We introduce and analyse a fully discrete approximation for a mathematical model for the solidification and liquidation of materials of negligible specific heat. The model is a two-sided Mullins–Sekerka problem. The discretization uses finite elements in space and an independent parameterization of the moving free boundary. We prove unconditional stability and exact volume conservation for the introduced scheme. Several numerical simulations, including for nearly crystalline surface energies, demonstrate the practicality and accuracy of the presented numerical method.
A structure preserving front tracking finite element method for the Mullins-Sekerka problem / Nürnberg, Robert. - In: JOURNAL OF NUMERICAL MATHEMATICS. - ISSN 1570-2820. - 31:2(2023), pp. 137-155. [10.1515/jnma-2021-0131]
A structure preserving front tracking finite element method for the Mullins-Sekerka problem
Nürnberg, Robert
2023-01-01
Abstract
We introduce and analyse a fully discrete approximation for a mathematical model for the solidification and liquidation of materials of negligible specific heat. The model is a two-sided Mullins–Sekerka problem. The discretization uses finite elements in space and an independent parameterization of the moving free boundary. We prove unconditional stability and exact volume conservation for the introduced scheme. Several numerical simulations, including for nearly crystalline surface energies, demonstrate the practicality and accuracy of the presented numerical method.File | Dimensione | Formato | |
---|---|---|---|
10.1515_jnma-2021-0131 (1).pdf
accesso aperto
Tipologia:
Post-print referato (Refereed author’s manuscript)
Licenza:
Creative commons
Dimensione
366.34 kB
Formato
Adobe PDF
|
366.34 kB | Adobe PDF | Visualizza/Apri |
mullins.pdf
Solo gestori archivio
Descrizione: final layout with issue and page numbers
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.04 MB
Formato
Adobe PDF
|
2.04 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione