We introduce and analyse a fully discrete approximation for a mathematical model for the solidification and liquidation of materials of negligible specific heat. The model is a two-sided Mullins–Sekerka problem. The discretization uses finite elements in space and an independent parameterization of the moving free boundary. We prove unconditional stability and exact volume conservation for the introduced scheme. Several numerical simulations, including for nearly crystalline surface energies, demonstrate the practicality and accuracy of the presented numerical method.

A structure preserving front tracking finite element method for the Mullins-Sekerka problem / Nürnberg, Robert. - In: JOURNAL OF NUMERICAL MATHEMATICS. - ISSN 1570-2820. - 31:2(2023), pp. 137-155. [10.1515/jnma-2021-0131]

A structure preserving front tracking finite element method for the Mullins-Sekerka problem

Robert Nürnberg
2023-01-01

Abstract

We introduce and analyse a fully discrete approximation for a mathematical model for the solidification and liquidation of materials of negligible specific heat. The model is a two-sided Mullins–Sekerka problem. The discretization uses finite elements in space and an independent parameterization of the moving free boundary. We prove unconditional stability and exact volume conservation for the introduced scheme. Several numerical simulations, including for nearly crystalline surface energies, demonstrate the practicality and accuracy of the presented numerical method.
2023
2
Nürnberg, Robert
A structure preserving front tracking finite element method for the Mullins-Sekerka problem / Nürnberg, Robert. - In: JOURNAL OF NUMERICAL MATHEMATICS. - ISSN 1570-2820. - 31:2(2023), pp. 137-155. [10.1515/jnma-2021-0131]
File in questo prodotto:
File Dimensione Formato  
10.1515_jnma-2021-0131 (1).pdf

Solo gestori archivio

Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 366.34 kB
Formato Adobe PDF
366.34 kB Adobe PDF   Visualizza/Apri
mullins.pdf

accesso aperto

Descrizione: final layout with issue and page numbers
Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.04 MB
Formato Adobe PDF
2.04 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/354602
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact