We consider a class of biological networks where the nodes are associated with first-order linear dynamics and their interactions, which can be either activating or inhibitory, are modelled by nonlinear Michaelis–Menten functions (i.e., Hill functions with unitary Hill coefficient), possibly in the presence of external constant inputs. We show that all the systems belonging to this class admit at most one strictly positive equilibrium, which is stable; this property is structural, i.e., it holds for any possible choice of the parameter values, and topology-independent, i.e., it holds for any possible topology of the interaction network. When the network is strongly connected, the strictly positive equilibrium is the only equilibrium of the system if and only if the network includes either at least one inhibiting function, or a strictly positive external input (otherwise, the zero vector is an equilibrium). The proposed stability results hold also for more general classes of interaction functions, and even in the presence of arbitrary delays in the interactions.

Michaelis–Menten networks are structurally stable / Blanchini, Franco; Breda, Dimitri; Giordano, Giulia; Liessi, Davide. - In: AUTOMATICA. - ISSN 0005-1098. - 147:(2023), p. 110683. [10.1016/j.automatica.2022.110683]

Michaelis–Menten networks are structurally stable

Giordano, Giulia
Penultimo
;
2023-01-01

Abstract

We consider a class of biological networks where the nodes are associated with first-order linear dynamics and their interactions, which can be either activating or inhibitory, are modelled by nonlinear Michaelis–Menten functions (i.e., Hill functions with unitary Hill coefficient), possibly in the presence of external constant inputs. We show that all the systems belonging to this class admit at most one strictly positive equilibrium, which is stable; this property is structural, i.e., it holds for any possible choice of the parameter values, and topology-independent, i.e., it holds for any possible topology of the interaction network. When the network is strongly connected, the strictly positive equilibrium is the only equilibrium of the system if and only if the network includes either at least one inhibiting function, or a strictly positive external input (otherwise, the zero vector is an equilibrium). The proposed stability results hold also for more general classes of interaction functions, and even in the presence of arbitrary delays in the interactions.
2023
Blanchini, Franco; Breda, Dimitri; Giordano, Giulia; Liessi, Davide
Michaelis–Menten networks are structurally stable / Blanchini, Franco; Breda, Dimitri; Giordano, Giulia; Liessi, Davide. - In: AUTOMATICA. - ISSN 0005-1098. - 147:(2023), p. 110683. [10.1016/j.automatica.2022.110683]
File in questo prodotto:
File Dimensione Formato  
J062_2023_Automatica_MM.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.37 MB
Formato Adobe PDF
1.37 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/364267
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact