0. Note that
in our case the irreducibility assumption for M in [12, Thm 2.2] fails. However, we can
show that ω > 0. Indeed, let ωT = (ω1, ω2), where ω1 and ω2 are both vectors with n
components. It is easy to see that ω1 is the left-eigenvector of the non-negative matrix
M1 (3.6) corresponding to its spectral radius ρ(M1) = R0. Since M1 is irreducible and
non-negative, it follows by the Perron-Frobenius theorem that ω1 > 0. Moreover, from
(3.10), let

M2 =

(
βIijS0,i

δI + µi

)
i,j=1,...,n

,

then, we have ω1M2 = R0ω2; since ω1M2 > 0 it follows that ω2 > 0. Hence, ω > 0.
Now, consider the following Lyapunov function

Q = ωTV −1x.

By differentiating Q along the solution of (3.3), we obtain

Q′ = ωTV −1x′

= ωTV −1 (F − V )x− ωTV −1f(x, S)

= (R0 − 1)ωTx− ωTV −1f(x, S).

Since ωT > 0, V −1 ≥ 0 and f(x, S) ≥ 0, it follows that Q′ ≤ (R0−1)ωTx, Hence, Q′ ≤ 0
provided R0 ≤ 1. Moreover, Q′ = 0 if x = 0 or Si = S0,i, for all i = 1, . . . , n, but this
last case still implies x = 0. It can be verified that the only invariant set where x = 0
is the singleton {x0}. Hence, by LaSalle’s invariance principle, the DFE x0 is globally
asymptotically stable if R0 ≤ 1.

3.7 Numerical analysis

In this section, we explore the role of the network structures in the evolution of the
epidemics. The primary criterion for parameter selection is the clarity of the resulting
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plot. Hence, the simulations were carried out with a set of parameters considered in Sec.
2.7. These parameters, summarized in Table 1, ensure that R0 > 1 in all the networks
we consider, whose shapes are represented in Figure 3.

βAii βAij βIii βIij µi νi γ δA δI α

0.8 0.4 0.95 0.475 1/(70 · 365) 0.01 0.02 0.1 0.51 0.8

Table 1: Values of the parameters used in the simulations: βAii = 0.8, which we reduced
to βAij = 0.4 if i 6= j, to model a lower inter-community spreading; βIii = 0.95 and

βIij = 0.475 if i 6= j; µi = 1/(70 · 365), meaning an average lifespan of 70 years for all
i; νi = 0.01, meaning 1% of the susceptible population is vaccinated every day for all i;
γ = 0.02, meaning an average immunity of 50 days; δA = 0.1, δI = 0.51, α = 0.8.

In particular, we remark on how sensitive R0 is on the topology of the network,
which is reflected in its adjacency matrix. Indeed, let us consider the matrix M1 defined
in (3.6) as follow

M1 =

((
βAij +

αβIij
δI + µi

)
S0,i

α+ δA + µi

)
i,j=1,...,n

,

and let

β1 = min
i,j

(M1)i,j , and β2 = max
i,j

(M1)i,j .

Let us define Ā = A + In, where A is the adjacency matrix and n the number of
nodes of the network we are considering, respectively. Then, as a consequence of the
Perron-Frobenius theorem, the following lower and upper bounds for R0 hold:

β1ρ(Ā) ≤ R0 ≤ β2ρ(Ā) (3.44)

In the case of the cycle-tree network in Figure 3(a), we have ρ(A) = 3.2877, for the star
network in Figure 3(b), ρ(A) = 3.8284, in the case of the ring network in Figure 3(c),
ρ(A) = 3, and for the line network in Figure 3(d) we have ρ(A) = 2.9021. Consequently,
in the star network, we found the largest R0 = 4.91, for the cycle-tree network we have
R0 = 4.37. In the other two networks, i.e. the ring and the line, we find R0 = 4.07 and
R0 = 3.97, respectively; we can see that the presence of one additional link in the ring
increases the spectral radius of the transmission matrices and thus facilitates the spread
of the disease.

We provide numerical simulations of the evolution of an epidemics for the different
9-communities networks considered, see Figures 4, 5, 6 and 7. In each simulations, the
epidemics starts in community 1, with a small asymptomatic fraction of the population,
and no symptomatic individuals. We obtain a delay in the start of the epidemics,
directly proportional to the path distance of any community from community 1: this
is particularly visible in Figure 7. We observe a delay in the time of the peak, as well,
although this is often less pronounced; this is clear in in Figure 6, in which communities
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with the same distance (path length) from Community 1 reach the peak at the same
time. We can see that in the star network the peak of the non-central communities
happens exactly at the same time and has the same magnitude, as one would expect,
see Figure 5.

For ease of interpretation, we plot the total number of Asymptomatic infected in-
dividuals and symptomatic Infected individuals in all four cases, see Figure 8. The
qualitative behaviour of all simulations is the same: after a first spike, the dynamics
converges towards the endemic equilibrium, through quickly damping oscillations. In all
our simulations, the endemic equilibrium values of I are greater than the ones of A, as
we expected from (3.16) and our choice of the parameters involved in the formula.

Notice the significantly lower peaks in Figure 8d, when compared to 8c, even though
the corresponding networks only differ for one edge, connecting Community 9 to Com-
munity 1, in which the epidemics start.

3.8 Summary and Outlook

We analysed a multi-group SAIRS-type epidemic model with vaccination. In this model,
susceptible individuals can be infected by both asymptomatic and symptomatic infec-
tious individuals, belonging to their communities as well as to other adjacent communi-
ties.

We derived the expression of the basic reproduction number R0, which depends on
the matrices which encode the transmission rates between and within communities. We
showed that if R0 < 1, the disease-free equilibrium is globally asymptotically stable,
i.e. the disease will be eliminated in the long-run, whereas if R0 > 1 it is unstable.
Moreover, in the SAIRS model without vaccination (νi = 0, for all i = 1, . . . , n), we
were able to generalize the result on the global asymptotic stability of the disease-free
equilibrium also in the case R0 = 1. We proved the existence of a unique endemic
equilibrium if R0 > 1. We gave sufficient conditions for the local asymptotic stability
of the endemic equilibrium; then, we investigated the global asymptotic stability of the
endemic equilibrium in two cases. The first one regards the SAIR model (i.e. γ = 0),
and does not requires any further conditions on the parameters besides R0 > 1.

The second is the case of the SAIRS model, with the restriction that asymptomatic
and symptomatic individuals have the same mean recovery period, i.e. δA = δI . In this
case, we provided sufficient conditions for the GAS of the endemic equilibrium.

We leave as open problem the study of the global asymptotic stability of the endemic
equilibrium for the SAIRS model with vaccination, in the case βA 6= βI and δA 6= δI .
Lastly, we conjecture that the conditions we derived to prove the asymptotic behaviour
of the model are sufficient but not necessary conditions, as our numerical exploration of
various settings seems to indicate.

In this chapter, we focused on a generalisation of the SAIRS compartmental model
proposed in 2; however, many others elements could be included in further generalisations
to increase realism. For example, we may consider a greater number of compartments,
e.g. including the “Exposed” group, or consider a nonlinear incidence rate; one could
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(a) Cycle-tree network, i.e. a tree graph in
which we add a cycle linking the first and the
last community.
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(b) Star network, in which a central community
is linked to all the others, and no other connec-
tions are present.
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(c) Ring network, in which each community is
linked with the previous and next.
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(d) Line network, i.e. the ring network in which
we remove the link between the communities 1
and 9.

Figure 3: The four different network structures we consider in our numerical simulations.
Circles represent the communities, numbered from 1 to 9, corresponding to C1 to C9 in
Figures 4, 5, 6 and 7. Lines represent the links between the various communities. We
use lines instead of arrows, since all networks are considered as undirected.

also introduce an additional disease-induced mortality, or an imperfect vaccination. We
leave these as future research outlook.

58



Figure 4: Evolution of the epidemic in each community of the cycle-tree network, see
Figure 3a. The title of each subplot indicates the community it represents, as well as
the peak time of infected individuals. In this setting, from (3.7) we obtain R0 = 4.37.
Refer to Table 1 for the values of the parameters.
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Figure 5: Evolution of the epidemic in each community of the star network, see Figure
3b. The title of each subplot indicates the community it represents, as well as the peak
time of infected individuals. In this setting, from (3.7) we obtain R0 = 4.91. Refer to
Table 1 for the values of the parameters.
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Figure 6: Evolution of the epidemic in each community of the ring network, see Figure
3c. The title of each subplot indicates the community it represents, as well as the peak
time of infected individuals. In this setting, from (3.7) we obtain R0 = 4.07. Refer to
Table 1 for the values of the parameters.
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Figure 7: Evolution of the epidemic in each community of the line network, see Figure
3d. The title of each subplot indicates the community it represents, as well as the peak
time of infected individuals. In this setting, from (3.7) we obtain R0 = 3.97. Refer to
Table 1 for the values of the parameters.
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(a) (b)

(c) (d)

Figure 8: Total amount of Asymptomatic infected (
∑
A(t)) and symptomatic Infected

(
∑
I(t)) in the four networks we simulate. Respectively: (a) cycle-tree network, see

Figure 3a; (b) star network, see Figure 3b; (c) ring network, see Figure 3c; and (d) line
network, see Figure 3d. The qualitative behaviour is the same, i.e. convergence towards
the endemic equilibrium through damped oscillations. Refer to Table 1 for the values of
the parameters.
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Appendix

3.A Proof of Claim 3.4.4

We recall that

ηi(z) =
1

α+ µi + δA

z +
n∑
j=1

βAij(A
∗
j + hjI

∗
j )(1 +K1

i (z) +K2
i (z))

 .

It is easy to see that if <(z) ≥ 0, then <(K1
i (z)) > 0. Now, we show that if <(z) ≥ 0,

then

<(1 +K2
i (z)) = <

(
1 +

1

z + µi + νi + γ

(
(δA − νi) +

(δI − νi)α
z + δI + νi

))
≥ 0. (3.45)

For ease of notation, we define:

ε = (δI − νi)α, h1 = µi + νi + γ, h2 = δI + νi,

and let z = a+ ib in (3.45). If δA ≥ νi, again it is easy to see that, if <(z) ≥ 0, then

<
(

1

z + h1
(δA − νi)

)
≥ 0.

Now, let us show that

<
(

1 +
ε

(z + h1)(z + h2)

)
≥ 0. (3.46)

We have that

<
(

ε

(z + h1)(z + h2)

)
= <

(
ε

(a+ h1)(a+ h2)− b2 + ib(2a+ h1 + h2)

)
= <

(
ε

(a+ h1)(a+ h2)− b2 − ib(2a+ h1 + h2)

((a+ h1)(a+ h2)− b2)2 + b2(2a+ h1 + h2)

)
= ε

(a+ h1)(a+ h2)− b2

((a+ h1)(a+ h2)− b2)2 + b2(2a+ h1 + h2)

= ε
(P − b2)

(P − b2)2 + b2S2
= g(b),

(3.47)
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where we have introduced the notation

P = (a+ h1)(a+ h2) and S = (2a+ h1 + h2).

Since we assume δI ≥ νi, we can see that the minimum of g(b) is equal to

−ε
2S
√
P + S2

,

and that

−ε
2S
√
P + S2

≥ −(δI − νi)α
2(2a+ µi + 2νi + γ + δI)

√
((a+ µi + νi + γ)(a+ δI + νi)) + (2a+ µi + 2νi + γ + δI)2

≥ −(δI − νi)α
2(µi + 2νi + γ + δI)

√
((µi + νi + γ)(δI + νi)) + (µi + 2νi + γ + δI)2

≥ −1.

The last inequality holds since by hypothesis

(δI − νi)α ≤ 2(µi + 2νi + γ + δI)
√

(µi + νi + γ)(δI + νi) + (µi + 2νi + γ + δI)
2,

thus (3.46) holds and the claim is proved.
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4. How network properties and
epidemic parameters influence
stochastic SIR dynamics on
scale-free random networks

4.1 Introduction and Outline

Real systems of interactions between humans are commonly studied as interaction net-
works. In this setting, an edge in a network represents a possible interaction between
the connected nodes. The mechanism of disease transmission upon contact provides a
strong case for the use of these networks in modelling epidemic. Spreading processes of
infectious diseases take place over these networks, thus their structures can be essential
for understanding disease transmission. In particular, knowledge on the interplay be-
tween network structure and transmission parameters can improve predictions as well
as prevention and control strategies.

A key factor in an epidemic spread is the population network structure where a dis-
ease may spread. However, a complete picture, in principle, may require the knowledge
of every individual in a population and its relationships, for example, as in contact trac-
ing [94]. Networks used in different fields have some common geometric characteristics
regarding the distribution of the nodes and edges, for example, a few nodes that may
act as hubs and the vast majority of nodes with a few neighbours [95]. A classification
in this context is given by network generation models, used as generators of synthetic
networks, with controlled topological properties.

Several types of networks have been proposed over time [96, 97]. [98] proposed a
simple model where nodes are connected according to a uniform probability without any
preference. However, some structural properties observed in real-world networks cannot
be reproduced by this model as empirically verified by [99]. It has been observed in
real networks that the degree distribution of individuals is far from homogeneous; on
the contrary, only a few individuals have several connections and the majority have a
few [100, 101]. Barabási and Albert proposed a model to generate scale-free networks
[102] with a connection mechanism that mimics the natural formation of social contacts.
Recent results highlight criticisms in the use of their approach to model the realistic
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spread of an epidemic. In [103], the authors remark about an unexpected, recently
discovered assortative behaviour of Barabási-Albert networks. In [104], the authors
show a correlation between assortativity and epidemic spread, which might result in
misleading simulations. Moreover, the algorithm proposed by [102] cannot control the
value of the exponent of the power-law distribution [96]. In [105], assortativity is taken
into account and discussed in greater detail in the context of epidemics and vaccinations.

However, [106] state that the configuration model can overcome these issues, gen-
erating a network with a given degree sequence. The configuration model is used, for
example, in social dynamics, as it captures connectivity features of this class of networks
[107]. The study of how epidemics evolve on networks has been addressed using var-
ious approaches, theoretical and computational. Theoretical results on this topic can
be found, for example, in the monographs [108, 109] or in [110]. In [111], the author
derives results on a small heterogeneous population before validating them via numerical
simulations. In [44], the authors explore the interplay between network properties and
disease characteristics on the spread. Many other articles are devoted to the study of
the impact of the network structure on the evolution of an epidemic (e.g. household
structure [112], the influence of network topology on epidemic spread [113, 114, 115], or
community structure [116]). In particular, researchers have been interested in identifying
the nodes which, if infected, would cause the largest epidemic, the so-called influential
spreaders [117, 118, 119]. Another interesting feature, studied in [53], is the implemen-
tation of dynamic contacts, meaning a network in which nodes may delete and create
edges in time. Other studies have been devoted to the extinction time for epidemics on
networks [120, 121, 122] and epidemics thresholds [123, 124, 125]. Bounds and estimates
on the final size of the epidemics have been investigated assuming both homogeneity
and heterogeneity of viral transmission [126, 127]. These estimates have played a major
role in quantifying the consequences of different restrictions on the Covid-19 pandemic
[128, 49, 129].

In [130] and [131] the authors study the effect of seeding on the evolution of the
epidemic to consider various realistic scenarios for its beginning. Different scenarios,
in this regard, can be integrated into the model. Examples to these scenarios include
multiple infected individuals arriving in a country almost simultaneously in different
airports, or a localised initial cluster which is then spread by the individuals from the
same starting area. In particular, the former scenario is included in our analysis, in
Section 4.4.1, in the ‘random case’ with multiple initially infected individuals.

In this chapter, we investigate how the interplay between the connectivity of different
configuration model networks and the contagiousness of the disease affect the magnitude
of the epidemic. Observations on empirical data show that standard epidemiological
metrics often fail to predict the evolution of an epidemic due to their lack of integrating
various aspects of the population that influence the spread dynamics. In this respect,
the capability to perform stochastic simulations on graphs indicates a more empirical
approach in studying the spread and behaviour of epidemics while maintaining a theoret-
ical grip. To this end, the present work lays the foundation for such refinements to study
SIR (Susceptible-Infected-Removed) compartmental models stochastically on graphs to
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assess the factors that are otherwise difficult or even impossible. To achieve this, we ver-
ify our approach for theoretical rigour by showing an agreement with theoretical results.
With the integration of stochastic elements, in the generation of the configuration model
and the simulations, we introduce an empirical component that captures the variability
in real-world epidemics. This step, in return, provides new capabilities to perform in
silico experiments by simulations, possibly by introducing additional components that
model various epidemic influences.

In the following, after a summary of the relevant mathematical background, we derive
a lower bound and a closed formula for the probability of having a minor epidemic of
the disease in a network. In other words, we model the contacts in a community as a
scale-free network and study how an epidemic spreads over these contacts. For this, we
use the derivation of the probability of extinction for a branching process as a function
of all the parameters involved and the degree of the initially infected node. A similar
analysis of the extinction probability was carried out in [132] where the author considers
a more general case for the distribution of the infectious period and proceeds with the
so-called cavity method and in [133] where the authors obtain a result similar to ours
through the message passing method. In this work, we provide a different exact result on
the probability of a minor epidemic, however, in a form that only allows for numerical
exploration. We consequently deduce from it a lower bound for the probability of a
minor epidemic, given the parameters of the epidemics and the degree of the initially
infected node.

Following the theoretical groundwork, we introduce a stochastic model on scale-free
random networks, which we use to run simulations on different instances of the model.
The simulations, carried out via a specialised modification of the Gillespie algorithm,
validate our theoretical results regarding the probability of a minor epidemic of the
disease. Consequently, we provide a thorough analysis via simulations that highlights the
influence of network connectivity (which decreases in α, the exponent of the power law)
and infectiousness (the parameter β of our SIR model) on three key epidemic indices: the
peak of infected individuals, the total number of eventually infected individuals, and the
duration of the epidemic. In particular, we focus on the role of the position of the nodes
from which the disease starts spreading as well as the number of initially infected nodes,
exploring simulations for different instances of the model parameters. We compare the
evolution of the epidemic, measured by the aforementioned indices, in four different cases
for the initially infected nodes, categorised by their position in the respective network:
hub (degree in the tail of the distribution), mean degree, peripheral (low degree), and
randomly chosen. The stochastic simulations with our model are in good agreement with
the analytical lower bound for the probability of extinction we derived. The comparison
between our analytical and numerical results provides a quantification of the role of
model parameters in the spread of the epidemic on scale-free networks.

Overall, our results illustrate how theoretical methods in epidemiology can be coupled
with discrete stochastic simulations in a rigorous manner. In this regard, our theoret-
ical results set a baseline for discrete simulations for comparison and validation. Our
implementation, available through a Github repository, optimises Gillespie’s stochastic
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simulation algorithm ([134]) by exploiting the network structure for increased efficiency,
which is otherwise a bottleneck for simulating networks. Our implementation may thus
be used, by us or other researchers, to study broader questions while maintaining the
baseline given by our theoretical results.

4.2 Power-law networks

In this section, we describe scale-free networks, which can be used to mathematically
evaluate a given model or describe a real network structure, mimicking social contacts
between individuals. We then describe the classic algorithm used to generate networks
with a certain degree distribution, that is, configuration model (CM).

4.2.1 Scale-free networks

Many real-world graphs follow power-law degree distributions [135, 136, 137] (however
their actual frequency is debated [138, 139]), that is, degree distributions with the proba-
bility of a node to have k direct neighbours given by pk ∼ k−α. These kinds of networks
are also called scale-free random graphs. The preferential attachment model of [102]
produces a degree distribution with α = 3. However, there are many examples in which
α ∈ (2, 3] (see e.g. [140, Sec. 1.4]). To explain the scale-free property, Barabási defined
the power-law distribution both with a discrete and a continuum formalism; we refer to
[141] for a more in-depth introduction to this topic and recall here the definitions and
results we need for our analysis.

In a scale-free network, the probability of having k neighbours is pk = Ck−α where C
is a normalisation constant. The main difference between an E-R graph and a scale-free
network comes in the tail of the degree distribution, representing the high-k region of pk:
high-degree nodes, called hubs, are naturally present in scale-free networks, contrary to
random networks. Since all real networks are finite, we may expect that nodes assume
a maximum degree, kmax, called the natural cut-off of the degree distribution pk (see
[142]). This quantity represents the expected size of the largest hub in a network and it
is determined by

kmax = bkminN
1

α−1 c, (4.1)

where kmin is the smallest degree we allow a node to have. Hence, the highest attainable
degree is directly proportional to a power of N between 1

2 (corresponding to α = 3) and
1 (α = 2).

4.2.2 Configuration model

In the case of large networks, the adjacency matrix may not be immediately available
[109]. However, in the case of real networks of which we know the degree sequence, we
can generate a graph with precisely the same degrees. Given the number of nodes N and
the sequence of degrees {ki}1≤i≤N of length N (we omit the subscript from now on, for

70



ease of notation), the aim is to construct an undirected graph with N nodes, in which
the i-th node has precisely degree ki. We denote such graphs with G(N, {ki}). Given
a degree distribution obtained from observing a stochastic network, the algorithm used
to fit this distribution is called the configuration model. To construct the network, we
start by assigning to each node i in the set of nodes a random degree ki, drawn from
the chosen probability distribution pk. Clearly, kmax ≤ N − 1 since no node can have
a degree larger than N − 1. The degrees of the nodes are represented as half-links or
stubs, thus we impose

∑N
i=1 ki = 2m, where m is the total number of edges.

First, two stubs are connected to form an edge. After that, another pair of stubs
are chosen from the remaining 2m− 2 stubs and connected, respecting the preassigned
degrees. The network is completed by repeating this procedure until the stubs run
out. The result of this construction is a random network whose degrees are distributed
according to pk [143]. If L denotes the numbers of degrees assumed in the network and
N1, N2, . . . , NL the number of nodes of each degree, the average degree in the network
is given by [109]

〈k〉 =
1

N

L∑
i=1

Niki.

This formula is equivalent to 〈k〉 =
∑

i kipki for this specific realisation. Note that
this linkage procedure does not exclude self-loops or multiple edges, but their expected
number is bounded (see e.g. [144, Prop. 7.1]). When the size of the graph N → +∞ with
a fixed degree distribution, self-loops and multiple edges become less and less apparent
in the global dynamics (see e.g [140, Th. 3.1.2]).

4.3 Lower bound for the probability of a minor epidemic

We work on an SIR epidemiological dynamics model on a network built with the CM
algorithm, described in Section 4.2.2. In this network, we introduce infected individuals
in an otherwise fully susceptible population; the exact number of infected individuals is
specified each time it changes. Later, in Section 4.4, we study how the introduction of
a different number of initially infected individuals affects the evolution of the epidemic.
In this section, we consider an epidemic that starts with only one infected individual.
We then derive an analytical formula for the probability of a minor epidemic, that is,
the probability that one infected individual in the network does not cause a major
epidemic. In other words, an epidemic in which a large number of individuals are infected
simultaneously, a large number of infections occur in total and the disease remains in
the population for an extended period [145]. We use this probability as a benchmark to
compare with our simulations. As usual, we assume that an individual remains infected
for a duration drawn from an exponential distribution with rate parameter γ. During
its infectious period, an individual infects each of its neighbours (independently of the
others) according to a Poisson process with rate parameter β. Note that modellers often
assume that β does not depend on the number of contacts; however, in most epidemic
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models (and data that are collected), the infection probability decreases with the number
of contacts [146, Chap. 2]. Under the assumptions above, the basic reproduction number
R0 is given in [147] as

R0 =
β

γ
〈k〉(1 + CV 2),

where CV is the coefficient of variation, defined as CV = 〈k2〉
〈k〉 . Using this definition, the

expression of R0 can be written also as

R0 =
β

γ

〈k2〉
〈k〉

. (4.2)

We focus on this slightly unrealistic but analytically tractable assumption; we refer
to [148, App. 1] for a similar construction, applied however to a power law distribution
without cut-off. We approximate the initial phase of an epidemic by a branching process
where all contacted individuals are susceptible. This is a property of the configuration
model as N goes to infinity; thus, cliques and triangles are neglected, and the population
is assumed to be large enough. First, we compute the probability that an infected node
i with ki neighbours infects j of them; for ease of reading, we denote the degree of a
node with k. We start by considering one of them, conditioning on the length of the
infectious period:

P(a contact is not infected) = γ

∫ ∞
0

e−βte−γt dt =
γ

β + γ
=

1

R+ 1
,

where R := β/γ.

We can not use the binomial distribution to obtain the probability of having n
infected individuals, because infections of different contacts are not independent, but
correlated by the length of the infectious period, whereas an important assumption which
would allow us to use the binomial distribution is independence between infections [149].
This is due to the fact that if the infectious period is short, it is likely that no neighbour
will be infected, while if it is long, most of them will. Indeed, if Q is the number of
infected neighbours,

P(Q = 0) = γ

∫ ∞
0

(e−βt)ke−γt dt =
γ

βk + γ
=

1

kR+ 1
.

The other expressions are more complicated:

P(Q = j) = γ

∫ ∞
0

(
k

j

)
(1− e−βt)j(e−βt)k−je−γt dt. (4.3)
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We can verify that
k∑
j=0

P(Q = j) = 1 as follows

k∑
j=0

P(Q = j) =
k∑
j=0

γ

∫ ∞
0

(
k

j

)
(1− e−βt)j(e−βt)k−je−γtdt

=γ

∫ ∞
0

e−γt
( k∑
j=0

(
k

j

)
(1− e−βt)j(e−βt)k−j

)
dt.

Note that

k∑
j=0

(
k

j

)
(1− e−βt)j(e−βt)k−j = (1− e−βt + e−βt)k = 1, thus we obtain

k∑
j=0

P(Q = j) = γ

∫ ∞
0

e−γtdt = 1.

We can clarify the expression in (4.3) as

P(Q = j) =γ

∫ ∞
0

(
k

j

)
(1− e−βt)j(e−βt)k−je−γt dt = (integr. by parts)

=

∫ ∞
0

γβ

γ + β(k − j)
k!

(k − j)!(j − 1)!
(1− e−βt)j−1(e−βt)k−j+1e−γt dt

=
β(k − j + 1)

γ + β(k − j)
P(Q = j − 1).

Then, by induction, we obtain

P(Q = j) =
Rj
∏j
l=1(k − l + 1)∏j

l=0(1 +R(k − l))
. (4.4)

Although the infections of different contacts are not independent, the expected number
of infected contacts can be obtained as

E(Q) =

k∑
j=0

jP(Q = j)

=

k∑
j=0

jγ

∫ ∞
0

(
k

j

)
(1− e−βt)j(e−βt)k−je−γtdt

= γ

∫ ∞
0

e−γt

 k∑
j=0

j

(
k

j

)
(1− e−βt)j(e−βt)k−j

 dt,

since the expected value of a finite sum is the sum of the expected values, assuming they
are all finite as in our case.
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Clearly,
∑k

j=0 j
(
k
j

)
(1 − e−βt)j(e−βt)k−j = k(1 − e−βt) since this sum represents the

first moment of a binomial variable of parameters (k, e−βt). It follows that

E(Q) = γk

∫ ∞
0

e−γt(1− e−βt)dt

= kγ
β

γ(β + γ)

=
kR

1 +R
.

We need these computations to estimate the probability of extinction of the branching
process. We define a minor epidemic as an epidemic in which we observe such an
extinction. For the derivation of the following formulae, we refer to [150, Chap. 2] and
[151, Chap. 5]. Indeed, we consider a multi-type branching process, where types are the
number of different neighbours of each node. Thus, the i-th node has k1 neighbours of
type 1, k2 neighbours of type 2, and so on until kL of type L. Note that, k1+k2+· · ·+kL =
k, where k is the total degree of the chosen node and, if the i−th node does not have a
neighbour with degree j, then kj = 0.

In the following, we denote a vector with L components with the bold symbol x =
(x1, . . . , xL).

The probability of extinction of this branching process is given by the smallest pos-
itive solution1 of s = f(s), where s = (s1, . . . , sL) and the components of f are given
by

fk(s) =
∑

k=(k1,...,kL)

pk(k)sk11 · · · s
kL
L ,

with

pk(k) = P(an infected node of type k infects k1 of type 1, . . . , kL of type L).

Once we found the smallest solution s∗, s∗k = fk(s
∗) represents the extinction

probability starting with one individual of type l. Note that fk(1, . . . , 1) = 1; hence
1 = (1, . . . , 1) is always a solution of f(s) = s. If we find a smaller solution, then
the probability of extinction is smaller than 1; otherwise, the probability of extinction
is 1. We then need to compute pk(k). An individual with k neighbours will have k1
neighbours of type 1, . . . , kL of type L with probability

k!

k1! · · · kL!
qk11 · · · q

kL
L ,

where

qj =
jpj∑L
l=1 lpl

(size-biased probabilities).

1A positive solution s∗ of s = f(s) is called the smallest if s∗i ≤ ri, for all i = 1, . . . , L, for any other
solution r.
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We could then compute the probability of infecting m1 out of k1, m2 out of k2, . . . , mL

out of kL, and sum over all possible combinations. We do not need to go through all
the components because the probability of infecting one neighbour is independent of its
properties, i.e. its degree. Hence, if j = m1 + . . .+mL,

pk(m) = P(Q = j)
j!

m1! · · ·mL!
qm1
1 · · · q

mL
L .

We then compute the probability of infecting j ≤ k neighbours; in particular the prob-
ability that, among the j infected neighbours, m1 are of type 1, m2 of type 2, . . . , mL

of type L. We can go a further step in the computation of fk(s); indeed

fk(s) =
∑

m=(m1,...,mL)

P(Q = j)
j!

m1! · · ·mL!
qm1
1 · · · q

mL
L sk11 · · · s

kL
L

=
k∑
j=0

P(Q = j)
∑

m: m1+···+mL=j

j!

m1! · · ·mL!
(q1s1)

m1 · · · (qLsL)mL

=
k∑
j=0

P(Q = j)(q1s1 + · · ·+ qLsL)j

=
k∑
j=0

(R(q1s1 + · · ·+ qLsL))j
∏j
l=1(k − l + 1)∏j

l=0(1 +R(k − l))
. (4.5)

One could go beyond this, but the formulae would become increasingly cumbersome.
In order to compute the relevant solution numerically, one can start with a vector s0 ≤ s∗

(for instance s0 = 0 = (0, . . . , 0)) and then compute sn = f(sn−1). Iterating this, we
converge to the required fixed point as a consequence of the Dominated Convergence
Theorem.

Remark 5. One may notice the property s∗k = fk(s
∗) > fk(0) = 1

1+Rk . Hence, a lower
bound for the probability of extinction is given by

l :=
1

1 +Rk
. (4.6)

We recall that R = β/γ and k is the degree of the initially infected node. For example,
if R = 0.002 we get s∗k >

1
1.1 ≈ 0.91; thus, we immediately see that the probability of a

minor epidemic is very high.
Note that the so called “probability of extinction” of a branching process approximates

the probability of having a minor epidemic in the SIR model.
Indeed, since the population is fixed and acquired immunity is permanent, the epi-

demics always end in finite time, so the epidemics end with extinction of the disease with
probability 1.

For this reason, in the following we refer to probability of having a minor epidemic
as the probability of extinction of a branching process, to avoid misleading in the reading.
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Remark 6. In [132], the author analyses a more general setting, keeping the recovery
rate generic in the form of a function γ(·) before specialising it for the numerical sim-
ulations. Our construction from (4.3) on-wards could be generalised as well to consider
infectious periods that follow laws more realistic than the geometric distribution, which
we use throughout our analysis in this chapter.

In order to see if the probability of having a minor epidemic is 1 or lower, we can
resort to R0, the spectral radius of the N × N matrix M , whose elements mjk are the
expected number of infected of type j generated by an infected of type k. This is easy
to compute, conditioning on the number of neighbours:

mjk =E (E(infected of type j | kj neighbours of type j))

=E
(
kjR

R+ 1

)
=

kqjR

R+ 1
=

R

R+ 1

kjpj∑L
l=1 lpl

.

Notice that M is a matrix of rank 1; hence, its spectral radius is easy to compute. From
Mv = ρv, we obtain

L∑
k=1

mjkvk =
R

R+ 1

jpj∑L
l=1 lpl

L∑
k=1

kvk = ρvj .

Since exists C > 0 such that vj = Cjpj , thus

C
R

R+ 1

jpj∑L
l=1 lpl

L∑
k=1

k2pk = Cρjpj ,

which implies

ρ =
R

R+ 1

L∑
k=1

k2pk

L∑
k=1

kpk

.

This is exactly the expression in (4.2).

4.4 The stochastic model

We build a network following the CM algorithm2, choosing kmin = 1, and fixing N =
10000; kmax then varies with α as described by

kmax = bkminN
1

α−1 c.
2All the codes and additional data are available on https://github.com/SaraSottile/StochasticSIRnetwork.

Animations of sample simulations with different rates are available at
https://www.youtube.com/playlist?list=PLdDHYeVsbaLUY7-9gt9F01JEgIFm8D09m
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We focus on the interval 2 ≤ R0 ≤ 3. The value of R0 varies with the parameters α ∈
[2, 3), which is the most commonly used interval for the power-law and β ∈ [0.002, 0.619],
following (4.2). First, we consider five couples of values for the parameters α and β, and
we compare the behaviour of the epidemics with different numbers of initially infected
nodes. Later, we expand the spectrum of parameters taking into account ten values for
each. It should be noted that the recovery rate γ has been fixed to γ = 1, without loss of
generality, since this amounts to a rescaling of the chosen time unity by γ. In particular,
notice that this implies that all the times in our simulations have been rescaled by that
same factor γ. Depending on the disease, it would be necessary to multiply those times
by the average recovery period to obtain a result in days.

The simulation algorithm implements a specialised version of the Gillespie algorithm
[134], which drastically reduces the simulation times compared to the standard imple-
mentation.

In the case of the SIR model, we have two kinds of events. In the standard chemical

reaction network notation, these are the following: S+I
β−→ I+I, which is a second-order

reaction since it requires two connected individuals, one in the susceptible state and one
in the infected state to happen: this results in the infection of the susceptible individual
with probability β; and I

γ−→ R, which is a first-order reaction since it happens at a node
level. The standard implementation of the algorithm would require 2m + N reactions;
recall that m is the number of edges in the graph and N is the number of nodes. This
computational overhead can be prohibitive for a large scale analysis.

The main difference in our implementation is in the computation of the second-
order reaction propensities: on a network, the number of possible infection events is
given by the number of edges that connect the susceptible and infected nodes in the
network. By exploiting this fact, our algorithm computes the propensity of the second-
order reactions as the product of the number of these edges and the reaction rate constant
β. This simplification drastically reduces the simulation times in comparison to a direct
encoding.

In each simulation, we recorded the peak of infected nodes and the number of even-
tually infected, that is, the total number of recovered at the end of the epidemic with
I = 0 in the SIR model. For each combination of values α and β, we simulated the
epidemic 100 times, and we computed the mean of the aforementioned epidemic indices
as depicted in Figures 1. With 100 simulations for each pair, the largest coefficient of
variation which can be found (namely, the one computed for the eventually infected in
the random case) is CVmax = 8, 71; the mean of the CV s in the random case is 2, 273,
while in all the other settings it is close to 1.

4.4.1 Comparison between different numbers of initially infected nodes

We first considered as separate cases epidemics with three different values of initially
infected nodes, namely I(0) = 1, I(0) = 5 and I(0) = 10, with four possible initial
positions in the network: hub, meaning a node whose degree is in the tail of the dis-
tribution; mean degree; peripheral, meaning a node with a low degree; and randomly
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chosen. In this section, we illustrate how changing the position of the initially infected
node influences the dynamics of the spread of the disease on a network. Indeed, when
the first infected nodes are on the periphery, the epidemic is diffusing slowly compared
to the case in which the epidemic starts in a node with more contacts, as shown in
Figure 1 for the greatest value of the parameter β. The random case is qualitatively
intermediate between the peripheral case and the mean-degree case: this follows from
the distribution of the degree of nodes in the network since we have few nodes in the
tail of the distribution (hub). The resulting numbers of infected nodes do not change
significantly between the I(0) = 5 and I(0) = 10 cases, depicted in Figure 1 by green
and blue lines, respectively, suggesting a saturation effect even for a small number of
initially infected nodes (compared to the total population). Moreover, in the random,
mean-degree and peripheral cases, the numbers of infected nodes (both simultaneously
and eventually) increase as the initial number of infected nodes grows.
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(a) Log-plot of the average of the peak of infected nodes, comparing different
numbers of initially infected nodes and their positions.

The hub case, shown in Figure 2, deserves particular attention: as expected, the
epidemic spreads more with an increase in β and less with an increase in α; recall that
a greater α indicates an overall less connected network. Moreover, the more central the
initially infected node is, the more the disease can spread through the network and more
so with higher numbers of initially infected nodes. This is because the higher number
of initially infected nodes, the smaller the probability of all of them being in a hub,
disconnected from the giant cluster, except for the greatest value of β. This behaviour
can be explained in two distinct ways: firstly, the positions of the initially infected nodes
are assigned in a “hierarchical manner”. That is, since the hubs live in the tail of the
power-law distribution, the second infected node inserted in the network has a degree
lower than the first one. Secondly, if two neighbouring nodes are surrounded by several
infected ones, they will be infected and they will recover approximately simultaneously.
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(b) Log-plot of the average of the eventually infected nodes, comparing dif-
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Figure 1: Comparison of the effect of taking different numbers of initially infected nodes
in different positions on the average peak or the average number of eventually infected
nodes. The hub case is analysed in greater detail below. Solid line: random case. Dashed
lines: peripheral case. Dotted lines: mean case. Blue: 10 initially infected individuals.
Green: 5. Black: 1.

This, in return, will create a saturation in the number of available susceptible nodes.

The hub case is a “worst case scenario”: the epidemic spreads even if it starts from
only one infected node, if it has enough strength in terms of its parameters to do so.
Moreover, it is very unlikely that more than one infected node enters a susceptible
population simultaneously. Hence, in the next section, we analyse the hub scenario with
I(0) = 1 in greater detail.

Furthermore, we observe a pattern in the final time in Figure 2c, which can be
explained as follows: for lower values of β and greater values of α the epidemic does not
take off. On the other hand, for greater values of β and lower values of α the epidemic
quickly goes to extinction because it starts from a node or nodes with more connections.
The noise in the final time, compared to the other quantities, is to be expected since the
final part of the epidemic is a subcritical branching process, characterised by variability
in its duration [152].

4.4.2 Comparison between different positions of one initially infected
node

In this section, we expand the analysis above on Figure 3 to a broader setting. Recalling
equation (4.2), the higher values of β correspond to higher values of R0, thus causing a
greater spread of the epidemic for fixed values of α. The opposite is true for α: greater
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Figure 2: Comparison between different numbers of initially infected nodes in the hub-
degree.

values of α mean a less connected network, which impairs the spread of the disease
as it can be noticed in Figure 3. However, it is less evident from equation (4.2) that
greater values of α imply smaller values of R0. In this regard, our simulations confirm
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the intuition and what was known in the literature [141].

The more central and connected the initially infected node is, the greater the mag-
nitude of the spread, as the heatmaps labelled “hub”, “mean degree” and “peripheral”
illustrate; the “random” heatmaps give, qualitatively, an average of the other three. The
only quantity which remains noisy is the final time, visualised in Figure 3c. For the “hub
node” initial position, the tendency is the same as in Figure 2c. However, in the other
cases, the behaviour in the measurements follow a similar trend, i.e. values decreasing
with α and increasing with β due to the weakness of the disease together with the effect
of the initially infected node positions.
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4.4.3 Analytical vs. stochastic “hub case”

In this section, we verify our stochastic model with respect to the analytical results in
Section 4.3, for the case where the infection starts from a hub of the network. The first
infected node is chosen as the node with the maximum degree in the network and the
degree is inversely proportional to α: this follows from expression (4.1).

We considered 100 stochastic simulations for each pair of parameters α and β. For
each choice of these parameters, we evaluated the probability of a minor epidemic using
the analytical derivation in Section 4.3 for a branching process. We denote this with
Pα,βext . Note that for the stochastic simulations there is no formal definition of a minor
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epidemic. We thus considered different threshold values to have a small number of
eventually infected nodes. The thresholds considered in this study are 1, 2, 3 and 4
nodes, which represent epidemics that do not take off.

After collecting the simulation data, we obtained the probability of a minor epidemic
for each pair of parameters (α, β) for the four different thresholds. Since we ran 100
simulations, we normalised the results to have a probability measure such that, in the
notation Pα,β,Tstoc , T is the value of the chosen threshold. We then computed the difference
between the simulation data (for each threshold) and the analytical probability of a
minor epidemic. With T ∈ {1, 2, 3, 4}, we compute

diff(α, β, T ) = Pα,β,Tstoc − Pα,βext .

Since we consider 10 different values for each of the parameters α and β, we obtained
100 values of diff(α, β, T ) (for each threshold T ).

In order to choose the “best threshold value”, we computed the mean and the stan-
dard deviations for all the datasets {diff(α, β, T )}{α,β}. From Table 1, we can observe
that the best agreement is with the threshold T = 3.

After choosing the threshold to define a minor epidemic, we compared the analytical
and simulation results to verify our model. This comparison is depicted in Figure 4.
The simulation results are in good agreement with the analytical results, especially for
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Figure 3: Comparison between different position of one initially infected node. (a)
Peak of infected individuals; (b) eventually infected nodes, the size of the removed
compartment at the end of an epidemic that starts with one infected individual in an
otherwise susceptible population; (c) end time of the epidemic where we observe more
noise.

Threshold 1 Threshold 2 Threshold 3 Threshold 4

Mean -0.06 -0.02 0.00 0.02

Sd 0.09 0.05 0.04 0.05

Table 1: Mean and Standard deviation of the difference between the stochastic simula-
tions and analytical results.

the smallest values of the transmission rate β; in the other cases, the results differ no
more than the 3%. This behaviour can be explained by the fact that theoretically we
consider a network with an infinite number of nodes, but practically we use a finite
network with a large number of nodes. In Figure 4. we compare, for the probability of a
minor epidemic, the analytical value (blue) obtained in Section 4.3 with the stochastic
realisations (black) by simulations. For each (α, β) pair, we performed 100 simulations.
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We observe that for the smallest value of β, probability of a minor epidemic seems to be
almost independent of the connectivity of the network. Moreover, when β = 0.002, even
in the cases where the epidemic does not immediately die out, the number of eventually
infected individuals in each of the 100 iterations does not exceed 15. However, when
the transmission rate increases, the probability of having a minor epidemic increases for
greater values of α. This behaviour can be noted also in Fig. 3b (“Hub node”).

Remark 7. The probability of a minor epidemic, even in the analytical case, depends
on the degree of the initially infected node chosen as the “hub node”. However, even
though the value of the maximum degree of each network follows (4.1) (and thus it should
decrease with α) when the networks are simulated, the degree kmax is rarely reached.
Therefore, the degree of the hub node is not monotonic with α, and the blue bars are
accordingly sometimes not monotonic.
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4.5 Summary and Outlook

We have shown how an epidemic affects a synthetic network, following a cut-off power-
law distribution for the degree of the nodes through the use of the configuration model.
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Figure 4: Comparison between stochastic (red bars) and analytical (blue bars) results
on the probability of having a minor epidemic of the epidemics, as functions of α and β.
The height of each blue bar comes from formula (4.5), whereas the red bars are obtained
by counting the number of simulations with less than 3 eventually infected individuals
and dividing that number by 100, which is the amount of simulations produced for each
couple (α, β) considered.

We provided an analytical result on the probability of minor epidemic of the infectious
disease, which is based on the initial condition of the network and the degree of the
initially infected node. Our analytical results and stochastic simulation results are in
good agreement; the gap in the values stems from the fact that we have considered
an infinite network in the analytical framework, and a finite network, yet with a large
number of nodes, in the stochastic one.

We have analysed various possible initial conditions for the networks we simulated
and compared them with the available analytical insight. In particular, we explored how
the positions of the initially infected individuals influence the whole epidemic, measured
through three indices: eventually infected individuals, peak of infected individuals and
overall duration of the epidemic. Our analysis and numerical exploration confirm that
the infectiousness of the disease is directly proportional to the spread of the epidemic;
moreover, we conclude that the same disease (i.e., characterised by the same parameters
β and γ) infects more individuals in networks generated with a lower exponent power-
law, as one would expect intuitively.

We have simulated the epidemic as an SIR model on a network with stochastic dy-
namics using a specialised and computationally less expensive version of the Gillespie
algorithm. Our algorithm is versatile; many different additional features can be imple-
mented, for example, dynamics edges, contact tracing, quarantine. Other generalisations
of this work may regard the use of a different model for the epidemic process, e.g. consid-
ering a disease in which recovered individuals lose their immunity after a certain period
of time (i.e., a SIRS model) or a disease in which there are different types of infected
individuals. Moreover, it could be interesting to analyse different structures of the net-
works, studying how the geometry of the graph may affect the dynamics which occurs
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on it.
Other topics which we leave for further investigation include choosing the initially

infected nodes based on different centrality measures such as betweenness, percolation
centrality [153], eigenvector centrality, random walk centrality, and compare the out-
comes in the these settings. A thorough comparison of different centrality measures
would highlight the prevalent one in the transmission of infectious diseases in popula-
tions modelled by a scale-free network of contacts.
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5. Economic evaluation of the
introduction of the live
attenuated influenza vaccine
(Fluenz Tetra®) in the Italian
paediatric population (2-6 years)

5.1 Introduction

Many European countries, including Italy, have flu vaccination programs targeting the
elderly and people with specific health conditions [154]. These programs aim to offer
direct protection to those who are at the highest risk of complications. Some European
countries, including the UK and Finland [50, 155], have extended their flu vaccination
programs to healthy children. From the 2020/2021 season with the COVID-19 pandemic,
the Ministry of Health has recommended influenza vaccination in healthy children aged
6 months - 6 years, also to reduce the circulation of the influenza virus among adults
with a risk condition and the elderly [156].

The offer of influenza vaccines in pediatric age (starting from 6 months of age) is cur-
rently limited to the use of two vaccines: the quadrivalent vaccine produced on standard
dosage eggs (QIVe - egg-based Quadrivalent Influenza Vaccine) and the quadrivalent
vaccine produced on standard dose cell culture (QIVc - cell culture-derived Quadrivalent
Influenza Vaccine). In Italy the live attenuated quadrivalent vaccine (LAIVq - Laive
attenuated influenza vaccine quadrivalent) is also authorised, but until the 2020/2021
season it had never been marketed. The LAIVq vaccine is administered by intranasal
spray with one spray per nostril and is authorised for use in Italy in people aged 2 to
18 years. By mimicking natural infection, but without causing disease or subsequent
transmission, LAIVq provokes both a humoral and cellular immune response [157].

Considering the current COVID-19 pandemic and the problems related to the supply
of flu vaccines, LAIVq was distributed and used in some Italian regions in the 2020/21
season, in order to meet the increased regional demand. It was given to children between
2 and 6 years and, later, also to children and adolescents from 6 to 18 years [158]. Fur-
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thermore, in analogy to what is already in place in some countries [159] which considered
the protection provided by the first dose of LAIVq vaccine adequate, also in Italy during
the 2020/21 season a single dose was administered in children never vaccinated against
influenza under 9 years of age [160]. This choice was made considering the studies avail-
able in the literature [161, 162] and to allow optimisation of the vaccine offer considering
the shortage of influenza vaccines recorded during the 2020/21 season.

In Italy, the data relating to the epidemiology of the different flu seasons tell us that
the epidemic curve generally reaches its peak at the beginning of February, affecting
mainly the paediatric population (0-4 and 5-14 years), with an incidence that decreases
with increasing age [163]. The European Centre for Disease Control (ECDC) estimates
that, on average, around 40,000 people die prematurely each year from influenza in
the European Union. 90% of deaths occur in subjects over the age of 65, especially
among those suffering from chronic clinical conditions and Italy is no exception in this
sense [164]. Although in the 2014/15 and 2016/17 seasons, an excess mortality rate
attributable to influenza of 1.05/100, 000 and 1.54/100, 000 respectively was observed in
children under the age of 5 [165].

Among healthy children, the flu is generally a self-limiting and uncomplicated illness.
However, it can be associated with severe morbidity and mortality in healthy children
and in certain groups of children and adults who are at increased risk for severe or
complicated influenza illness. Influenza causes an appreciable burden of disease (e.g.
absence from school and work, increased frequency of outpatient medical visits) and
children are important vectors for the spread of the disease.

To assess whether the benefits of the LAIVq vaccine justify the additional costs,
economic assessments, such as cost effectiveness analysis (CEA), are essential to support
decisions about the allocation of available health care resources.

Evaluations of the cost-effectiveness of health interventions are model-based. Such
evaluations play an important role in allocating scarce health resources [166] and the
choice of an appropriate model is crucial to arrive at valid cost-effectiveness results [54,
55]. The most used models are decision tree models and Markov models [167, 168, 169].
These models assume that the likelihood of disease exposure is not affected by an inter-
vention against it, and therefore the likelihood of disease exposure does not change over
time. This assumed constant probability of exposure is realistic for non-communicable
diseases and can be modelled with so-called static models. For communicable infectious
diseases, the independence between disease exposure and interventions is not realistic
and another class of models is needed. Interventions against communicable diseases not
only reduce the likelihood of the individual being treated developing the disease, but
also reduce exposure of others to the infection. Models that consider these nonlinear
transmission effects over time such as dynamic models are therefore preferable. Non-
linearity arises because the likelihood of infection in susceptible individuals depends on
the number of infected individuals. The best known dynamic model for the spread of
infection is the SEIR (Susceptible - Exposed - Infectious - Removed) model [170, 171].
For this reason, we performed a cost-effectiveness analysis of paediatric influenza vacci-
nation using a SEIR-type dynamic transmission model to evaluate the cost-effectiveness
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of introducing the LAIVq vaccine in Italy in children aged from to 2 and 6 years.

Objective of the study

The general objective is to estimate the economic profile of the introduction in Italy of
the LAIVq vaccine in children aged between 2 and 6 years through a cost-effectiveness
analysis (CEA - Cost-Effectiveness Analysis) adopting the guidelines for the Economic
Evaluation Reporting CHEERS (Consolidated Health Economic Evaluation Reporting
Standards Statement) [172].

5.2 Methods

5.2.1 Transmission model

Influenza transmission was simulated using a deterministic SEIR model, already devel-
oped for previous cost-effectiveness evaluations [173, 174] to calculate the attack rates
of confirmed seasonal influenza infection by age group and viral subtype in the seasons
considered.

The total population N is divided into 85 age classes, such that N =
∑85

a=0Na.
Each class represents one year of life, with the exception of the last one that includes
individual with an age of ≥ 85 years old. The population is then partitioned into four
compartments, namely S, E, I, R, which represent the fraction of Susceptible, Exposed,
Infected and Recovered individuals, respectively, such that Na = Sa + Aa + Ia + Ra,
where a = 0, . . . , N .

The infection can be transmitted to a susceptible through a contact with infectious
individual, at rate β. Contacts between individuals of different classes are described
by a contact matrix, denoted by C. All susceptible individuals, once infected, enter in
an exposed state, indicating a pre-symptomatic state of individuals who will become
symptomatic. However, unlike other compartmental models, we assume that the sus-
ceptibility to the disease depends on the age class, denoted by ρa, a = 0, . . . , 85. From
the exposed compartment, an individual progress to the class of infectious II, at rate δ.
An infected individuals can recover at a rate γ. Since our model has been applied to
short period of time, i.e. one influenza season, we assume that the recovered individuals
obtain a permanent immunity.

The aforementioned transmission model is described by the following system of
ODEs.
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dSa(t)

dt
= −βρaSa(t)

85∑
a′=0

Caa′Ia′(t)

Na′(t)
,

dEa(t)

dt
= βρaSa(t)

85∑
a′=0

Caa′Ia′(t)

Na′(t)
− δEa(t),

dIa(t)

dt
= δEa(t)− γIa(t),

dRa(t)

dt
= γIa(t), a = 0, . . . , 85,

(5.1)

with initial conditions take as follow. The model season starts with I(0) = 10 infected
individuals, choosing randomly in the population. The vaccination campaign is admin-
istrated before the epidemic season starts, thus the initial number of recovered people
is Ra(0) = εcaNa(0), for all a = 0, . . . , 85, where ε denotes the effectiveness of the vac-
cine and ca is the age-related coverage. Lastly, Sa(0) = Na(0) − Ia(0) − Ra(0), for all
a = 0, . . . , 85.

The susceptibility and immunity of the Italian population to infection have been
defined with respect to the strains circulating in the last 10 years for the A/H3N2 and
B viruses and starting from serum epidemiological investigations carried out before and
after the appearance of the A/H1N1pdm09 subtype [175].

The model allows for the development of an influenza epidemic every season and has
been calibrated on the data of laboratory-confirmed influenza cases in Italy [176] and
on the number of influenza-like syndromes reported to the Sentinel Surveillance System
for influenza-like syndromes (INFLUNET) sentinel doctors (general practitioners and
paediatricians of free choice) participating in surveillance for 10 seasons (2010/11 –
2019/20, excluding the 2009/2010 pandemic season) [177].

Furthermore, the efficacy of both LAIV and eQIV influenza vaccine have been drawn
from the international scientific literature and through the indications coming from [59,
Chapter 10].

The dynamic model developed made it possible to simulate an average influenza
season based on historical data from ten previous influenza seasons and was used to
study the number of infections, clinical outcomes and the cost-effectiveness of the existing
vaccination strategy compared to a strategy where in healthy children aged 2-6 years
vaccination coverage of 40% is achieved using the live attenuated qLAIV vaccine. We
have considered that the programming for the flu vaccination campaign, both at the
national and regional level, is carried out annually and therefore we have adopted a time
horizon of one flu season.

Simulated infection outcomes (symptomatic and non-symptomatic) were converted
into physician visits, hospitalisations and deaths using age-specific probabilities of out-
come. Thereafter, the clinical results served as input for the economic analysis which
estimates the cost and loss of quality-adjusted life years (QALYs). As recommended
by the World Health Organization (WHO) [178] and the Consolidated Health Economic
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Evaluation Reporting Standards (CHEERS) guidelines [172] the analysis was conducted
from both the “Servizio Sanitario Nazionale (SSN)”, i.e. the Italian National Health
System, perspective (direct costs) and in the broader perspective of society (direct and
indirect costs). Costs and QALYs were discounted to the 2020 season value using a 3%
discount rate [179].

The intervention was considered cost-effective for an ICER value < e30,000/QALY
[173, 174, 180, 181] in both perspectives considered.

5.2.2 Scenarios assessed

The current flu vaccination program offers free vaccination to all people aged ≥ 65
and people aged < 65 with certain health conditions using different types of vaccines
[156]. From the 2020/2021 season, with the COVID-19 pandemic, the Ministry of Health
has recommended influenza vaccination in healthy children aged 6 months - 6 years,
recommending the use of the eQIV vaccine (from 6 months), cQIV (from two years)
and LAIVq vaccine (from 2-17 years). The data relating to vaccination coverage by age
group in the various seasons under study were taken from the Ministry of Health [182].

In the basic scenario we considered the vaccination of the population with the eQIV
vaccine in all age groups, while in the alternative scenario we considered the introduction
of the qLAIV vaccine, administered intranasally, in healthy children aged between 2 and
6 years. Vaccination coverage in healthy children between 2 and 6 years in the alternative
scenario was assumed to be 40%; whereas such coverage in this age group would be easily
achievable at national and regional level.

5.3 Model data

5.3.1 Transmission model

The data used for the dynamic transmission model are available in Table 1 and in
[173, 174, 175].

In short, the deterministic transmission model was constructed with demographic
data by age group [183] and sex and the social contact structures by age and sex [184] of
the Italian population. The model, constructed in this way, on the basis of data from the
epidemiological and virological surveillance system of Influenza in Italy (InfluNet) (in the
post-pandemic period, from the 2010/11 season to the 2019/20 season) [177] and from
studies Italians of serum epidemiology on the A/H1N1pdm09 virus before and after the
pandemic season, allows us to estimate the number of cases of influenza confirmed in the
laboratory, season by season. The eQIV vaccine field efficacy estimates considered, both
by age and by viral subtype, were drawn from data published in recent systematic reviews
and meta-analyses [51, 185, 186]. Recent field efficacy studies comparing the efficacy
between qLAIV and the eQIV vaccine have found equivocal results [187, 188, 189], while
a randomised clinical trial found no differences between LAIV and the community-wide
inactivated influenza vaccine [190]. Therefore, we hypothesised a similar efficacy of Q-
LAIV and eQIV.
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Parameters Values Notes

Number of age classes 86 85+ are considered in the same class.

Population 2018 ISTAT 01/01/2019.

Contact Matrix 86x86 matrix -

Coverage

Age class Percentage In the alternative strategy
6-23m 1,70% the coverage in the 2-4y and
2-4y 3,10% 5-8y is increased to the 40%.
5-8y 2,50%
9-14y 1,80%
15-17y 2,20%
18-44y 2,60%
45-64y 8,90%
65+y 54,60%

Effectiveness

Age class H1N1 H3N2 B In the alternative strategy
0.5-1y 69% 43% 67% the effectiveness in the 2-6y
2-6y 69% 43% 67% is increased to the 80% for each strain.
7-17y 73% 35% 77%
18-64y 73% 35% 77%
65+y 62% 24% 52%

Table 1: Characteristics of the main parameters used for in the dynamic transmission
model.

5.3.2 Probability of outcome

The likelihood of symptomatic infection given the infection and subsequent General
Practitioner (GP) or Emergency Room (ER) visit by age group was obtained from the
scientific literature [191, 192, 193]. Influenza hospitalisation rates by age group were
collected from the same studies [192, 193]. Influenza-related mortality was estimated
using the fraction of all-cause deaths associated with influenza [165]. All the above
estimates were drawn from national data. All the probabilities relating to the natural
history of influenza disease have been drawn from the international scientific literature
[173, 174].

5.3.3 Direct and indirect costs

All the average costs of the previous years were weighted to 2020 using the Italian
consumer price index [194]. The total cost per dose administered is e12.31 for the
eQIV, including the cost of the vaccine equal to e5.70, based on the average of the
latest regional competitions available, and a cost for administration of e6.61. [195]. For
qLAIV, the total cost per vaccine dose administered was set at e27.61 corresponding
to e20.40 for vaccine costs and e6.61 for administration costs. For the eQIV vaccine it
was considered that children aged 6 months <9 years should receive 2 doses, while for
the qLAIV vaccine a single dose was assumed to be administered in that age group, in
accordance with the recommendations in the UK [159].

Costs related to influenza diseases and related complications were estimated using
data from literature and other national sources [173, 174]. The direct health care costs

92



of influenza include the costs related to GP’s visits, which also include prescribed medi-
cations and referral to the specialist, and the costs of access to the emergency room and
hospitalisation. Indirect health costs (i.e. non-influenza related health costs over life
years gained) were also considered. These costs were estimated using the remaining life
expectancy at the age of death and the age-specific annual health care cost unrelated to
influenza or pneumonia. Productivity losses include costs due to the sick (15-69 years)
or care of a sick child (<15 years) from paid work. Productivity losses of premature
deaths were assessed using the friction method [196], assuming that absence from work
was limited to a friction period of 85 days [197].

5.3.4 Years of life weighted for quality

The Quality-Adjusted Life Years (QALY) losses due to influenza diseases are based on
international scientific literature [198]. QALY losses due to premature death associated
with influenza were estimated using life expectancy at the age of death and quality of
life in relation to the health status of the Italian population by age group [199, 200].

5.3.5 Cost-effectiveness analysis

The stochastic transmission model generated 1000 simulated series of 10 consecutive sea-
sons. For each simulation, a set of economic-health parameters was used. Subsequently,
simulations of discounted costs and QALY losses over the analysed 10-year period were
averaged. The incremental cost-effectiveness ratio (ICER) was calculated by dividing
the difference in costs between two strategies by the difference in QALY. The vaccina-
tion program considered by increasing the paediatric vaccination rate was considered
convenient when the ICER was less than e30,000 per QALY earned.

5.3.6 Sensitivity analysis

The replacement of QIVe with qLAIV (in the age group 2-6 years) was subjected to
both deterministic (univariate; DSA - Deterministic Sensitivity Analysis) and proba-
bilistic (multivariate; PSA - Probabilistic Sensitivity Analysis) sensitivity analysis. A
deterministic and probabilistic sensitivity analysis was also carried out when the sale
price of the qLAIV vaccine changed up to e18.00, the price indicated in the most recent
regional tenders awarded.

5.4 Results

Table 2 shows the average number of flu cases and complications in a flu season, by
hypothesised scenario.

Under the current vaccination program, we estimated an average of 4,955,026 (95% CI
4,954,263-4,955,788) confirmed cases in 1000 simulations; 1,984,083 (95% CI 1,190,450-
2,777,716) medical visits and access to the emergency room; 45,167 (95% CI 27,100-
63,234) Hospitalisations; and 1576 (95% CI 946-2.206) deaths per year. The introduction
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Cases of confirmed flu Complicated cases
Average 95% CI Average 95% CI

In the general population
Basic scenario 4,955,026 4,954,263-4,955,788 1,984,083 1,190,450-2,777,716
Alternative scenario 1,708,786 1,708,325-1,709,248 945.747 567.448-1.324.046
Reduction 3,246,240 3,656,530-6,253,522 1,038,336 623.002-1.453.670
In subjects 2-6 years
Basic scenario 844.355 843.652-845.057 127413 76,448-178,378
Alternative scenario 212.735 213.754-211.717 38.998 23,399-54,597
Reduction 631.619 378.972-884.267 88.415 53.049-123.781

Hospitalisations Death
Average 95% CI Average 95% CI

In the general population
Basic scenario 45.167 27.100-63.234 1,576 946-2.206
Alternative scenario 20,537 12.322-28.752 912 547-1277
Reduction 24,630 14.778-34.482 664 398-930
In subjects 2-6 years
Basic scenario 3,478 2.087-4.869 26 16-36
Alternative scenario 1,064 638-1.490 8 5-11
Reduction 2,414 1,448-3,380 18 11-25

Table 2: Confirmed influenza cases, complicated cases, Hospitalisations and deaths in
the target population and in the general population by scenario considered. The data
estimates what could happen in a hypothetical next flu season.

of the qLAIV vaccine in children aged 2 to 6 years at 40% vaccination coverage would
avoid 3,246,240 (95% CI 3,656,530-6,253,522) symptomatic cases; 1,038,060 (95% CI
623,002-1,453,670) medical visits and access to the emergency room; 24,630 (95% CI
14,778-34,482) Hospitalisations; and 664 (95% CI 398-930) deaths per year. When only
the outcomes among children aged 2 to 6 years were considered, the mean reduction
was estimated in 631,619 (378,972-884,267) symptomatic cases; 88,418 (53,049-123,781)
medical visits and access to the emergency room; 2,414 (1,448-3,380) Hospitalisations;
and 18 (11-25) deaths per year. Thus, respectively, 22% and 48% of symptomatic cases
were avoided in the target group and in subjects age >18 years, while 40% of deaths
were avoided in subjects >65 years.

5.5 Cost effectiveness analysis

Table 3 shows the economic impact and cost-effectiveness of introducing the qLAIV
vaccine in children aged between 2 and 6 years with a vaccination coverage of 40% in
Italy.

The introduction of the qLAIV vaccine produced an average gain of 33,831 QALYs,
of which 93% due to a reduction in complicated cases and 5.5% to the prevention of mor-
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General population
Basic scenario Alternative scenario Difference

QALY lost

- for the disease 16,045 5,495 10,550

- for mortality 2,498 829 1,669

QALY tot. lost 33,831 11,612 22,219

Costs

Vaccination 196,624,666 215,331,326 -18,706,660

Direct costs 196,624,665 215,331,326 -18,706,661

Loss of productivity 35,748,135 11,526,246 24,221,889

Indirect costs 116,067,084 37,643,010 78,424,074

Total costs 716,660,209 389,634,739 327,025,470

Cost effective

ICER SSN (euro/QALY earned) 11,189

ICER Soc. (euro/QALY earned) 14,718

Children 2-6 years
Basic scenario Alternative scenario Difference

QALY lost

- for the disease 3,998 1,516 2,482

- for mortality 71 18 53

QALY tot. lost 5,057 1,274 3,783

Costs

Vaccination 1,435,204 20,141,864 -18,706,660

Direct costs 1,435,203 20,141,864 -18,706,661

Loss of productivity 1,261,763 317,901 943,862

Indirect costs na na na

Total costs 41,363,072 30,201,695 11,161,377

Cost effective

ICER SSN (euro/QALY earned) 2,701

ICER Soc. (euro/QALY earned) 2,951

Table 3: Estimation of lost QALYs, costs and ICER for the general population and in
the age group 2-6 years by scenario considered.

tality in all age groups considered against a reduction in costs, a total of approximately
327 million euros.

Dividing the average net cost by the average number of QALYs saved results in an
ICER of e11,189 per QALY earned for the SSN perspective and e14,718 per QALY
earned for the society perspective. When only the outcomes among children aged 2 to
6 were considered, the infant vaccination program resulted in an average gain of 5,057
QALYs, of which 20% was due to the prevention of overall mortality. Average total
costs were estimated to rise by 11 million euros, with most of the cost savings due to
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productivity losses avoided.

In both perspectives considered, the strategy with qLAIV is cost-effective in the
whole population considered, in particular, in children aged between 2 and 6 years
it is particularly cost-effective (ICER SSN: e2,701/QALY) and the indirect effects of
the alternative strategy on the non-directly treated population are even cost effective
dominant.

5.6 Sensitivity analysis

5.6.1 Deterministic sensitivity analysis

The DSA reported in Figure 1 demonstrates that the main drivers of the observed ICER
(regardless of the study perspective) are: the total number of infections (and therefore
the efficacy of vaccines), the likelihood of complications, Hospitalisations and medical
visits.

Figure 1: Deterministic sensitivity analysis.

The tornado diagram shows that the risk of infection determines the greatest vari-
ability of the ICER (from a lower limit of 12,252 to an upper limit of 17,566) followed
by the probability of complications (from a lower limit of 13,154 to an upper limit of
16,013) and the probability of hospitalization (from a lower limit of 14,102 to an upper
limit of 15,194).
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5.6.2 Probabilistic sensitivity analysis

Figure 2 shows the results of the probabilistic sensitivity analysis using 1000 simulations.

Figure 2: Probabilistic sensitivity analysis from the perspective of society, alternative
scenario to the base scenario (the red dot represents the average ICER value).

The cost-effectiveness analysis indicates that the economic impact of the qLAIV
vaccination program is also substantial from the societal perspective. Vaccination with
qLAIV in 40% of children aged 2 to 6 years was found to be cost effective in 100% of
the simulations. Although the cost of vaccination is higher in the alternative strategy
(215,331,326 euros) than the current strategy (196,624,666 euros), considering the overall
economy over 1000 simulations, the alternative strategy is the convenient option with a
lower average cost and greater effectiveness for a willingness to pay of e30,000/QALY
in all simulations.

By making the price of qLAIV oscillate between e12.0 and e30.0, the ICER thresh-
olds (SSN perspective) e30,000/QALY are reached, respectively, with a price of e22.5
and e28.0 (Figure 3).

5.7 Discussion

The main results of this modelling study indicate that the introduction of influenza
vaccination with qLAIV at 40% vaccination coverage in children aged 2 to 6 years in Italy
is convenient for the conventional threshold of e30,000 per QALY both in perspective
of the SSN and that of the society.
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Figure 3: Break-even sensitivity analysis as the qLAIV purchase price changes.

The robustness of the base case was amply confirmed by the sensitivity analyses:
qLAIV remains cost-effective (at WTP value <e30,000/QALY) in 100% of the simula-
tions. Although the commercialisation of qLAIV may require some initial investment,
from a public health point of view its impact in terms of influenza-related events is par-
ticularly significant in the age groups that are not affected by the alternative strategy.

Furthermore, considering that the average award price of the regional tenders was
e18.0, we conducted an additional sensitivity analysis to demonstrate that up to a cost
of e22.5 the use of the qLAIV vaccine represents a cost effective strategy in Italy.

For cost-effectiveness estimation we used an influenza transmission model that cap-
tures the dynamics of the infection, as well as the seasonal variability of epidemic size
and vaccine efficacy. Taking these aspects into account is essential for estimating the
effects of influenza vaccination programs [201]. The transmission model was calibrated
on the number of visits made by sentinel doctors of the INFLUNET surveillance net-
work with flu-like illness in Italy over 10 seasons (from 2010/2011 to 2019/2020) [177].
The result was subjected to an extensive sensitivity analysis, which made it possible
to identify the main drivers of the alternative vaccination program considered. In this
study, we measured protection against specific types of influenza viruses A and B and
subtypes A/H1N1pdm09 and A/H3N2. This approach has been used in cost effective-
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ness analyses conducted on other types of vaccinations by applying different scenarios
that did not consider paediatric age groups as widely [173, 174]. The effect of includ-
ing different types and subtypes of influenza is simple when one assumes independence
between them. We hypothesised that there is no significant evidence that one type of
vaccine is more effective than another and considered substantial efficacy after a single
dose in previously unvaccinated children aged 2 to 6 years also in the light of studies
published in the literature [161, 162] and of what was decided in the UK [159] and in
Italy [160] during the last flu season.

On the other hand, some potential benefits of qLAIV were not considered, such as
greater adherence to pediatric vaccination mainly due to the needle-free administration of
qLAIV. Several limitations need to be described for this study. First of all we considered
a constant vaccine efficacy across different flu seasons and this could affect the results
especially in flu seasons for which there is a mismatch between circulating strains and
vaccine composition . However, we estimated cost effectiveness in a standard season
without considering the potential presence of circulating influenza virus strains other
than those contained in the vaccine. We also haven’t considered some possible long-
term effects of influenza, such as acute respiratory distress syndrome (ARDS) which can
cause lifelong disability. However, this complication is rare and its exclusion reflects a
conservative approach.

Our results highlight that vaccination against influenza with the qLAIV vaccine in
subjects aged 2 to 6 years is consistent with what has been published in the literature in
studies conducted in England and Wales and in Germany with a very similar approach
to the one used for the present study, which demonstrated the benefits of introducing
an extensive vaccination program in children [202, 203, 204, 205].

The results of this study are of direct interest to those involved in public health
policies. We expect a childhood flu vaccination program with the qLAIV vaccine to
prevent a significant burden of disease in all age groups and be cost-effective for the
entire population.

A decision on the introduction of the qLAIV vaccine requires more than a single cost-
effectiveness analysis such as considering the acceptability of vaccination [206]. Most of
the disease burden prevented by paediatric vaccination is not among those vaccinated
but among the elderly through indirect protection. In fact, most of the disease burden
prevented thanks to the use of qLAIV in the paediatric population of 2-6 years with a
vaccination coverage of 40% was observed above all in the other adult and elderly age
groups through the indirect protection guaranteed by the vaccine’s strategy.

5.8 Conclusions

The introduction of qLAIV in Italy is highly cost-effective and can represent a valid
alternative for the prevention of seasonal influenza in the paediatric population aged
between 2 and 6 years. Achieving vaccination coverage of 40% in the age group consid-
ered could lead to a decrease in the morbidity and mortality of influenza even in adults
and the elderly thanks to the effect linked to the phenomenon of community immunity
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(herd-immunity). In particular, the qLAIV vaccine represents an important novelty in
the panorama of vaccines to be administered in paediatric age also for its ease of use in
the medical offices of general practitioners and paediatricians of free choice and for the
opportunities it could offer through the administration of a single dose with a net saving
both in logistical and organisational terms.
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6. An Economic Evaluation of the
Adjuvanted Quadrivalent
Influenza Vaccine Compared with
Standard-Dose Quadrivalent
Influenza Vaccine in the Spanish
Older Adult Population

6.1 Introduction

Over the last few decades, vaccination has been a successful public health strategy to
prevent various infectious diseases worldwide, effectively helping reduce the burden of
vaccine-preventable diseases [207, 208]. Influenza is an acute viral infection, highly trans-
missible, observed around the globe every year, with peak spread during the winter sea-
son [209]. Seasonal influenza is a vaccine-preventable disease. Influenza’s public health
burden can be serious because of high transmissibility, accompanying comorbidities (e.g.,
pneumonia), and higher mortality, especially among the higher-risk population, such as
the elderly [210]. Furthermore, in addition to disease management costs, influenza can
have an increased socioeconomic impact due to productivity loses associated with miss-
ing work or absenteeism [211].

The clinical efficacy of vaccines against influenza has been improving steadily over the
years, e.g., by going from trivalent to quadrivalent vaccines (the latter offers protection
against all four viral strains), through the addition of vaccine adjuvants or by increasing
antigen concentration [212]. Alongside the increased clinical efficacy, there is a growing
amount of evidence on the cost-effectiveness of vaccination strategies against influenza,
particularly if improved vaccines are used, such as quadrivalent influenza vaccines (QIV)
[210].

Results from a recent modelling exercise across European settings support using en-
hanced influenza vaccines for the high-risk population (e.g., elderly patients) [213]. Eco-
nomic modelling studies in Spanish settings have found cell-based QIVs (QIVc) to be
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cost-effective compared with traditional egg-based QIVs (QIVe) for adult patients (aged
9-64 years and at high-risk of complications) [214]; furthermore, for individuals aged 65
or older, adjuvanted QIV (aQIV) was cost-saving compared with high-dose (HD)-QIV
[209], and adjuvanted trivalent influenza vaccine (aTIV) was found to be cost-effective
compared with TIV [215, 216]. Immunosenescence refers to the biological aging pro-
cess associated with progressive decline in systemic immunity and increased prevalence
of autoimmune and chronic diseases, increased vulnerability to common infectious, and
poor responses to vaccination [217]. aQIV is indicated for individuals aged 65 years
or older. aQIV combines MF59® adjuvant (an oil-in-water emulsion of squalene oil)
and a standard dose of antigen, and is designed to produce stronger and longer immune
response, especially in the elderly where immunosenescence reduces vaccine effective-
ness; compared with younger adults (18-64 years), vaccine effectiveness for the elderly
was found to be 27% lower (37% for the elderly versus 51% for younger adults) [218].
Real-world evidence has shown that adjuvanted influenza vaccines results in statistically
significantly fewer influenza-related medical encounters compared with non-adjuvanted
influenza vaccines [218, 219, 220].

This study used a dynamic transmission model aimed to evaluate the cost-effectiveness
of aQIV vs. QIVe in the elderly population (65+ years) in Spain. Given the dynamic
nature of the model (i.e., accounting for indirect effect of vaccination), and similarly to
several other models [221, 222], the whole Spanish population is included so that herd
protection can be accounted for; it has been reported that the indirect effects of vacci-
nation can be more significant than the direct effects [223]. The model is used to project
both costs and clinical benefits of competing vaccination strategies for the elderly, from
the payer and societal perspectives.

6.2 Materials and Methods

6.2.1 Model structure

The World Health Organization (WHO) guidelines were followed to conduct a cost-
effectiveness analysis of the influenza vaccines in the Spanish older adult population
[224]. Influenza transmission and burden was simulated by adapting a SEIR (Susceptible
- Exposed - Infectious - Recovered) model that was developed previously to evaluate the
cost-effectiveness of aQIV in the Italian setting (see e.g. [174, 225]), explained yet in
details in Section 5.2.1. The model was structured in two modules: epidemiological
and disease burden. The epidemiological module is a dynamic compartment model
that allows to estimate the number of influenza cases by season. The output of the
epidemiological model is the number of infections due to the influenza viral subtypes
A(H1N1), A(H3N2), and B; both symptomatic and asymptomatic cases are predicted.
The dynamic nature of the epidemiological module allows to incorporate the indirect
effect of influenza vaccination, i.e., herd protection.

The burden module is a decision tree starting from the final output of the epidemi-
ological model and simulating the natural history of the disease, i.e., among patients
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infected with influenza, the model estimates potential complications, which may require
treatment, including hospitalisation, and may also cause the subject’s death (Figure
1). The burden module model estimates the expected number of clinical events associ-
ated with influenza and the corresponding costs and quality-adjusted life years (QALY)
estimated for each of the two influenza vaccines analysed in the current assessment.

Figure 1: Decision-tree structure for the disease burden module. Note: bold rectangles
represent terminal nodes. ER = emergency room; GP = general practitioner.

6.3 Epidemiological Model Inputs

6.3.1 Population

he model was stratified into 86 age groups/classes. Contacts among age classes followed
a published contact matrix for Spain, part of a larger study that analysed 26 European
countries [184]. The latent period was set to 1.5 days and the infectious period to
1.2 days; hence, the influenza generation time was 2.7 days [226]. The distribution of
contact rates was chosen on the basis of the dominant (or codominant) strains in Spain
in the years 2010-2019 [226, 227]. In the absence of transmission rates for Spain, Italian
transmission rates for the overall population were used as a proxy, using data for the
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same years in which matching strains were observed in the two markets (Table 1). In
the only case in which the strains did not match (2017/2018 season), H3N2 data of the
following year were used.

Season Strain Circulation in Spain Strain Circulation in Italy

2010/11 H1N1 H1N1/B

2011/12 H3N2 H3N2

2012/13 B H1N1/B

2013/14 H1N1/H3N2 H1N1/H3N2

2014/15 H3N2 H1N1/H3N2/B

2015/16 H1N1 H1N1/H3N2/B

2016/17 H3N2 H3N2

2017/18 B/H3N2 H1N1/B

2018/19 Not available H1N1/H3N2

Table 1: Influenza strains for influenza seasons after 2010/11.
Note: Bold font highlights the correspondence of strains between Spain and Italy by
season. Underlined text indicates data from a different season used as a proxy.

No estimates ofR0 for influenza in Spain were identified, hence Italian estimates were
used [226], assuming that in each season the contact rate for the dominant strains in
Spain were the same as that of the corresponding strains in Italy. It should be noted that
using the Spanish contact matrix and population structure combined with the contact
rates estimated for Italy resulted in lower values of R0, and hence the average number
of influenza infections predicted by the model per season would have been lower than
published data for Spain [227]. Hence, a rescaled distribution of the Italian transmission
rates was applied, using a factor of 1.05. This factor was found empirically to result in an
average number of reported infections matching observed outcomes for Spain, reported
in a study on transmissibility of influenza [227]. Furthermore, the 2014/2015 season
(H3N2) was excluded from the analysis because the procedure estimating R0 for this
season yielded a value below 1, in which case an epidemic cannot occur. A summary of
the population included in the model is presented in Table 2. The Spanish population
was sourced from the National Statistics Institute, Spanish Statistical Office (population
reflects official data up to 2021) [228].

6.3.2 Vaccine Coverage

Two different sources were used for vaccine coverage: one for individuals with ages be-
tween 0 and 64 (2012) [212], and another for those older than 65 years (2020) [229].
Coverage data for the 0-64 age category is aligned with a previous publication that eval-
uated the cost-effectiveness of quadrivalent influenza vaccine in Spain; the coverage for
healthy individuals was reported as 0% (since in Spain vaccination is not recommended
for healthy individuals) [212]. For the 65+ population, the model considers all individ-
uals are at high risk for influenza infection, which is aligned with Spanish government
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Age N % Healthy % at Risk At-Risk — Coverage Overall - Coverage

0-8 3,662,079 79.93% 20.07% 24.20% 4.86%

9-17 4,500,901 78.63% 21.37% 24.24% 5.18%

18-64 29,719,673 57.46% 42.54% 17.15% 7.29%

≥65 9,444,037 0 % 100% 67.7% 67.7%

Table 2: Summary of Spanish population structure.
Note: Based on the Spanish Ministry of Health, the ‘at-risk’ population included indi-
viduals with chronic cardiovascular or lung disease, metabolic disease, morbid obesity,
chronic renal disease, hemoglobin disorders and anemia, asplenia, chronic liver disease,
severe neuromuscular diseases, immunosuppressed, cochlear implanted, cognitive dys-
function, people living in closed institutions, pregnant women, and children from 6
months to 18 years receiving long-term treatment with acetylsalicylic acid. Individu-
als without these conditions are considered healthy, i.e., influenza vaccination is not
recommended to them [212].

guidelines for vaccination [230]. A summary of the coverage data used by the model is
presented Table 3.

Age Category 0-4 5-17 18-49 50-64 65-69 70-74 75-79 80-84 85+

Vaccine coverage 4.55% 5.18% 2.91% 15.66% 59.84% 67.41% 68.36% 76.39% 72.23%

Table 3: Overall vaccine coverage.

6.3.3 Effectiveness

Estimates of QIVe effectiveness came from a recent systematic review and meta-analyses,
which took into account differences between age groups and viral type. The meta-
analysis results were summarized in a recent health-technology assessment (HTA) and
are presented in Table 4 [184, 59].

Age Category
Viral Strain

H1N1 H3N2 B

0.5-1 69.0 (49.0-81.0) 43.0 (28.0-55.0) 66.5 (57.7-73.6)

2-6 69.0 (49.0-81.0) 43.0 (28.0-55.0) 66.5 (57.7-73.6)

7-17 73.0 (52.0-84.0) 35.0 (14.0-41.0) 77.0 (18.0-94.0)

18-64 73.0 (49.0-81.0) 35.0 (14.0-41.0) 77.0 (18.0-94.0)

≥65 62.0 (36.0-78.0) 24.0 (-6.0-45.0) 52.1 (41.5-60.8)

Table 4: QIVe absolute vaccine effectiveness.
Note: Effectiveness reported as mean% (95% confidence interval).

The relative vaccine effectiveness (rVE) of aQIV compared with QIVe was sourced
from two published meta-analyses (Table 5 ). These meta-analyses reported on the rVE

105



of aTIV vs. TIV. These results are extrapolated for the comparison of aQIV vs. QIV; the
extrapolation is needed because to date, there are no real-world evidence aQIV studies
[231]. Although the meta-analyses compared aTIV vs. TIV, these results are appropriate
for aQIV as the European Medicines Agency (EMEA) established that observational
effectiveness studies performed with aTIV are relevant to aQIV because both vaccines
are manufactured using the same process and have overlapping compositions [232].

Meta-Analysis rVE Notes

Calabrò et al.,
2021 [174]

34.6%
(95% CI: 2.0–66.0%)

Synthesised three studies that reported
the relative effectiveness of aTIV against TIV, based on

laboratory-confirmed influenza studies.

Coleman et al.,
2021 [218]

13.9%
(95% CI 4.2–23.5%)

Studied the effectiveness of aTIV relative to vaccination
with TIV. It included influenza-like-illness outcomes using

influenza-related medical encounters for influenza with
or without pneumonia in various clinical settings

including outpatient, hospital, or emergency department.

Table 5: aQIV relative vaccine effectiveness (extrapolated from aTIV).
aQIV = adjuvanted quadrivalent influenza vaccine; aTIV = adjuvanted trivalent in-
fluenza vaccine; CI = confidence interval; rVE = relative vaccine effectiveness; TIV =
trivalent influenza vaccine.

6.4 Disease Burden Module Inputs

6.4.1 Rates of Clinical Events

Table 6 shows the probability of patients with a symptomatic case of influenza seeking
different types of medical support. Visits to the general practitioner (GP) are further
stratified as ambulatory (patient visits a doctor’s office) or a home visit (doctor visits
the patient at home). Table 7 details the probability of developing complications and
the distribution around the type of complications. These probabilities were not available
from the literature specific to the Spanish settings, hence Italian data were used as a
surrogate.

Age Category
Probability of Medical Support Seeking, by Type

GP Visit [191] GP Ambulatory [193] GP Home Visit [193] ER[192, 193]

0–8 65.63% 34.02% 65.98% 3.04%

9–17 57.63% 34.02% 65.98% 1.65%

18–64 32.03% 34.02% 65.98% 0.02%

≥65 36.89% 34.02% 65.98% 0.02%

Table 6: Medical support seeking by patients with a symptomatic case of influenza.
GP = general practitioner; ER = Emergency Room.
Note: ambulatory and home visit correspond to the distribution of GP visit types; i.e.,
34% of the total GP visits are considered ambulatory, whereas 66% are home visits.
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Age Category
Probability of

Complications [193, 233, 234]
Distribution of Influenza Complications [192, 193]

URTI Bronchitis Pneumonia
Other

Respiratory

0–8 22.21% 54.46% 43.31% 2.23% 0.00%

9–17 15.09% 54.55% 43.64% 1.82% 0.00%

18–64 LR 29.98% 52.33% 39.52% 3.63% 4.52%

18–64 HR 55.33% 52.33% 39.52% 3.63% 4.52%

≥65 63.65% 52.33% 39.52% 3.63% 4.52%

Table 7: Influenza-related complications.
HR = high risk; LR = low risk; URTI = upper respiratory tract infection.

As patients experience influenza-related complications these may result in hospital-
isations. Table 8 shows the probability of being hospitalised, and the distribution of
hospitalisations by type of complication. hospitalisations data were not identified spe-
cific to the Spanish settings, hence Italian data were used as a proxy.

hospitalisations
by Complications [235, 236]

Age Category
Prob. Hosp.

[192, 193]
URTI Bronchitis

Pneumonia
w/o Comp.

Pneumonia
with Comp.

COPD Cardiac

0–8 4.14% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00%

9–17 2.73% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00%

18–64 LR 0.41% 23.53% 5.88% 29.41% 41.18% 0.00% 0.00%

18–64 HR 2.96% 23.53% 5.88% 29.41% 41.18% 0.00% 0.00%

≥65 2.96% 15.38% 3.85% 19.23% 26.92% 19.23% 15.38%

Table 8: Influenza-related hospitalisations.
COPD = chronic obstructive respiratory diseases; comp. = complications; hosp. = hos-
pitalisations; HR = high risk; LR = low risk; URTI = upper respiratory tract infection;
w/o = without.

6.4.2 Mortality

Only subjects who incur influenza-related complications face an influenza-specific risk
of death. In absence of influenza-related death rates for Spain, data from the UK (pre-
viously used by Garcia et al. [212] when evaluating QIVs in Spain) and Italy were used.
The risk of death (mortality likely attributable to influenza) was stratified by age cate-
gories and risk level (where applicable): ages 0-8 = 0.03%, 9-17 = 0.01%, 18-64 low risk
= 0.15%, and high risk = 0.19%; 65+ = 2.67% [234, 165].

6.4.3 Costs

All costs are expressed in 2021 euros. It should be noted that in Spain, costs informed by
the autonomous communities bulletins remain current from the time of their publication,
until a new version is posted by the Spanish government, i.e., these official costs should
not be inflated. The per-dose cost of each vaccine was e9.50 and e13 for QIVe and
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aQIV, respectively. These figures correspond to official tender prices set by the Spanish
Ministry of Health [237]. The administration cost, evaluated from the public healthcare
perspective, was e25.94 [238]. The disease management cost of influenza without com-
plications considers the cost of GP visits (ambulatory or at home), priced at e59 and
e83, respectively; the cost of pharmaceuticals at e3.21 (includes antivirals, drugs used
for the symptomatic therapy of influenza, and antibiotics); and visits to the emergency
room at e183 [215, 239]. The disease management costs associated with ambulatory
complications are detailed in Table 9. It should be noted that for individuals ≥18 years,
there were data to inform the probability of different medical interventions in case of
ambulatory complications following influenza; the probability of medical interventions
was combined with unit local (Spanish) costs to inform the model. For the 0-17 age cat-
egory however, detailed data on medical interventions were not available, hence overall
costs were used.

Age Category Resource Probability (%) Cost

0–17
URTI costs

N/A
e59.00 [239]

LRTI costs e171.45 [238]

≥ 18 [239]

Antibiotic treatment (×5 days) 95.48% e3.00
Specialist visit 1.04% e215.00
X-ray thorax 7.72% e23.34
X-ray sinuses 0.52% e23.34
X-ray others 0.28% e23.34
Hematology 0.61% e4.00

ECG 0.24% e15.00
Blood analysis 0.09% e5.00
Throat swab 0.05% e18.00
Audiometry 0.05% e62.00

Table 9: Ambulatory complications cost.
ECG = electrocardiogram; LRTI = lower respiratory tract infections; N/A = not appli-
cable; URTI = upper respiratory tract infections.

hospitalisations costs by type of complication were as follows: upper-respiratory
tract infection e2607.94; pneumonia e3393.23; chronic obstructive respiratory disease
e3277.45; bronchitis e2507.91; and cardiac e3439.30 [240]. The model accounts for
two categories of indirect costs: loss of productivity of workers due to influenza or re-
sulting from premature death. Both categories of indirect costs have been estimated
using the friction cost method [174]. The estimation of indirect cost combines the num-
ber of working hours per week (40) and the average pay per-hour (e17.34) [214], the
employment rate (58.65% for 18-64 years individuals, 1.2% for those aged 65-69 years,
and 0.3% for those aged 70+), sourced from official data from the Spanish Statistics
National Institute [228]; the average number of working days lost for cases that did
not require hospitalisations (4.7 days) [241], and those that resulted in hospitalisations
(13.25) [235]; the probability of patients remaining at home as a result of developing
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influenza-like symptoms (48.32%) [241]; and probability of parents having to take care
of sick children (35%) [214].

6.4.4 Utilities

Table 10 shows the reference utilities (for healthy individuals) stratified by age categories
[199, 200]. As patients experience the disease, disutilities are applied associated with
different clinical events. The disutility for influenza-related symptoms not requiring
a medical visit was 0.005 [198]; for influenza-related symptoms requiring a GP visit
was 0.06 [198]; for influenza-related symptoms with associated complications was 0.0075
[198]; and for cases requiring hospitalisations, the disutility was 0.0090 [198]. Influenza-
related disutilities were not available specifically for Spain, hence these were sourced
from a burden of illness study sampling more than 2200 individuals from the general
population in Belgium who had experienced influenza-like-illness [198].

Age Category Utility [199, 200]

0–8 0.95

9–17 0.95

18–64 0.93

≥65 0.87

Table 10: Utilities (for healthy individuals).

As patients’ QALYs are accrued over several years in the future, the QALYs accrued
after the first year were discounted at a 3.0% annual rate, following Spanish guidelines
for health economics [242]. The same discount rate was used to accrue future indirect
costs associated with averted deaths.

6.5 Analysis

The model allows for the calculation of burden of illness (i.e., number of symptomatic
cases, medical help-seeking events with and without complications and with and without
hospitalisations, quality-adjusted life-years, and deaths), costs (direct: vaccine acquisi-
tion and administration and disease management, and indirect: productivity lost), and
incremental analysis (cost per-QALY gained). From the public payer perspective, only
direct medical costs are included, whereas for the societal perspective, the productivity
lost costs were added to the direct medical costs. Incremental cost-effectiveness ratios
(ICERs) were calculated to compare aQIV versus QIVe. The base case considers two
main scenarios around relative vaccine effectiveness (rVE) of aQIV versus QIVe, given
that two relevant published meta-analyses were identified providing quite different esti-
mates for rVE: 34.6% and 13.9%. Additional scenario analyses were conducted testing
the impact of changes to model inputs and/or assumptions on the model results. A
one-way deterministic sensitivity analysis (DSA) was used to identify the parameters
that are key drivers of the ICER. In the DSA, parameters were changed using a ±20%
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variation from their base case value. A probabilistic sensitivity analysis (PSA) was also
conducted by varying parameters based on their underlying probability distribution (the
contact rate (beta) varied according to the expected distribution in the past 10 seasons;
in alignment with previous publications, costs and disutilities were assumed to follow
a gamma distribution using a coefficient of variation of 22%) [225, 174]; 10,000 PSA
iterations of the model were run to assess the effect of uncertainty on the ICERs (ad-
ditional details regarding the sensitivity analysis are included in the Appendix 6.A -
Tables 6.A.4-6.A.11). A willingness-to-pay threshold of e25,000 per QALY gained, rel-
evant to Spain as per published literature, was used as the threshold to determine the
cost-effectiveness of the interventions [243, 244].

6.6 Results

The total number of people vaccinated was 9,150,385. Replacing QIVe with aQIV in
the Spanish elderly population would on average prevent 43,664 influenza complicated
cases, 1111 hospitalisations, and 569 deaths (with a rVE = 34.6%) or 19,104 influenza
complicated cases, 486 hospitalisations, and 252 deaths (with a rVE = 13.9%). Addi-
tional details on the outcomes for the clinical events simulated are presented in Table
11. The incremental results for total costs and QALYs are shown in Table 12. Based
on the incremental results, the ICER for the scenario using an rVE = 34.6% was e2240
per QALY gained from the payer perspective, and from the societal perspective aQIV
was cost-saving; when using an rVE = 13.9%, the ICERs were e6694 and e3936 from
the payer and societal perspectives, respectively. Therefore, using either estimate of
relative-efficacy and from both perspectives, the results indicate that using aQIV as the
vaccination strategy for the elderly population in Spain is cost-effective compared to
QIVe. Table 13 shows the costs that the payer will incur for the vaccination of eligible
individuals in Spain according to the population structure, vaccine coverage, and vac-
cines’ prices. Direct and indirect costs are detailed in the Appendix 6.A (Tables 6.A.1
and 6.A.2, respectively). Finally, QALYs stratified by age and type of clinical event are
also presented in the Appendix 6.A (Table 6.A.3).

Results from the DSA are presented in Figure 2 as tornado charts displaying the
impact on the ICER of those parameters whose change caused the largest variations
from the base-case ICER (from the payer’s perspective). DSA results are presented for
both aQIV scenarios (i.e., for both estimations of rVE). Vaccine effectiveness, vaccine
cost, and coverage were the most influential parameters in the dynamic model. Since
aQIV is more effective than QIVe, a decrease of aQIV’s price makes it even more eco-
nomically attractive than QIVe. In contrast, an increase in QIVe’s price impacts the
cost-effectiveness analysis in the opposite way: since QIVe is less effective, increasing its
price makes it less economically justifiable. It should also be noted that even for the
scenarios with the largest variations in the ICERs, the value remained under the Spanish
WTP threshold (e25,000 per QALY gained).

Results from the PSA indicate that from the payer’s perspective, the probability
of aQIV being cost-effective compared with QIVe is 65% for the scenario using rVE =
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Age
Category

Medical Visits
without Complications

Medical Visits
with Complications

aQIV
rVE = 34.6%

aQIV
rVE = 13.9%

aQIV
rVE = 34.6%

aQIV
rVE = 13.9%

0–8 7253 3110 3015 1293

9–17 6964 3021 2089 906

18–64 8833 3847 18,529 8070

≥65 4221 1862 20,031 8835

Total 27,271 11,840 43,664 19,104

Age
Category

hospitalisations Deaths
aQIV

rVE = 34.6%
aQIV

rVE = 13.9%
aQIV

rVE = 34.6%
aQIV

rVE = 13.9%

0–8 124 53 1 1

9–17 57 25 1 1

18–64 338 147 32 14

≥65 592 261 535 236

Total 1111 486 569 252

Table 11: Clinical events prevented—aQIV vs. QIVe.
aQIV = adjuvanted quadrivalent influenza vaccine; QIVe = standard-dose quadrivalent
influenza vaccine.

Age
Category

Direct Medical
Costs (Thousands)

Indirect
Costs (Thousands)

QALYs

rVE
34.6%

rVE
13.9%

rVE
34.6%

rVE
13.9%

rVE
34.6%

rVE
13.9%

0–8 -e1497 -e642 -e1905 -e1023 112.8 64.9

9–17 -e1074 -e467 -e1294 -e828 109.8 63.4

18–64 -e2540 -e1109 -e13,507 -e5905 992.4 433.6

≥65 e19,224 e20,990 -e1103 -e487 5083.8 2242.6

Total e14,112 e18,773 -e17,808 -e8243 6298.7 2804.5

Table 12: Incremental costs and QALYs results aQIV vs. QIVe.
aQIV = adjuvanted quadrivalent influenza vaccine; QIVe = standard-dose quadrivalent
influenza vaccine; QALY = quality-adjusted life years; rVE = relative vaccine effective-
ness (aQIV vs. QIVe).

34.6%, and 52.4% for the scenario using rVE = 13.9%. Figure 3 shows the results from
the PSA as scatter plots (incremental QALYs versus incremental costs) from the payer
perspective. Because of the nonlinearities of the system the majority of the simulations
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Figure 2: Tornado diagrams for the ICER from the payer perspective. aQIV = adju-
vanted quadrivalent influenza vaccine; amb. = ambulatory; comp. = complications;
hosp. = hospitalisations; QIVe = standard-dose quadrivalent influenza vaccine; rVE =
relative vaccine effectiveness.

have a number of infected individuals lower than the mean.

Figure 3: Cost-effectiveness scatter plots—incremental QALYs versus incremental costs
(payer perspective). Note: dark blue represents cost-saving scenarios, the light blue sec-
tor represents results under e25,000/QALY; red represents results over e25,000/QALY;
aQIV = adjuvanted quadrivalent influenza vaccine; QALY = quality-adjusted life-years.
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Age Category
Administration

(Thousands)

Acquisition
(Thousands)

QIVe aQIV

0–8 e9227 e3379 e3379

9–17 e6048 e2215 e2215

18–64 e56,236 e20,595 e20,595

≥65 e165,850 e60,739 e83,117

Total e237,361 e86,929 e109,306

Table 13: Vaccine acquisition and administration costs.
aQIV = adjuvanted quadrivalent influenza vaccine; QIVe = standard-dose quadrivalent
influenza vaccine.

6.7 Discussion

Given that healthcare payers have limited resources to fund the reimbursement of new
healthcare interventions, including vaccination strategies against preventable infectious
diseases, cost-effectiveness analyses are needed to support decision making regarding
the use of these limited funding resources. Improvements in the effectiveness from new
healthcare interventions typically come accompanied with a price premium to acquire
these new interventions. From a payer’s perspective, it becomes critical to assess whether
the higher cost of a new technology is worth paying when compared with its benefits.
In most markets, new healthcare technologies undergo economic evaluations as one of
several regulatory steps to achieve reimbursement, and to support pricing and purchas-
ing decisions [245]. In particular, cost-effectiveness analyses are used regularly to assess
the value of new vaccines and vaccination strategies [210]. The WHO provides rec-
ommendations twice a year regarding the composition of the vaccines for the influenza
season, i.e., which virus strains should the influenza vaccines protect against [246]. Dif-
ferent vaccine types can then be selected matching the protection against particular
viral strains recommended by the WHO. These different vaccines will have a range of
effectiveness and be available at different prices, hence raising the question of which
vaccines should be preferred by a payer interested in getting the best possible value
from their investment, potentially stratifying the decision by subpopulations, e.g., by
age, or depending on the level of risk experienced. Even within the same class of vac-
cines (e.g., among quadrivalent vaccines), there will be different options to select from.
This analysis focused on replacing QIVe with aQIV in the Spanish elderly population,
making use of a dynamic transmission model that allowed accounting for indirect (herd)
protection across the entire Spanish population. A majority of published economic anal-
ysis reports adult vaccinations strategies to be cost-effective [247]. In alignment with
prior literature, results from the present study indicate that replacing QIVe with aQIV
in the Spanish elderly population is a cost-effective strategy. The cost-effectiveness re-
sult holds even when using a lower rVE (i.e., 13.9% vs. 34.6%) for aQIV. The lower
rVE was informed by published relative effectiveness outcomes that included different
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real world evidence influenza-related medical encounters outcomes, as complementary
to laboratory-confirmed influenza studies only. Although the acquisition cost of aQIV is
higher compared with QIVe (27% higher), the better effectiveness of aQIV (using esti-
mates from both meta-analyses) results in cost saving on disease management and better
clinical outcomes which translate into increased QALYs. The net effect of increased to-
tal costs accompanied by QALY gains results in ICERs well below the cost-effectiveness
threshold deemed to be appropriate in Spain (e25,000 per QALY gained). The elderly
population have a higher risk of experiencing the worse clinical outcomes derived from
influenza, hence offering elderly patients the most effective vaccine results in tangible
clinical and economic benefits. A key strength of the analysis was the use of a dynamic
model, making it possible to account for herd protection within the elderly group and
other age groups of the Spanish population (<65yrs). Vaccination against infectious
diseases has an indirect benefit on non-vaccinated individuals, a benefit that cannot be
captured by static models. In fact, using dynamic models is currently recommended as
the framework to be used for economic evaluations of vaccines [224]. Conducting the
analysis faced several limitations as well. First, although every attempt was made to
inform the model with data that was specific to the Spanish settings, this was not always
possible due to the paucity of data. This was the case for disease transmission rates,
where Italian data were used as a proxy; the viral strains circulating in both countries
were similar most seasons, however, which should increase the validity of the approach.
Italian data were also used to inform R0, and upon further examination, a rescaled
distribution of the Italian transmission rates was used to better match the number of
infections predicted by the model with published figures for Spain. Italian data were also
used to inform the rates of clinical events among patients with symptomatic influenza.
Second, a key model parameter, rVE, was subject to relatively high uncertainty as two
published meta-analyses proposed rather different estimates for rVE. Furthermore, the
meta-analyses used provided a comparison of aTIV vs. TIV that was extrapolated to
be used for aQIV; given that these two vaccines (aTIV and aQIV) have overlapping
compositions and undergo similar manufacturing processes, the extrapolation has been
deemed appropriate by the EMEA. Nonetheless, analysis using either estimation of rVE
resulted in aQIV being cost-effective (or cost saving) from both perspectives (payer and
societal), hence even using the more conservative estimation of relative effectiveness, the
conclusion is still that it is worth replacing QIVe with aQIV for the elderly population
in Spain. In spite of these limitations, the model clinical results were validated versus
relevant published results for Spain, hence increasing the model’s face validity. In fact,
results from the current analysis are aligned with prior analysis mentioned earlier that
were conducted for Spain in which aTIV was found to be cost-effective compared with
TIV [215, 216].

6.8 Conclusions

Considering the potential negative impacts on clinical outcomes and disease management
that influenza can have in the elderly population, and the benefits derived from the use of
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an influenza vaccine with better relative effectiveness, results for the analysis have shown
that aQIV represents an affordable and highly cost-effective alternative to vaccinate
the elderly in Spain. Results from these analyses should help inform regional decision
makers in Spain as they determine which vaccination strategies should be funded that
will provide the highest health outcomes for the older adult population.
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Appendix

6.A Tables

Age
Category

Medical Visits
without Complications (Thousands)

Medical Visits
with Complications (Thousands)

Hospitalisations
(Thousands)

GP Ambulatory and
Home Visits (Thousands)

aQIV
rVE = 34.6%

aQIV
rVE = 13.9%

aQIV
rVE = 34.6%

aQIV
rVE = 13.9%

aQIV
rVE = 34.6%

aQIV
rVE = 13.9%

aQIV
rVE = 34.6%

aQIV
rVE = 13.9%

0–8 -e23 -e10 -e311 -e133 -e421 -e180 -e742 -e318

9–17 -e22 -e10 -e220 -e96 -e193 -e85 -e638 -e277

18–64 -e28 -e12 -e338 -e147 -e1067 -e468 -e1106 -e482

≥65 -e14 -e6 -e362 -e160 -e1908 -e838 -e870 -e384

Total -e88 -e38 -e1232 -e536 -e3589 -e1570 -e3356 -e1460

Table 6.A.1: Total (population) incremental direct medical costs.
aQIV = adjuvanted quadrivalent influenza vaccine; GP = general practitioner; QIVe =
standard-dose quadrivalent influenza vaccine.

Age
Category

Due to
Deaths (Thousands)

Due to Workdays
Lost by Diseased Workers (Thousands)

Due to Workdays Lost by
Parents Assisting Diseased Children (Thousands)

aQIV
rVE = 34.6%

aQIV
rVE = 13.9%

aQIV
rVE = 34.6%

aQIV
rVE = 13.9%

aQIV
rVE = 34.6%

aQIV
rVE = 13.9%

0–8 -e361 -e361 e0 e0 -e1544 -e662

9–17 -e471 -e471 e0 e0 -e823 -e357

18–64 -e11,509 -e5035 -e14 -e6 e0 e0

≥65 -e1090 -e481 e0 e0 e0 e0

Total -e13,431 -e6348 -e14 -e6 -e2367 -e1019

Table 6.A.2: Total (population) incremental indirect costs (productivity losses).
aQIV = adjuvanted quadrivalent influenza vaccine; GP = general practitioner; QIVe =
standard-dose quadrivalent influenza vaccine.

Age Category
Influenza

without Complications
Influenza

with Complications
hospitalisations

Deaths
Avoided

aQIV
rVE = 34.6%

aQIV
rVE = 13.9%

aQIV
rVE = 34.6%

aQIV
rVE = 13.9%

aQIV
rVE = 34.6%

aQIV
rVE = 13.9%

aQIV
rVE = 34.6%

aQIV
rVE = 13.9%

0–8 60.1 25.8 22.6 9.7 1.1 0.5 29.0 29.0

9–17 65.7 28.5 15.7 6.8 0.5 0.2 27.9 27.9

18–64 146.8 63.9 138.7 60.4 3.0 1.3 703.8 307.9

≥65 61.4 27.1 150.2 66.3 5.3 2.3 4866.8 2146.9

Total 334.0 145.3 327.2 143.2 10.0 4.4 5627.5 2511.6

Table 6.A.3: Total (population) incremental quality-adjusted life years.
aQIV = adjuvanted quadrivalent influenza vaccine; GP = general practitioner; QIVe =
standard-dose quadrivalent influenza vaccine.
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Base
Case

Lower
Bound

Upper
Bound

Age
Category

At Risk
Influenza Coverage

Overall
Coverage

At Risk
Coverage

Overall
Coverage

At Risk
Coverage

Overall
Coverage

0–8 24.20% 4.86% 19.36% 3.89% 29.04% 5.83%

9–17 24.24% 5.18% 24.24% 5.18% 24.24% 5.18%

18–64 17.15% 7.29% 13.72% 5.84% 20.58% 8.75%

≥65 67.70% 67.70% 54.16% 54.16% 81.24% 81.24%

Table 6.A.4: Lower and upper bounds for vaccine coverage in DSA.

Base Case

Age
Category

H1N1 H3N2 B

QIVe
aQIV

(rVE = 34.6%)
AQIV

(rVE = 13.9%)
QIVe

aQIV
(rVE = 34.6%)

AQIV
(rVE = 13.9%)

QIVe
aQIV

(rVE = 34.6%)
AQIV

(rVE = 13.9%)

0.5–1 69.00% 69.00% 69.00% 43.00% 43.00% 43.00% 67.00% 67.00% 67.00%

2–6 69.00% 69.00% 69.00% 43.00% 43.00% 43.00% 67.00% 67.00% 67.00%

7–17 73.00% 73.00% 73.00% 35.00% 35.00% 35.00% 77.00% 77.00% 77.00%

18–64 73.00% 73.00% 73.00% 35.00% 35.00% 35.00% 77.00% 77.00% 77.00%

≥65 62.00% 75.20% 67.30% 24.00% 50.40% 34.60% 52.00% 68.70% 58.70%

Lower Bound

0.5–1 49.00% 49.00% 49.00% 28.00% 28.00% 28.00% 57.70% 57.70% 57.70%

2–6 49.00% 49.00% 49.00% 28.00% 28.00% 28.00% 57.70% 57.70% 57.70%

7–17 49.00% 49.00% 49.00% 28.00% 28.00% 28.00% 57.70% 57.70% 57.70%

18–64 52.00% 52.00% 52.00% 14.00% 14.00% 14.00% 18.00% 18.00% 18.00%

≥65 36.00% 62.76% 63.60% -6.00% 25.52% 27.19% 41.00% 52.96% 54.02%

Upper Bound

0.5–1 81.00% 81.00% 81.00% 55.00% 55.00% 55.00% 73.60% 73.60% 73.60%

2–6 81.00% 81.00% 81.00% 55.00% 55.00% 55.00% 73.60% 73.60% 73.60%

7–17 81.00% 81.00% 81.00% 55.00% 55.00% 55.00% 73.60% 73.60% 73.60%

18–64 84.00% 84.00% 84.00% 41.00% 41.00% 41.00% 94.00% 94.00% 94.00%

≥65 78.00% 87.08% 70.93% 45.00% 74.16% 41.86% 60.80% 83.68% 63.28%

Table 6.A.5: Lower and upper bounds for vaccine effectiveness in DSA.
aQIV = adjuvanted quadrivalent influenza vaccine; GP = general practitioner; QIVe =
standard-dose quadrivalent influenza vaccine.

PSA implementation

Using the base values for probability of complications and for costs, a linear regression
was developed for direct and indirect costs (excluding those of vaccination) and QALYs
as a function of the number of infections in the various age classes. The PSA was
then performed by varying each of these coefficients, sampling them from a gamma
distribution with the mean given by the estimated mean value and using a coefficient of
variation equal to 22% [225].

The transmission rates were varied according to the a posteriori distribution (beta)
estimated from the Italian data source informing the transmission rates [225].
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Age
Category

GP Visit
ER

Visit
Probability

of Complications
Probability

hospitalisations
Probability

of Death

Base Case

0–8 65.63% 3.04% 22.21% 4.14% 0.03%

9–17 57.63% 1.65% 15.09% 2.73% 0.01%

18–64 LR 32.03% 0.02% 29.98% 0.41% 0.15%

18–64 HR 32.03% 0.02% 55.33% 2.96% 0.19%

≥65 36.89% 0.02% 63.65% 2.96% 2.67%

Lower Bound

0–8 52.50% 2.43% 17.77% 3.31% 0.02%

9–17 46.10% 1.32% 12.07% 2.18% 0.01%

18–64 LR 25.62% 0.01% 23.99% 0.33% 0.12%

18–64 HR 25.62% 0.01% 44.26% 2.37% 0.15%

≥65 29.51% 0.01% 50.92% 2.37% 2.13%

Upper Bound

0–8 78.75% 3.65% 26.65% 4.97% 0.03%

9–17 69.15% 1.98% 18.11% 3.27% 0.02%

18–64 LR 38.43% 0.02% 35.98% 0.50% 0.18%

18–64 HR 38.43% 0.02% 66.39% 3.55% 0.23%

≥65 44.26% 0.02% 76.38% 3.55% 3.20%

Table 6.A.6: ER = emergency room; GP = general practitioner; HR = high risk; LR =
low risk.
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Base
Case

Lower
Bound

Upper
Bound

Cost QIVe per dose e9.50 e7.60 e11.40

Cost aQIV per dose e13.00 e10.40 e15.60

Vaccine administration cost e25.94 e20.75 e31.13

Cost flu without complication (all components: GP ambulatory, GP home, pharmaceutical costs, ER)

Cost GP visit at ambulatory (winter) e59.00 e47.20 e70.80

Cost GP visit at home (winter) e83.00 e66.40 e99.60

Cost pharmaceuticals e3.21 e2.57 e3.85

Cost ED visit per equivalent patient e183.00 e146.40 e219.60

Cost flu with ambulatory complications 0–17 years (URTI + LRTI)

URTI e59.00 e47.20 e70.80

LRTI e171.45 e137.16 e205.74

Costs flu with ambulatory complications ≥18 years (cost of all resources)

Antibiotic treatment (× 5 days) e15.00 e12.00 e18.00

Specialist visit e215.00 e172.00 e258.00

X-ray thorax e23.34 e18.67 e28.01

X-ray sinuses e23.34 e18.67 e28.01

X-ray others e23.34 e18.67 e28.01

Hematology e4.00 e3.20 e4.80

ECG e15.00 e12.00 e18.00

Blood analysis e5.00 e4.00 e6.00

Throat swab e18.00 e14.40 e21.60

Audiometry e62.00 e49.60 e74.40

hospitalisations costs (all conditions: URTI, pneumonia, COPD, bronchitis, cardiac)

URTI e2607.94 e2086.35 e3129.52

Pneumonia e3393.23 e2714.59 e4071.88

COPD e3277.45 e2621.96 e3932.94

Bronchitis e2507.91 e2006.33 e3009.49

Cardiac e3439.30 e2751.44 e4127.16

Table 6.A.7: Lower and upper bounds for unit resource costs in DSA.
aQIV = adjuvanted quadrivalent influenza vaccine; COPD = chronic obstructive res-
piratory diseases; ECG = electrocardiogram; ER = emergency room; GP = general
practitioner; LRTI = lower respiratory tract infection; QIVe = standard-dose quadriva-
lent influenza vaccine; URTI = upper respiratory tract infection.

Age Category Base Case Lower Bound Upper Bound

0–8 0.95 0.76 1.00

9–17 0.95 0.76 1.00

18–64 0.93 0.75 1.00

≥65 0.87 0.70 1.00

Table 6.A.8: Lower and upper bounds for reference utilities (healthy individuals).
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Influenza-Related
Complication

Base
Case

Lower
Bound

Upper
Bound

Influenza symptoms
without medical visit

0.005 0.0040 0.0060

Influenza symptoms
with medical visit

0.006 0.0048 0.0072

Influenza symptoms
with complications

0.0075 0.0060 0.0090

Influenza symptoms with
complications and hospitalisations

0.0090 0.0072 0.0108

Table 6.A.9: Lower and upper bounds for influenza-related complications disutilities.

Lower R0 Mean R0 Upper R0

B 1.0881 1.0968 1.1055

H1N1 1.0029 1.0548 1.1330

H3N2 0.9734 1.0439 1.1416

Table 6.A.10: Lower and upper bounds for R0 (QIVe).

Variable
Direct
Costs

Indirect
Costs

QALYs

Infections in
age-classes 0–8

110.47 245.86 7.91

Infections in
age-classes 9–17

77.64 146.52 6.48

Infections in
age-classes 18–64

55.03 346.52 21.44

Infections in
age-classes ≥65

100.27 135.04 161.45

Table 6.A.11: Linear regression coefficients.
QALY = quality-adjusted life years.
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7. Conclusions and future
directions

The thesis collects most of the research I carried out throughout my PhD, and hence
covers various topics of mathematical models applied to epidemiology.

The thesis is divided into two main parts: the first, corresponding to Chapters 2
and 3, regards the global stability analysis of epidemic models which include the class
of asymptomatic individuals.

The second part, corresponding to Chapter 4-6, concerns the analysis of heteroge-
neous humans interactions in epidemics, mainly through numerical simulations and using
real data.

In the first part of the thesis, the role of asymptomatic individuals during an epi-
demics is studied using a SAIRS-type epidemic model. Both the cases of a single popula-
tion and a network of different communities are considered. The rigorous proof of global
stability analysis of the equilibria, in particular for the endemic equilibrium, has proven
to be a challenging problem. Indeed, the main results in this context regard the rigorous
global stability analysis of the endemic equilibrium, and the most general result is still
not a completely comprehensive one. These results are obtained by using Lyapunov
theory, a geometric approach which generalises the Poincaré-Bendixson theorem and, in
the case of network, a graph-theoretic approaches to find Lyapunov functions. However,
the use of these mathematical tools resulted in an artificial additional hypothesis on the
parameters, which stopped us from providing a general statement concerning only the
Basic Reproduction Number.

The second part of the thesis is itself divided in two parts.

First, a stochastic SIR model on a scale-free network is proposed to determine the
probability of having a minor epidemic in a network, i.e. an epidemic with a low number
of infectious that ends with the elimination of the disease. The most important tool used
in this work is a specialised and computationally less expensive version of the Gillespie
algorithm. This algorithm proved to be remarkably efficient, and we plan on generalising
it to more complex compartmental models, to describe more realistic infectious diseases.

Then, a cost-effectiveness analysis of paediatric influenza vaccination in Italy is per-
formed based on a multi-group SEIR epidemic model divided by age classes. This
approach has been also adapted to study the case of elderly influenza vaccination in
Spain.
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As a future directions, it would be interesting to incorporate more realistic features
into the models considered in this thesis. First, Chapters 2 and 3 leave some open
problems on the global asymptotic stability of the endemic equilibrium. The most general
analytical result is achieve with artificial restrictions on the parameters, even though
extensive numerical simulations seem to indicate that these could be relaxed. Models
which include asymptomatic infections are useful to adapt classic control strategies,
e.g. quarantine of infectious individuals, also in presence of diseases which present an
asymptomatic stage, and we believe these deserve a much more extensive role in the
field of mathematical modelling of infectious diseases. Remarkably, both for the single
population and the network case, the SAIRS model does not show a periodic behaviour,
despite its complexity. This clashes with the observation of real-world diseases which
periodically exhibit peaks of infections. In this context, other elements could be included
in further generalisations to increase realism, e.g. the vital dynamics of the population,
in order to find a minimal ODE model in which limit cycles appear. Models which
include asymptomatic infections could be also studied from the stochastic point of view
on networks: the Gillespie algorithm presented in Chapter 4 can be modified in order to
include the asymptomatic stage, and a heterogeneous infectivity between symptomatic
and asymptomatic individuals.

Another interesting generalisation could be considering other compartments. First,
one can think to distinguish between the loss of immunity after a recovery o after a
vaccination; in this framework, it can be useful to add a “Vaccinated” compartment
in the model. Moreover, a distinction between asymptomatic and pre-symptomatic
individuals can be achieved by including the “Exposed” compartment. This last model
could be used to generalise the multi-age SEIR model used for the cost-effectiveness
analysis of influenza.

We leave these, and other interesting research questions, as future works.
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[142] M. Boguñá, R. Pastor-Satorras, and A. Vespignani. Cut-offs and finite size effects
in scale-free networks. European Physical Journal B, 38:205–209, 2004.

[143] M. Newman. Networks: An Introduction. Oxford University Press, 2010.

[144] R. van der Hofstad. Random Graphs and Complex Networks, volume 1. Cambridge
University Press, 2016.

[145] R.N. Thompson, C.A. Gilligan, and N.J. Cunniffe. Will an outbreak exceed avail-
able resources for control? estimating the risk from invading pathogens using
practical definitions of a severe epidemic. J.R.Soc.Interface, 17, 2020.

[146] M.J. Keeling and P. Rohani. Modeling infectious diseases in humans and animals.
Princeton university press, 2011.

[147] M. Iannelli and A. Pugliese. An introduction to mathematical population dynamics.
Springer, 2014.

[148] M.J. Keeling and B.T. Grenfell. Individual-based perspectives on R0. Journal of
theoretical biology, 203(1):51–61, 2000.

135



[149] D. Flanders and D.G. Kleinbaum. Basic models for disease occurrence in epidemi-
ology. International Journal of Epidemiology, 1995.

[150] T.E. Harris. The Theory of Branching Processes. Springer-Verlag, Berlin, 1963.

[151] C.J. Mode. Multitype branching processes.Theory and applications. American
Elsevier Pub.Co., New York, 1971.

[152] P. Windridge. The extinctiontime of a subcritical branching process related to the
SIR epidemic on a random graph. Journal of Applied Probability, 2018.

[153] M. Piraveenan, M. Prokopenko, and L. Hossain. Percolation centrality: Quantify-
ing graph-theoretic impact of nodes during percolation in networks. PloS one, 8
(1):e53095, 2013.

[154] Ministero della Salute. Circolare “prevenzione e controllo dell’influenza: rac-
comandazioni per la stagione 2021-2022”, last access: 6 agosto 2021. URL
https://www.trovanorme.salute.gov.it/norme/renderNormsanPdf?anno=

2021&codLeg=79647&parte=1%20&serie=null.

[155] P. MacDonald. Extension of influenza immunization program to children in
england–future plans. Human Vaccines & Immunotherapeutics, 12(10):2707–2708,
2016.

[156] Ministero della Salute. Circolare “prevenzione e controllo dell’influenza: rac-
comandazioni per la stagione 2020-2021”, last access: 6 agosto 2021. URL
https://www.trovanorme.salute.gov.it/norme/renderNormsanPdf?anno=

2020&codLeg=74451&parte=1%20&serie=null.

[157] K.G.G Mohn, I. Smith, H. Sjursen, and R.J. Cox. Immune responses after live
attenuated influenza vaccination. Human vaccines & immunotherapeutics, 14(3):
571–578, 2018.

[158] Ministero della Salute. Faq - influenza e vaccinazione antinfluenzale, last
access: 2 agosto 2021. URL https://www.salute.gov.it/portale/p5_

1_2.jsp?id=103#:~:text=Vaccino%20vivo%20attenuato&text=I%20ceppi%

20influenzali%20contenuti%20nel,che%20nel%20tratto%20respiratorio%

20inferiore.

[159] Public Health England. The national childhood flu immu-
nisation programme 2020 to 2021, last access: 2 agosto
2021. URL https://www.gov.uk/government/publications/

childhood-flu-programme-qa-for-healthcare-professionals.

[160] Ministero della Salute. Trasmissione nota aifa alla regione lombardia: chiarimenti
sull’utilizzo del vaccino fluenz tetra nella campagna vaccinale 2020/21.protocollo
0038627-26/11/2020-dgpre-mds-p, last access: 2 agosto 2021.

136

https://www.trovanorme.salute.gov.it/ norme/renderNormsanPdf?anno=2021&codLeg=79647&parte=1%20&serie=null
https://www.trovanorme.salute.gov.it/ norme/renderNormsanPdf?anno=2021&codLeg=79647&parte=1%20&serie=null
https://www.trovanorme.salute.gov.it/ norme/renderNormsanPdf?anno=2020&codLeg=74451&parte=1%20&serie=null
https://www.trovanorme.salute.gov.it/ norme/renderNormsanPdf?anno=2020&codLeg=74451&parte=1%20&serie=null
https://www.salute.gov. it/portale/p5_1_2.jsp?id=103#:~:text=Vaccino%20vivo%20attenuato&text=I%20ceppi%20influenzali%20contenuti%20nel,che%20nel%20tratto%20respiratorio%20inferiore
https://www.salute.gov. it/portale/p5_1_2.jsp?id=103#:~:text=Vaccino%20vivo%20attenuato&text=I%20ceppi%20influenzali%20contenuti%20nel,che%20nel%20tratto%20respiratorio%20inferiore
https://www.salute.gov. it/portale/p5_1_2.jsp?id=103#:~:text=Vaccino%20vivo%20attenuato&text=I%20ceppi%20influenzali%20contenuti%20nel,che%20nel%20tratto%20respiratorio%20inferiore
https://www.salute.gov. it/portale/p5_1_2.jsp?id=103#:~:text=Vaccino%20vivo%20attenuato&text=I%20ceppi%20influenzali%20contenuti%20nel,che%20nel%20tratto%20respiratorio%20inferiore
https://www.gov.uk/government/publications/childhood-flu-programme-qa-for-healthcare-professionals
https://www.gov.uk/government/publications/childhood-flu-programme-qa-for-healthcare-professionals


[161] S.L. Block, S.L. Toback, T. Yi, and C.S. Ambrose. Efficacy of a single dose of
live attenuated influenza vaccine in previously unvaccinated children: a post hoc
analysis of three studies of children aged 2 to 6 years. Clinical therapeutics, 31
(10):2140–2147, 2009.

[162] H.B. Neto, C.K. Farhat, M.W. Tregnaghi, S.A. Madhi, A. Razmpour, G. Palladino,
M.G. Small, W.C. Gruber, B.D. Forrest, D153-P504 LAIV Study Group, et al.
Efficacy and safety of 1 and 2 doses of live attenuated influenza vaccine in vaccine-
naive children. The Pediatric infectious disease journal, 28(5):365–371, 2009.

[163] Ministero della Salute. Prevenzione e controllo dell’influenza, last access:
2 agosto 2021. URL http://www.salute.gov.it/portale/influenza/

dettaglioContenutiInfluenza.jsp?lingua=italiano&id=685&area=

influenza&menu=vuoto.

[164] C. Rizzo, A. Bella, C. Viboud, L. Simonsen, M.A. Miller, M.C. Rota, S. Salmaso,
and M.L. Ciofi Degli Atti. Trends for influenza-related deaths during pandemic
and epidemic seasons, italy, 1969–2001. Emerging infectious diseases, 13(5):694,
2007.

[165] A. Rosano, A. Bella, F. Gesualdo, A. Acampora, P. Pezzotti, S. Marchetti, W. Ric-
ciardi, and C. Rizzo. Investigating the impact of influenza on excess mortality in
all ages in italy during recent seasons (2013/14–2016/17 seasons). International
Journal of Infectious Diseases, 88:127–134, 2019.

[166] M.C. Weinstein, B. O’Brien, J. Hornberger, J. Jackson, M. Johannesson, C. Mc-
Cabe, and B.R. Luce. Principles of good practice for decision analytic modeling
in health-care evaluation: Report of the ispor task force on good research prac-
tices—modeling studies. Value in health, 6(1):9–17, 2003.

[167] F.A. Sonnenberg and J.R. Beck. Markov models in medical decision making: a
practical guide. Medical decision making, 13(4):322–338, 1993.

[168] A. Briggs and M. Sculpher. An introduction to markov modelling for economic
evaluation. Pharmacoeconomics, 13(4):397–409, 1998.

[169] Mohan V Bala and Josephine A Mauskopf. Optimal assignment of treatments to
health states using a markov decision model. Pharmacoeconomics, 24(4):345–354,
2006.

[170] R.M. Anderson and R.M. May. Vaccination against rubella and measles: quanti-
tative investigations of different policies. Epidemiology & Infection, 90(2):259–325,
1983.

[171] M.J. Keeling and J.V. Ross. On methods for studying stochastic disease dynamics.
Journal of the Royal Society Interface, 5(19):171–181, 2008.

137

http://www.salute.gov.it/portale/influenza/dettaglioContenutiInfluenza.jsp?lingua=italiano&id=685&area =influenza&menu=vuoto
http://www.salute.gov.it/portale/influenza/dettaglioContenutiInfluenza.jsp?lingua=italiano&id=685&area =influenza&menu=vuoto
http://www.salute.gov.it/portale/influenza/dettaglioContenutiInfluenza.jsp?lingua=italiano&id=685&area =influenza&menu=vuoto


[172] D. Husereau, M. Drummond, S. Petrou, C. Carswell, D. Moher, D. Greenberg,
F. Augustovski, A.H. Briggs, J. Mauskopf, and E. Loder. Consolidated health
economic evaluation reporting standards (cheers) statement. International journal
of technology assessment in health care, 29(2):117–122, 2013.
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[212] A. Garćıa, R. Ortiz de Lejarazu, J. Reina, D. Callejo, J. Cuervo, and
R. Morano Larragueta. Cost–effectiveness analysis of quadrivalent influenza vac-
cine in spain. Human Vaccines & Immunotherapeutics, 12(9):2269–2277, 2016.

[213] F.G. Sandmann, E. van Leeuwen, S. Bernard-Stoecklin, I. Casado, J. Castilla,
L. Domegan, A. Gherasim, M. Hooiveld, I. Kislaya, A. Larrauri, et al. Health
and economic impact of seasonal influenza mass vaccination strategies in european
settings: A mathematical modelling and cost-effectiveness analysis. Vaccine, 40
(9):1306–1315, 2022.

[214] J. Ruiz-Aragón, R. Gani, S. Márquez, and P. Alvarez. Estimated cost-effectiveness
and burden of disease associated with quadrivalent cell-based and egg-based in-
fluenza vaccines in spain. Human Vaccines & Immunotherapeutics, 16(9):2238–
2244, 2020.

141

https://www.who.int/news-room/facts-in-pictures/detail/immunization
https://www.who.int/news-room/facts-in-pictures/detail/immunization
https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal)
https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal)
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