This paper highlights the extraordinarily rapid spread of SARS-CoV-2 loads in wastewater that during the Omicron wave in December 2021-February 2022, compared with the profiles acquired in 2020-21 with 410 samples from two wastewater treatment plants (Trento+suburbs, 132,500 inhabitants). Monitoring of SARS-CoV-2 in wastewater focused on: (i) 3 samplings/week and analysis, (ii) normalization to calculate genomic units (GU) inh-1 d-1; (iii) calculation of a 7-day moving average to smooth daily fluctuations; (iv) comparison with the 'current active cases'/100,000 inh progressively affected by the mass vaccination. The time profiles of SARS-CoV-2 in wastewater matched the waves of active cases. In February-April 2021, a viral load of 1.0E+07 GU inh-1 d -1 corresponded to 700 active cases/100,000 inh. In July-September 2021, although the low current active cases, sewage revealed an appreciable SARS-CoV-2 circulation (in this period 2.2E+07 GU inh-1 d-1 corresponded to 90 active cases/100,000 inh). Omicron was not detected in wastewater until mid-December 2021. The Omicron spread caused a 5-6 fold increase of the viral load in two weeks, reaching the highest peak (2.0-2.2E+08 GU inh-1 d-1 and 4500 active cases/100,000 inh) during the pandemic. In this period, wastewater surveillance anticipated epidemiological data by about 6 days. In winter 2021-22, despite the 4-7 times higher viral loads in wastewater, hospitalizations were 4 times lower than in winter 2020-21 due to the vaccination coverage >80%. The Omicron wave demonstrated that SARS-CoV-2 monitoring of wastewater anticipated epidemiological data, confirming its importance in long-term surveillance.
The Wave of the SARS-CoV-2 Omicron Variant Resulted in a Rapid Spike and Decline as Highlighted by Municipal Wastewater Surveillance / Cutrupi, Francesca; Cadonna, Maria; Manara, Serena; Postinghel, Mattia; La Rosa, Giuseppina; Suffredini, Elisabetta; Foladori, Paola. - In: ENVIRONMENTAL TECHNOLOGY & INNOVATION. - ISSN 2352-1864. - 28:102667(2022), pp. 1-14. [10.1016/j.eti.2022.102667]
The Wave of the SARS-CoV-2 Omicron Variant Resulted in a Rapid Spike and Decline as Highlighted by Municipal Wastewater Surveillance
Cutrupi, Francesca;Manara, Serena;Foladori, Paola
2022-01-01
Abstract
This paper highlights the extraordinarily rapid spread of SARS-CoV-2 loads in wastewater that during the Omicron wave in December 2021-February 2022, compared with the profiles acquired in 2020-21 with 410 samples from two wastewater treatment plants (Trento+suburbs, 132,500 inhabitants). Monitoring of SARS-CoV-2 in wastewater focused on: (i) 3 samplings/week and analysis, (ii) normalization to calculate genomic units (GU) inh-1 d-1; (iii) calculation of a 7-day moving average to smooth daily fluctuations; (iv) comparison with the 'current active cases'/100,000 inh progressively affected by the mass vaccination. The time profiles of SARS-CoV-2 in wastewater matched the waves of active cases. In February-April 2021, a viral load of 1.0E+07 GU inh-1 d -1 corresponded to 700 active cases/100,000 inh. In July-September 2021, although the low current active cases, sewage revealed an appreciable SARS-CoV-2 circulation (in this period 2.2E+07 GU inh-1 d-1 corresponded to 90 active cases/100,000 inh). Omicron was not detected in wastewater until mid-December 2021. The Omicron spread caused a 5-6 fold increase of the viral load in two weeks, reaching the highest peak (2.0-2.2E+08 GU inh-1 d-1 and 4500 active cases/100,000 inh) during the pandemic. In this period, wastewater surveillance anticipated epidemiological data by about 6 days. In winter 2021-22, despite the 4-7 times higher viral loads in wastewater, hospitalizations were 4 times lower than in winter 2020-21 due to the vaccination coverage >80%. The Omicron wave demonstrated that SARS-CoV-2 monitoring of wastewater anticipated epidemiological data, confirming its importance in long-term surveillance.File | Dimensione | Formato | |
---|---|---|---|
Cutrupi et al 2022.pdf
accesso aperto
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Creative commons
Dimensione
2.13 MB
Formato
Adobe PDF
|
2.13 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione