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Abstract

We consider a class of biological networks where the nodes are associated with first-order linear dynamics and their interactions, which can
be either activating or inhibitory, are modelled by nonlinear Michaelis-Menten functions (i.e., Hill functions with unitary Hill coefficient),
possibly in the presence of external constant inputs. We show that all the systems belonging to this class admit at most one strictly
positive equilibrium, which is stable; this property is structural, i.e., it holds for any possible choice of the parameter values, and topology-
independent, i.e., it holds for any possible topology of the interaction network. When the network is strongly connected, the strictly
positive equilibrium is the only equilibrium of the system if and only if the network includes either at least one inhibiting function, or
a strictly positive external input (otherwise, the zero vector is an equilibrium). The proposed stability results hold also for more general
classes of interaction functions, and even in the presence of arbitrary delays in the interactions.
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1 Introduction

Why are biological networks so remarkably well-behaved,
notwithstanding their huge complexity? The networked sys-
tems observed in nature at all scales, ranging from genetic
and metabolic networks to ecological networks, are typically
composed of myriads of interactions; still, they exhibit an
astounding robustness (Cosentino and Bates 2011; Del Vec-
chio and Murray 2014) in spite of the uncertainties and the
variability of parameter values, induced for instance by en-
vironmental fluctuations.

The structural analysis of biological systems (see for in-
stance the survey by Blanchini and Giordano 2021 and the
references therein) aims at answering such questions by as-
sessing properties that hold structurally, i.e., regardless of
parameter values, for a whole, qualitatively specified, fam-
ily of systems. The structural stability analysis of chemi-
cal reaction networks, which dates back to the early seven-
ties (Horn 1973), has been approached by means of Lya-
punov techniques and D-stability theory by Clarke (1980)
and Reder (1988), leading to remarkable results. The well
renowned deficiency zero theorem by Feinberg (1987) em-
ploys entropy as a Lyapunov function to prove that weakly
reversible chemical reaction networks governed by mass-
action kinetics have a unique locally stable positive equilib-
rium in each stoichiometric compatibility class if their defi-

ciency (an integer that can be immediately computed based
on the network structure) is equal to zero; see the book by
Feinberg (2019) for a thorough overview of structural sta-
bility results for classes of chemical reaction networks, fo-
cused on the mass-action kinetics case. Nonlinear compart-
mental systems are structurally stable, because they admit
the 1-norm as a structural Lyapunov function (Maeda et al.
1978). More in general, the structural stability of biochem-
ical networks with arbitrary reaction rates has been studied
by adopting piecewise linear (Blanchini and Giordano 2014,
2017) as well as piecewise linear in rates (Al-Radhawi and
Angeli 2016; Al-Radhawi et al. 2020) structural Lyapunov
functions.

Establishing the structural stability of a family of systems is
very challenging. Here, we focus on a commonly encoun-
tered type of biological networks: activation-inhibition net-
works, where an arbitrary number of species, or components,
interact pairwise through either activating or inhibitory ac-
tions. This is, for instance, the case of gene regulatory net-
works (Chen and Aihara 2002; Chen et al. 2010; Chesi and
Hung 2008; Del Vecchio and Murray 2014), where gene ex-
pression levels are regulated through DNA, RNA and pro-
teins, often by means of kinetic mechanisms for activation
and inhibition based on enzymatic reactions.

Consider a regulatory network involving n key players,
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whose concentrations at time t are denoted by the real non-
negative variables xi(t), i = 1, . . . ,n. The time evolution of
the species concentrations can be described by the system
of ordinary differential equations

ẋi =
n

∑
j=1

hi j(x j)+ui, i = 1, . . . ,n, (1)

where the function hi j describes how the concentration of
species j affects the temporal evolution of the concentra-
tion of species i, while ui ≥ 0 are constant external inputs.
The expression of hi j is typically derived based on fun-
damental principles of chemical kinetics (such as the law
of mass action, see Feinberg 2019, resulting in polynomial
functions, hi j(x j) = µi jxm

j , m ∈ N, µi j ∈ R+) or enzymatic
kinetics (resulting in rational functions): Michaelis-Menten
functions or, typically in the presence of cooperativity, Hill
functions (Alon 2020; Cao 2011; Del Vecchio and Murray
2014; Gómez-Gardeñes et al. 2005b; Krishnan et al. 2020;
Youseph et al. 2015). Inhibiting (non-increasing) and acti-
vating (non-decreasing) Hill functions respectively take the
form

g(x j;β , p) :=
1

1+
(

x j
β

)p , (2)

f (xk;δ , p) :=

( xk
δ

)p

1+
( xk

δ

)p , (3)

where p is the Hill coefficient, which quantifies the ultrasen-
sitivity of the response curve (for p → ∞, Hill functions tend
to ideal threshold functions) and may describe cooperativ-
ity of binding, while the threshold β (respectively, δ ) is the
value at which the function g(x j;β , p) (resp., f (xk;δ , p)) is
equal to half of its initial (resp., final) value. Higher values
of p correspond to sharper thresholds, as shown in Fig. 1; the
most commonly used values of p range from 1 to 4 (Alon,
2020, Section 2.3.3). The functions in (2)-(3) with p = 1
are known as Michaelis-Menten functions. Their expression
is achieved through an approximation based on time-scale
separation (Gunawardena 2012, 2014; Palsson 1987; Wong
et al. 2018). Although sometimes questioned (Belgacem and
Gouze 2013; Kim and Tyson 2020; Naka 2020), Michaelis-
Menten functions are still very broadly used and accepted,
and they are considered in several contributions on the sta-
bility analysis of biochemical systems (Angeli and Sontag
2008; Chen and Aihara 2002; Chen et al. 2010; Chesi and
Hung 2008; Rao 2018; Sueyoshi and Naka 2017).

Our main result is that any network of interacting elements
(see e.g. Fig. 2), with linear dissipative terms and interactions
modelled by Michaelis-Menten functions, is stable for any
possible value of the parameters regardless of the topology of
the interaction network; we refer to this property as topology-
independent structural stability. In particular, we prove that:

• Michaelis-Menten networks admit at most one positive

0 10 20 30 40 50 60 70 80 90 100
x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p = 10
p = 6
p = 3
p = 2
p = 1 (Michaelis-Menten)

g(x;-; p) = 1

1+( x
- )

p

0 10 20 30 40 50 60 70 80 90 100
x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p = 10
p = 6
p = 3
p = 2
p = 1 (Michaelis-Menten)

f(x; /; p) =
( x
/ )

p

1+( x
/ )

p

Figure 1. Left: inhibiting Hill functions of the form (2) with β = 20
and different values of p. Right: activating Hill functions of the
form (3) with δ = 15 and different values of p.

equilibrium (i.e., with all positive components);
• this positive equilibrium (if it exists) is stable;
• if the network is strongly connected (i.e., any node

is connected by an oriented path to any other node)
and non-degenerate (i.e., there is either at least one
inhibition interaction or a nonzero external constant
input), the positive equilibrium does exist and there are
no other equilibria;

• degenerate networks admit an equilibrium at zero,
which can be unstable; if it is unstable, then a positive
stable equilibrium exists.

We show that the results hold even in the presence of linear
positive off-diagonal terms, or of arbitrary delays in the in-
teraction functions, and also when generalised vector-type
Michaelis-Menten functions are considered.

We conclude with some examples taken from the literature
on systems biology and a discussion on the nature and the
limitations of our results.

Figure 2. Portion of a generic interaction network with activating
(pointed-arrow arcs) and inhibitory (hammer-headed arcs) interac-
tions among the key players (nodes). Negative self-loops at each
node, denoting self-inhibition of each species, are not visualised.

2 Model Description and Preliminaries

Consider a class of interaction networks of the form (1)
with both inhibitory and activating interactions (Alon 2020;
Del Vecchio and Murray 2014; Youseph et al. 2015):

ẋi(t) =−µixi(t)+ ∑
j∈Ri

αi jg(x j(t);βi j)

+ ∑
k∈Ai

γik f (xk(t);δik)+ui, i = 1, . . . ,n,
(4)
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where non-increasing (inhibitory) functions g and non-
decreasing (activating) functions f have the Michaelis-
Menten form:

g(x j;β ) := g(x j;β ,1) =
1

1+ x j
β

, (5)

f (xk;δ ) := f (xk;δ ,1) =
xk
δ

1+ xk
δ

, (6)

while the term −µixi(t), µi > 0, denotes self-inhibition of
each species. The set Ri indexes all the species that inhibit
species i (repressors of i) and the set Ai indexes all the
species that activate species i (activators of i); we assume
that Ri ∩Ai = /0, i ̸∈ Ai and i ̸∈ Ri.

The coefficients αi j > 0 and γik > 0 quantify the interaction
intensity, while ui ≥ 0 are constant external input flows.

We denote by x(t) the vector whose components are xi(t), the
state variables of the equations in (4), and by x̄ an equilibrium
vector, with components x̄i.

The system in (4) can be associated with a graph, such as
the one in Fig. 2, where:

• each node corresponds to a variable xi;
• each arc corresponds to an interaction, which can be

either activating or inhibitory. An activating interac-
tion is represented by a pointed-arrow arc, while an in-
hibitory interaction is represented by a hammer-headed
arc. Although not explicitly drawn, self-inhibitions due
to degradation terms are assumed to be always present
for all variables.

Example 1 The system

ṁ1(t) =−µ1m1(t)+
α11

1+ p1(t)
β11

+
α1N

1+ pN(t)
β1N

+u1,

ṁi(t) =−µimi(t)+
αii

1+ pi(t)
βii

+
γi,i−1

pi−1(t)
δi,i−1

1+ pi−1(t)
δi,i−1

, i = 2, . . . ,N,

ṗ j(t) =−µ j p j(t)+
γ j j

m j(t)
δ j j

1+ m j(t)
δ j j

, j = 1,2, . . . ,N,

can model a chain of N mRNA-protein subsystems, in which
each protein activates the production of the next one, while
the production of the first protein is negatively fed back by
the concentration of the Nth protein. The system is associ-
ated with the graph in Fig. 3, with n= 2N nodes correspond-
ing to the variables mi and pi, i = 1, . . . ,N, and the presence
of both activating and inhibitory arcs. How does a system
of this type behave? We know that a long enough negative
loop involving N mRNA-protein subsystems can yield an os-
cillatory behaviour. May the resulting oscillations drive the

system to instability? In principle, the situation could be-
come even worse if also explicit delays were present (as they
typically are) in the process. Surprisingly, we will show that
this network admits a single stable equilibrium structurally
(i.e., no matter how the parameter values are chosen) and
regardless of the length N of the chain. This is no longer
true if we replace Michaelis-Menten interactions with Hill
interactions.

m m p m p
1 221p N N

u
1

Figure 3. A chain of mRNA-protein subsystems: pointed-arrow
arcs are activating, hammer-headed arcs are inhibitory.

We always assume nonnegative initial conditions x(0)≥ 0,
componentwise, so that x(t)≥ 0 for all t ≥ 0 (system (4) is
positive: if xi = 0, then ẋi ≥ 0).

We introduce the following definitions.

Definition 1 (Strong-connectedness.) The networked sys-
tem (4) is strongly connected if the associated graph is
strongly connected, i.e., for each ordered pair of nodes (i, j)
there exists an oriented path that starts from node i and
reaches node j through activating or inhibitory arcs.

Definition 2 (Non-degeneracy.) The networked system (4)
is non-degenerate if it includes at least one nonzero inhibit-
ing function g, or if it includes at least one strictly positive
external input ui > 0. It is degenerate otherwise.

3 Structural Stability of Michaelis-Menten Networks

In this section, we show that a strongly connected networked
system of the form (4) can admit exclusively equilibria that
are strictly positive if and only if it is non-degenerate (Propo-
sition 1); a degenerate networked system always admits the
trivial equilibrium at zero. All positive equilibria are asymp-
totically stable (Proposition 2). In the non-degenerate case,
the equilibrium is unique, hence the system is monostable
(Proposition 3). In the degenerate case, if the equilibrium at
zero is unstable, then there exists a unique positive stable
equilibrium (Proposition 4).

We start by determining a closed hyper-rectangle that is
positively invariant for the networked system in (4); this
property ensures the existence of an equilibrium point.

Lemma 1 (Existence of an equilibrium.) The set

S :=
{

x : 0 ≤ xi ≤ x̂+i :=
∑ j∈Ri αi j +∑k∈Ai γik +ui

µi
, ∀i

}
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is positively invariant for the networked system (4), i.e.,
x(t0) ∈S implies x(t) ∈S for t ≥ t0. Therefore, the system
admits at least one equilibrium point.

Proof If xi is at its lower bound, xi = 0, then ẋi ≥ 0. If xi is at
its upper bound, xi = x̂+i , then, since all Michaelis-Menten
functions are bounded as 0 ≤ g ≤ 1 and 0 ≤ f ≤ 1, from (4)
we have that

ẋi ≤−µix̂+i + ∑
k∈Ri

αi j + ∑
k∈Ak

γik +ui = 0. (7)

Since the two inequalities are verified for all i, S is pos-
itively invariant (Abate et al. 2009; Blanchini and Miani
2015).

Positive invariance of the compact set S implies that S
includes an equilibrium point (Richeson and Wiseman 2002,
2004; Srzednicki 1985), thus ensuring existence of at least
one equilibrium point. ■

Under strong connectedness assumptions, non-degeneracy
of the system is equivalent to the fact that all its equilibria
are strictly positive.

Proposition 1 (Strictly positive equilibria.) Consider the
networked system (4) and assume it is strongly connected.
Then, all non-negative equilibria are strictly positive if and
only if (4) is non-degenerate. Moreover, all non-negative
equilibria necessarily lie in S .

Proof If the network is degenerate, x̄i = 0 ∀i is an equilib-
rium, because f (0;δik) = 0. The zero equilibrium is in S .

Conversely, if the network is non-degenerate, then there ex-
ists one node, say xi, whose equation includes a positive
input ui > 0 or an inhibiting function g(x j;βi j) > 0. The
guaranteed presence of a positive term at the equilibrium,
which can be either Ki = αi jg(x̄ j;βi j) or Ki = ui, implies
that x̄i > 0, because

0 =−µix̄i +Ki +non-negative terms ≥−µix̄i +Ki,

hence x̄i ≥ Ki/µi > 0. Possibly rearranging the indices, let
us label this node as node 1. Now, by contradiction, assume
that the steady-state sign pattern is x̄p > 0 for p= 1, . . . ,k−1
and x̄q = 0 for q = k, . . . ,n, for some k ∈ {2, . . . ,n}. Being
the network strongly connected, one of the k−1 nodes in the
former subset, say node h, with h< k, is connected to at least
one of the nodes in the latter subset, say node ℓ, with ℓ≥ k.
Hence, there is an inhibitory steady-state interaction κ =
αℓhg(x̄h;βℓh) > 0 or an activating steady-state interaction
κ = γℓh f (x̄h;δℓh)> 0, and therefore

0 =−µℓx̄ℓ+κ +non-negative terms,

meaning that x̄ℓ > 0, a contradiction. Hence, x̄i > 0 ∀i.

Finally, this positive equilibrium lies in S , because, if we
assume xi > x̂+i , then the strict inequality (7) holds and guar-
antees ẋi < 0; therefore, no equilibrium can exist out of S ,
since the equilibrium condition requires ẋi = 0. ■

Before investigating uniqueness of the equilibrium, we prove
that any positive equilibrium is stable.

To this aim, we introduce a normalisation with respect to
the equilibrium value x̄i and replace all variables xi by their
normalised value zi := xi/x̄i. The equilibrium values in the
new variables are z̄i = 1. This transformation just requires
scaling all coefficients as ᾱi j := αi j/x̄i, β̄i j := βi j/x̄ j, γ̄ik :=
γik/x̄i and δ̄ik := δik/x̄k, to have the same type of equations
for d

dt (xi(t)/x̄i) = żi(t):

żi(t) =−µizi(t)+ ∑
j∈Ri

ᾱi jg(z j(t); β̄i j)

+ ∑
k∈Ai

γ̄ik f (zk(t); δ̄ik)+ ūi, i = 1, . . . ,n,
(8)

where ūi := ui/x̄i. To keep the notation simple, we drop all
the bars on the coefficients and we assume, without restric-
tion, that the equilibrium point is x̄ = [1 1 . . .1]⊤ =: x̄1̄.

In order to prove our next result, we need to consider the
derivatives of the functions g and f computed at x̄1̄:

g′(1;βi j) =−g(1;βi j)

1
βi j

1+ 1
βi j

, (9)

f ′(1;δik) = f (1;δik)
1

1+ 1
δik

. (10)

The derivative computed at 1 is strictly less, in absolute
value, than the function itself evaluated at 1. This notewor-
thy property allows us to prove the stability of all positive
equilibria of the system, by showing that the correspond-
ing Jacobian matrix is strictly row-diagonally dominant with
negative diagonal entries, and hence it is Hurwitz.

Proposition 2 (Stability.) Each positive equilibrium of the
networked system (4) is locally asymptotically stable.

Proof Considering the variable normalisation, the system
Jacobian evaluated at the generic positive equilibrium is

J =


−µ1 a12 . . . a1n

a21 −µ2 . . . a2n
...

...
. . .

...

an1 an2 . . . −µn

 ,

where each term ai j is equal to: zero, if species j has no
effect on species i; αi j times the term (9), if species j is a
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repressor of species i; γi j times a term of the form (10) with
k replaced by j, if species j is an activator of species i.

Matrix J is row-diagonally dominant, namely,

µi > ∑
j∈Ri

|ai j|+ ∑
k∈Ai

|aik|,

because, adopting expressions (9) and (10),

−µi + ∑
j∈Ri

|ai j|+ ∑
k∈Ai

|aik|

=−µi + ∑
j∈Ri

αi jg(1;βi j)

1
βi j

1+ 1
βi j

+ ∑
k∈Ai

γik f (1;δik)
1

1+ 1
δik

<−µi + ∑
j∈Ri

αi jg(1;βi j)+ ∑
k∈Ai

γik f (1;δik)+ui = 0, ∀i,

where the inequality holds because the fractions are strictly
less than 1, while the subsequent equality is the equilibrium
condition computed at x̄1̄. Considering that any strictly di-
agonally dominant matrix with negative diagonal entries is
Hurwitz, as it can be shown by directly applying the first
Gershgorin circle theorem, concludes the proof. ■

Remark 1 (Structural Lyapunov function.) Since the Ja-
cobian is strictly row-diagonally dominant, as shown in the
proof of Proposition 2, no matter how the system parame-
ters are chosen, the system (4) structurally admits the poly-
hedral norm V (x) = ∥x∥∞ as a local (but not global, as we
discuss later, in Section 5.3) Lyapunov function (Blanchini
and Miani 2015).

We can now provide conditions to have a unique equilibrium.

Proposition 3 (Uniqueness of the equilibrium.) If system
(4) is strongly connected and non-degenerate, then it has a
unique equilibrium, which is positive.

Proof Proposition 1 guarantees that all (non-negative) equi-
libria are necessarily in the set S and, in view of the non-
degeneracy assumption, x̄i > 0 ∀i. On the other hand, in view
of Proposition 2, all positive equilibria (in S ) are locally
asymptotically stable. To show uniqueness, assume by con-
tradiction that there are r equilibrium points, e1,e2, . . . ,er.
According to Brouwer’s degree theory (Lloyd 1978; see also
Hofbauer 1990, Theorem 2), we have that

r

∑
k=1

signdet [−J(ek)] = 1, (11)

where J(ek) is the Jacobian computed at the equilib-
rium ek. Being J(ek) Hurwitz, det [−J(ek)] > 0, hence
signdet [−J(ek)] = 1. Then, from (11), we conclude that it
must be r = 1, and hence the equilibrium is unique. ■

Therefore, for a strongly-connected non-degenerate system
of the form (4), we have monostability. The unique equilib-

rium in Proposition 3 is positive, in view of Proposition 1,
and asymptotically stable, in view of Proposition 2.

When the network is degenerate, namely, there are no ex-
ternal inputs and all the interactions are activating, x̄0̄ :=
[0 0 . . .0]⊤ is an equilibrium point, as shown in the proof
of Proposition 1. Relying on the theory of monotone sys-
tems (Hirsch and Smith 2006; Smith 1988; Sontag 2007),
we can assess the stability properties of the zero equilibrium,
as well as the existence and stability of other equilibria: the
zero equilibrium is either attractive, and there are no other
equilibria, or repulsive, and there is also one positive, and
stable, equilibrium.

Proposition 4 (Degenerate systems.) Consider a strongly
connected and degenerate networked system (4) and its zero
equilibrium x̄0̄. The following mutually exclusive cases are
the only possible ones:

• x̄0̄ is the only equilibrium and is asymptotically stable;
• x̄0̄ is unstable and there exists a unique nontrivial equi-

librium x̄, which is strictly positive and locally asymp-
totically stable.

Proof In the absence of inhibitory interactions, the system is
monotone: its Jacobian, computed at any point, is a Metzler
matrix (i.e., it has non-negative off-diagonal entries). As-
sume that x̄0̄ is the only equilibrium; then, since the system
solutions are bounded within a compact set (viz. set S de-
fined in Lemma 1) including x̄0̄, it must be stable (Hirsch and
Smith 2006; Sontag 2007). Conversely, if x̄0̄ is not the only
equilibrium, then there exists another equilibrium x̄ with
some non-zero components. Since the network is strongly
connected, we can show that any nonzero equilibrium must
have all nonzero components by reasoning as in the proof
of Proposition 1. Therefore, x̄ is strictly positive, and hence
it is locally asymptotically stable in view of Proposition 2.
The equilibrium x̄ is also unique as a nontrivial equilibrium.
Indeed, a second one would be again strictly positive and lo-
cally asymptotically stable, which would imply the existence
of a third nontrivial and unstable equilibrium, between the
two component-wise (Smith, 1988, Proposition 2.9, p. 98),
which is impossible in view, again, of Proposition 2. For the
same reason x̄0̄ is unstable. ■

All the presented results are structural, because they hold
regardless of the values of the parameters µ , α , β , γ , δ in the
system. They are also topology-independent, because they
hold regardless of the topology and of the size (number of
nodes/arcs) of the networked system.

Remark 2 (More general classes of functions.) Can f and
g in system (4) belong to more general classes of functions,
not necessarily of the Michaelis-Menten type? It can be
proven that our results still hold if we consider, for instance,
activating functions such that f ′(x) ≤ f (x)/x and inhibit-
ing functions such that −g′(x)≤ g(x)/x. For example, these
conditions are satisfied by functions (2)-(3) whenever p ≤ 1,
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while they are not satisfied when p > 1 because, in this lat-
ter case, the functions have an inflection point, hence they
are neither convex (when decreasing) nor concave (when
increasing).

Remark 3 (The Hill case: A counterexample.) The con-
sidered functions f and g in system (4) are special cases of
(2)-(3), with p = 1. This is a key aspect in our results. For
functions (2)-(3) with p > 1, no structural stability result
can be achieved in general. The simplest counterexample is
provided by the second order system with p = 2

ẋ1 =−x1 +
5

1+(2x2)2 , ẋ2 =−x2 +
5

1+(2x1)2 ,

having an unstable equilibrium at [1 1]⊤: the Jacobian eval-
uated at this point,

J =
[

−1 −8/5
−8/5 −1

]
,

has a positive real eigenvalue. This system is bistable; it has
three positive equilibria, two of which are stable: [x̄H x̄L]

⊤

and [x̄L x̄H ]
⊤, where x̄H ≈ 4.9495 and x̄L ≈ 0.0505.

Analogous counterexamples can be found with p > 1 and
real.
Hence, in the absence of sharp thresholds (p≤ 1) stability is
guaranteed regardless of the network topology and param-
eters, while in the presence of sharper thresholds (p > 1)
stability does depend on the parameters in general and in-
stability may well arise.

4 Extensions to More General Models

In this section we consider several generalisations of the
model (4), for which our results still hold.

4.1 Michaelis-Menten networks with positive linear and
mixed terms

A first generalisation of the model (4) includes, besides in-
creasing and decreasing Michaelis-Menten functions, func-
tions that are the ratio of two first-order polynomials:

ℓ(x;α,γ,δ ) :=
α + γx/δ

1+ x/δ
=

α

1+ x/δ
+

γx/δ

1+ x/δ
. (12)

We can see function ℓ as a mixed Michaelis-Menten function,
because it can be decomposed as the sum of a decreasing
and an increasing Michaelis-Menten function: therefore, it
is useful to capture situations when a system variable has
two incoherent effects (one inhibitory, the other activating)
on another variable. Considering mixed Michaelis-Menten
functions amounts to assuming that the sets Ri and Ai in
(4) are not disjoint. This generalisation does not alter the
diagonal dominance of the system Jacobian, and hence all
our results remain valid.

We can also consider a more general class of models that
includes linear positive terms, as follows:

ẋi(t) =−µixi(t)+ ∑
j∈Ri

αi jg(x j(t);βi j)

+ ∑
k∈Ai

γik f (xk(t);δik)+ ∑
h∈Li

φihxh +ui,
(13)

i = 1, . . . ,n, where the set Li (i ̸∈ Li) indexes all the species
that linearly activate species i, with a coefficient φih > 0.

For this new model, we have no guarantee that an equilib-
rium exists. However, a structural condition for the bound-
edness of the solutions, and hence for the existence of an
equilibrium, is that the graph formed by the nodes and the
arcs associated with the linear positive terms has no cycles
(Blanchini and Franco 2014). In general, to ensure the ex-
istence of an equilibrium, we need the next condition.

Proposition 5 (Existence of an equilibrium.) Write system
(13) as

ẋ = Φx+N(x), (14)
where Φx is the linear part and N(x) includes all the non-
linear terms. If the Metzler matrix Φ is Hurwitz, then sys-
tem (13) has bounded solutions, and therefore it admits an
equilibrium.

Proof The result follows immediately since N(x) is a glob-
ally bounded term for x ≥ 0.

The existence of an equilibrium can be concluded from
boundedness of solutions in view of the results by Richeson
and Wiseman (2002, 2004); Srzednicki (1985). ■

The condition of Φ being Hurwitz in Proposition 5 is “almost
necessary” for stability: if the linear system is unstable (Φ
is not Hurwitz), then the system trajectories diverge.

Proposition 6 (Uniqueness and stability of the equi-
librium.) If system (14) is strongly connected and non-
degenerate and Φ is Hurwitz, then there is a unique equi-
librium, which is strictly positive and asymptotically stable.

Proof We first prove that any positive equilibrium is locally
asymptotically stable. We normalise the variables so that the
positive equilibrium has all components equal to 1. There-
fore, at the equilibrium,

µi = ∑
j∈Ri

αi j g(1;βi j)︸ ︷︷ ︸
≥|g′|

+ ∑
k∈Ai

γik f (1;δik)︸ ︷︷ ︸
≥| f ′|

+ ∑
h∈Li

φih +ui

≥ ∑
j∈Ri

αi j|g′(1;βi j)|+ ∑
k∈Ai

γik| f ′(1;δik)|+ ∑
h∈Li

φih

≥ ∑
j ̸=i

|ai j|, i = 1, . . . ,n,

where ai j, i ̸= j, denotes an off-diagonal entry of the Jaco-
bian matrix at steady state, as in the proof of Proposition 2.
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Hence, the Jacobian at the equilibrium is row-diagonally
dominant, with negative diagonal entries, which ensures lo-
cal asymptotic stability. The positivity and uniqueness of
the equilibrium can be proven exactly as in the proofs of
Proposition 1 and Proposition 3. ■

The degenerate case, also for system (13) in the presence of
positive linear terms, can be dealt with along the same lines
as in Proposition 4.

4.2 Michaelis-Menten networks with explicit delays

An important property of Michaelis-Menten networks is that
structural stability can be ensured even in the presence of
delays in the interactions, thus modifying system (4) as

ẋi(t) =−µixi(t)+ ∑
j∈Ri

αi jg(x j(t − τi j);βi j)

+ ∑
k∈Ai

γik f (xk(t − τik);δik)+ui, i = 1, . . . ,n,
(15)

where functions f and g are of the same type as in (4), but
explicit delay times τi j > 0 and τik > 0 are included.

Under strong-connectedness and non-degeneracy assump-
tions, it can be shown that the positive equilibrium, which
is invariant with respect to the delay values, remains stable.

Indeed, the linearised system around the equilibrium is

ẏi(t) =−µiyi(t)+∑
j ̸=i

ai jy j(t − τi j), i = 1, . . . ,n, (16)

where yi = xi − x̄i, and its characteristic equation reads

det[sI − J(s)] = 0, (17)

with

J(s) :=


−µ1 a12e−τ12s . . . a1ne−τ1ns

a21e−τ21s −µ2 . . . a2ne−τ2ns

...
...

. . .
...

an1e−τn1s an2e−τn2s . . . −µn

 . (18)

The asymptotic stability of the linearised system (16) is en-
sured if all the roots of (17) have strictly negative real part
(Hofbauer and So 2000). This is indeed the case, as we show
next.

Proposition 7 (Stability with delays.) The roots of (17)
have strictly negative real part.

Proof This is a special case of the results by Hofbauer and
So (2000). We sketch the proof for the sake of completeness.

Let (17) be satisfied for s = λ and let y ∈ Cn \{0} be such
that

sy = J(s)y. (19)
By contradiction, assume that ℜ(λ ) ≥ 0. This implies
|e−τi jλ | ≤ 1. Let yi be the largest in modulus (necessarily
nonzero) of all the components of y. Divide all terms of the
ith equation in (19) by yi ̸= 0 to get the equivalent equation

(λ +µi) = ∑
j ̸=i

ai j
y j

yi
e−τi jλ .

Then,

|λ +µi|=

∣∣∣∣∣∑j ̸=i
ai j

y j

yi
e−τi jλ

∣∣∣∣∣≤ ∑
j ̸=i

∣∣∣∣ai j
y j

yi
e−τi jλ

∣∣∣∣
≤ ∑

j ̸=i

∣∣ai j
∣∣ ∣∣∣∣y j

yi

∣∣∣∣ ∣∣∣e−τi jλ
∣∣∣≤ ∑

j ̸=i

∣∣ai j
∣∣< µi,

which implies that the roots λ are in the interior of a circle
centered in −µi with radius µi, contradicting ℜ(λ )≥ 0. ■

It is worth emphasising that our results still hold if delays
are introduced in the more general model (13), where also
positive linear terms are included.

4.3 Generalised Michaelis-Menten functions

Our local stability results still hold true if we consider gener-
alised Michaelis-Menten functions (Boccaletti and al. 2006;
Gómez-Gardeñes et al. 2005a,b):

g(x1,x2, . . . ;β1,β2, . . .) :=
1

1+∑ j
x j
β j

,

f (x1,x2, . . . ;δ1,δ2, . . .) :=
∑k

xk
δk

1+∑k
xk
δk

.

(20)

With this generalisation, the class of systems becomes

ẋi(t) =−µixi(t)+ ∑
j∈Ri

αi jG(w( j))+ ∑
k∈Ai

γikF(w(k))+ui

(21)
where

G(w) =
1

1+w
and F(w) =

w
1+w

,

and where we denote by w( j) the weighted sum of variables

w( j) :=
n

∑
h=1

θ jhxh.

The coefficients θ can be either θ jh = 0, or θ jh = 1/β jh, or
θ jh = 1/δ jh where β jh and δ jh are the thresholds of suitable

7



Michaelis-Menten functions. We always assume θii = 0. The
sets Ri and Ai change their original meaning and now index
variables w( j) (and no longer individual species x j).

Any positive equilibrium can be rescaled as x̄1̄ = [1 1 . . .1]⊤
without restriction, so as to get

w̄( j) =
n

∑
h=1

θ jh

at the equilibrium. To prove the stability of the equilibrium,
we show that the Jacobian is still diagonally dominant. The
equilibrium condition is

0 = ẋi =−µi + ∑
j∈Ri

αi jG(w̄( j))+ ∑
k∈Ai

γikF(w̄(k))+ui.

Consider all nonzero partial derivatives of function G at the
equilibrium, i.e.,

∂ (αi jG(w( j)))

∂xm

∣∣∣∣∣
w( j)=w̄( j)

= αi j
∂G

(
∑

n
h=1 θ jhxh

)
∂xm

∣∣∣∣∣
xh=x̄h

=

αi j

∂

(
1

1+w( j)

)
∂w( j)

∣∣∣∣∣∣
w( j)=w̄( j)

θ jm =−
αi j

(1+ w̄( j))2
θ jm,

and sum their absolute values (change their sign, since they
are all negative):

n

∑
m=1

αi j

(1+ w̄( j))2
θ jm = αi jG(w̄( j))

n

∑
m=1

θ jmG(w̄( j)) =

αi jG(w̄( j))
n

∑
m=1

θ jm

1+∑
n
m=1 θ jm

= αi jG(w̄( j))
∑

n
m=1 θ jm

1+∑
n
m=1 θ jm

< αi jG(w̄( j)).

Now consider all nonzero partial derivatives of function F
at the equilibrium, i.e.,

∂ (γikF(w(k)))

∂xm

∣∣∣∣∣
w(k)=w̄(k)

= γik
∂F (∑n

h=1 θkhxh)

∂xm

∣∣∣∣
xh=x̄h

=

γik

∂

(
w(k)

1+w(k)

)
∂w(k)

∣∣∣∣∣∣
w(k)=w̄(k)

θkm =+
γik

(1+ w̄(k))2
θkm,

and sum their absolute values (take them as they are, since
they are all positive):

n

∑
m=1

γik

(1+ w̄(k))2
θkm = γik

∑
n
m=1 θkm

(1+ w̄(k))2
= γik

w̄(k)

(1+ w̄(k))2

= γikF(w̄(k))
1

1+ w̄(k)
< γikF(w̄(k)).

Now consider the sum of the absolute values of all nonzero
partial derivatives in the ith row:

n

∑
c=1, c̸=i

|aic|< ∑
j∈Ri

αi jG(w̄( j))+ ∑
k∈Ai

γikF(w̄(k))= µi−ui ≤ µi,

where the equality holds in view of the equilibrium condi-
tion, thus showing row-diagonal dominance. This ensures
that all our results hold in this generalised case as well.

5 Examples and Discussion

In this section, we analyse some examples taken from the
systems biology literature and then we discuss our results,
their scope and their limitations.

5.1 Examples of biological systems

Example 2 (Delayed negative-feedback loop.) The system

ẋ1(t) =
α1n

1+ xn/β1n
−µ1x1(t)

ẋ2(t) = φ1x1(t)−µ2x2(t)
...

ẋn(t) = φn−1xn−1(t − τ)−µnxn(t)

generalises the biological model of testosterone dynamics
presented in Section 7.6, p. 246 by Murray (2002), for which
n = 3. In the case n = 3, its stability has been proven by
DasGupta et al. (2007); Enciso and Sontag (2004). The
generalised model falls into the class we are considering:
it is a strongly connected and non-degenerate Michaelis-
Menten network that includes positive linear terms and de-
lays. Hence we can confirm those stability results and ex-
tend their validity to any n ≥ 3 (and any choice of the pa-
rameters). Indeed, the linear part of the system is triangular
(lower bidiagonal) and is Hurwitz, as is required by Propo-
sition 6. It is worth stressing that stability holds for any n as
long as the term in the equation of x1 is a Michaelis-Menten
function (i.e., a first-order Hill function). When a higher or-
der Hill function is adopted, persistent oscillations cannot
be excluded.

Example 3 (Generalised repressilator.) Consider the loop
of N subsystems of the form

ẋi−1(t) = gi−1,i−2(xi−2(t))−µi−1xi−1(t)
ẋi(t) = φi,i−1xi−1(t)−µixi(t), i = 2,4, . . . ,2N,

where i−2 := 2N when i = 2 and all functions gi−1,i−2 are
decreasing Hill functions: gi−1,i−2(xi−2) =

αi−1,i−2
1+(xi−2/βi−1,i−2)p .

If the number N of subsystems is even, then we have
a positive-feedback loop; while, if N is odd, we have a
negative-feedback loop. For N = 3, the system corresponds
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to the well-studied repressilator (Del Vecchio and Murray,
2014, Section 5.4), which is known to give rise to oscil-
lations for suitable choices of the parameter values, when
p > 1. However, as long as p = 1 (Michaelis-Menten case),
our results rule out undamped oscillations and guarantee
structural stability of the unique equilibrium, for all pos-
sible parameter values, even when delays are introduced,
regardless of the number N of subsystems.

Example 4 (Network of mRNAs and proteins.) Consider
the generic network formed by mRNA-protein production
elements described by Chen and Aihara (2002):

ṁ(t) = H(p(t − τp))−Λm(t)
ṗ(t) = K(m(t − τm))−Σp(t),

where the vectors m = [m1, . . . ,mN ] and p = [p1, . . . , pN ] re-
spectively stack mRNA and protein concentrations, the diag-
onal matrices Λ and Σ include the degradation rates respec-
tively for mRNAs and proteins, while the vectors τm and τp
include all the time delays for mRNAs and proteins respec-
tively. The components of the vector function K are nonlin-
ear activation terms Ki(mi) =

(mi/δi)
ki

1+(mi/δi)
ki

(the Jacobian of K
is a diagonal matrix), since in the translation process each
protein is assumed to be associated with a single mRNA,
while mRNA transcription is typically regulated (activated
or repressed) by multiple proteins and therefore the nonlin-
ear components of the vector function H are the sum of Hill
functions:

Hi(p) = ∑
j

hi j(p j),

where hi j is the inhibitory or activating regulation of the
transcription of mRNA i due to protein j. Chen and Aihara
(2002) perform a local stability analysis for this class of sys-
tems under suitable assumptions. Our results ensure that, as
long as ki = 1 for all i and all functions hi j are Michaelis-
Menten functions, the system enjoys structural topology-
independent stability: it admits a unique equilibrium, which
is positive and asymptotically stable, regardless of the pa-
rameter values and of the topology of the interaction network
(as long as it is strongly connected and non-degenerate).

Example 5 (Aggregates of monotone subsystems.) So far,
we have considered networked models where each node cor-
responds to a single variable of the system. However, in
many cases, a node stands for a complex entity, which is a
whole subsystem. An interesting case is that of a network
that interconnects stable input-output monotone subsystems
(Blanchini et al. 2015, 2018) of the form

ż(k) = F(k)z(k)+Gu(k), y(k) = Hz(k), (22)

where F(k) are Hurwitz Metzler matrices, while G and H
are nonnegative input and output vector matrices. Assume
that an arbitrary number of systems having this form are
interconnected by inhibitory or activating interactions of the

Michaelis-Menten type:

u(k) = ∑
j∈Ri

αi jg(y( j)(t);βi j)+ ∑
k∈Ai

γik f (y(k)(t);δik), (23)

depending on the outputs of the other subsystems. If the sys-
tem is strongly connected and non-degenerate, we claim that
the interconnections preserve stability (as long as they do
not include positive linear terms), regardless of the network
topology and of the values of the system parameters.

In fact, for the whole aggregated system, the linear part is
Hurwitz, because it is associated with a block diagonal ma-
trix including as diagonal blocks the submatrices F(k), which
are Hurwitz by assumption. Then, Proposition 5 ensures the
existence of an equilibrium. Under non-degeneracy assump-
tions, such an equilibrium is positive and stable, in view of
Proposition 6 and the results of Section 4.3. Indeed, by sub-
stituting the output y(k), as in (22), into the expression (23),
we get exactly the generalised Michaelis-Menten functions
introduced in Section 4.3.

5.2 Michaelis-Menten self-degradation terms

Throughout the paper, we have assumed that the self-
degradation terms have the linear form −µxi. Can we
replace them by Michaelis Menten functions −µ

xi
1+xi/νi

?

First of all we notice that, in this case, an equilibrium may
not exist in general. When a single positive equilibrium does
exist, it may not be stable, unless the parameters νi are large
enough (and hence the Michaelis-Menten self-degradation
term becomes sufficiently close to a linear self-degradation
term). For instance, consider the negative-feedback loop

ẋi =− µxi/ν

1+ xi/ν
+

α

1+ xi−1/β
,

with i = 1,2, . . . ,n, n odd (where i = 0 means i = n), where
we assume that all the coefficients have the same value in
all the equations. This system admits a single equilibrium,
which we may assume is [1 1 . . . 1]⊤. For ν > 0 and small,
such an equilibrium can be unstable. For instance, in the
case n = 3, the system Jacobian is

J(α,β ,µ,ν) =


− µν

(1+ν)2 0 − αβ

(1+β )2

− αβ

(1+β )2 − µν

(1+ν)2 0

0 − αβ

(1+β )2 − µν

(1+ν)2

 .

Take α = β = 1, ν = 1/4 and pick µ = 5/8 to satisfy

µ/ν

1+1/ν
=

α

1+1/β
=

1
2
,

so that [1 1 1]⊤ is an equilibrium. Then, the equilibrium
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is unstable: the Jacobian has eigenvalues with positive real
part.

5.3 Local versus global

Our results rely on the property that the system Jacobian
is row-diagonally dominant at the equilibrium. A row-
diagonally dominant linear system admits the ∞-norm,
∥ · ∥∞, as a Lyapunov function (Willems 1976). Indeed, as
observed in Remark 1, the ∞-norm is a structural local Lya-
punov function for the considered systems. Then a natural
question is whether the ∞-norm is also a global Lyapunov
function (for any non-negative initial condition); unfortu-
nately, this is not the case in general. For instance, for the
planar system

ẋ1 =−µx1 +
α

1+ x2
β

, ẋ2 =−µx2 +
α

1+ x1
β

, (24)

with α = 1, β = 1/2 and µ = 1/3, Fig. 4 shows that the
function ∥ · ∥∞ decreases only locally, close to the equilib-
rium [1 1]⊤, but not in the whole positive orthant.

Other classes of weighted p-norms or entropy functions
could be adopted for the linearised system, as shown by
Willems (1976), but it is unclear whether these can be used
to prove global stability. Still, after intensive numerical ex-
periments, convergence has always been globally satisfied
with no exceptions. However, no proofs are available so far:
global stability is an open problem. Interestingly, also the
deficiency zero theorem guarantees the existence of a sin-
gle positive locally stable equilibrium, and also in that case
global stability is an open research question in general.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Figure 4. The norm ∥ · ∥∞ is not a global Lyapunov function for
(24). The system trajectories are shown in blue and the level sets
of the ∞-norm, centred at the equilibrium [1 1]⊤, are shown in red.

6 Conclusions

We have shown that Michaelis-Menten networks, in which
the interactions among nodes are governed by first-order Hill

functions, are topology-independent structurally stable un-
der strong connectedness and non-degeneracy assumptions:
they admit a single positive equilibrium, which is locally
stable, regardless of parameter values and regardless of the
network topology.

While our results are extremely general as far as the parame-
ter values and the network topology are concerned, they are
very specific as far as the Hill coefficient p is concerned, be-
cause it must be equal to 1: our results hold exclusively for
networks with Michaelis-Menten interactions. Trivial coun-
terexamples show that for p > 1, i.e., for generic Hill inter-
actions of higher order, no structural result can be proven.

Future research directions, besides the investigation of
global stability, concern stability conditions, in the presence
of suitable assumptions on the topology and the parameters,
for larger Hill coefficients p.
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Birkhäuser, Basel, second edition.

10



Blanchini, F. & Franco, E. (2014). Structural analysis of
biological networks, in: A Systems Theoretic Approach
to Systems and Synthetic Biology I: Models and System
Characterizations, pp. 47–71.

Blanchini, F. & Giordano, G. (2014). Piecewise-linear Lya-
punov functions for structural stability of biochemical net-
works. Automatica, 50(10), 2482–2493.

Blanchini, F. & Giordano, G. (2017). Polyhedral Lyapunov
functions structurally ensure global asymptotic stability
of dynamical networks iff the Jacobian is non-singular.
Automatica, 86(12), 183-191.

Blanchini, F., Franco, E., & Giordano, G. (2015). Structural
conditions for oscillations and multistationarity in aggre-
gate monotone systems. Proc. 54th IEEE Conference on
Decision and Control, pp. 609-614.

Blanchini, F., Cuba Samaniego, C., Franco, E., & Giordano,
G. (2018). Aggregates of Monotonic Step Response sys-
tems: a structural classification. IEEE Trans. Control Net-
work Systems - Special Issue on Approaches to Control
Biological and Biologically Inspired Networks, 5(2), 782–
792.

Blanchini, F. & Giordano, G. (2021). Structural analysis in
biology: a control theoretic approach. Automatica, 126(4),
109376.

Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. & Hwang,
D. U. (2006). Complex networks: Structure and dynamics.
Physics Reports, 424(4-5), 175–308.

Cao, J. (2011). Michaelis-Menten equation and detailed bal-
ance in enzymatic networks. J. Phys. Chem. B, 115(18),
5493–5498.

Chen, L. & Aihara, K. (2002). Stability of genetic regulatory
networks with time delay. IEEE Transactions on Circuits
and Systems I: Fundamental Theory and Applications,
49(5), 602–608.

Chen, L., Wang, R., Li, C., & Aihara, K. (2010). Modeling
Biomolecular Networks in Cells. Springer.

Chesi, G., & Hung, Y. (2008). Stability analysis of uncer-
tain genetic sum regulatory networks. Automatica 44(9),
2298–2305.

Clarke, B. L. (1980). Stability of Complex Reaction Net-
works. In Advances in Chemical Physics (eds I. Prigogine
& S. A. Rice).

Cosentino, C., & Bates, D. G. (2011) Feedback Control in
Systems Biology. Taylor & Francis.

DasGupta, B., Enciso, G. A., Sontag, E. D., & Zhang, Y.
(2007). Algorithmic and complexity results for decompo-
sitions of biological networks into monotone subsystems.
Biosystems, 90(1), 161-178.

Del Vecchio, D., & Murray, R.M. (2014). Biomolecular
Feedback Systems. Princeton University Press.

Enciso, G. A. & Sontag, E. D. (2004). On the stability of a
model of testosterone dynamics. Journal of Mathematical
Biology, 49(6), 627–634.

Feinberg, M. (2019). Foundations of Chemical Reaction Net-
work Theory, Springer.

Feinberg, M. (1987). Chemical reaction network structure
and the stability of complex isothermal reactors: I. the
deficiency zero and deficiency one theorems. Chem. Eng.
Sci., 42(10), 2229–2268.
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