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Abstract:We introduce and analyse a fully discrete approximation for a mathematical model for the solidifi-
cation and liquidation of materials of negligible specific heat. The model is a two-sided Mullins–Sekerka prob-
lem. The discretization uses finite elements in space and an independent parameterization of the moving free
boundary. We prove unconditional stability and exact volume conservation for the introduced scheme. Several
numerical simulations, including for nearly crystalline surface energies, demonstrate the practicality and ac-
curacy of the presented numerical method.
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1 Introduction

In this paper we propose and analyse a novel numerical approximation of the following moving boundary
problem. Let Ω ⊂ Rd , d ⩾ 2, be a domain with a Lipschitz boundary ∂Ω and outer unit normal ν⃗Ω . Given the
hypersurface Γ(0) ⊂ Ω, find u : Ω × [0, T] → R and the evolving hypersurface (Γ(t))t∈[0,T] such that for all
t ∈ (0, T] the following conditions hold:

−Δu = 0 in Ω \ Γ(t) (1.1a)

u = κ on Γ(t) (1.1b)[︂
∂u
∂ν⃗

]︂
Γ(t)

= −V on Γ(t) (1.1c)

∂u
∂ν⃗Ω

= 0 on ∂Ω (1.1d)

where ν⃗ is the outer unit normal of Γ(t),κ is its mean curvature, [·]Γ(t) denotes the jump of a quantity across the
interface Γ(t) and V is the normal velocity of (Γ(t))t∈[0,T]. Here our sign convention is such that the unit sphere
has mean curvature κ = 1 − d < 0.

The problem (1.1) is usually called the Mullins–Sekerka problem, or the two-sided Mullins–Sekerka flow,
and geometrically it can be viewed as a prototype for a curvature driven interface evolution that involves quan-
tities defined in the bulk regions surrounding the interface. Alternative names for (1.1) in the literature are
Hele-Shaw flow with surface tension, or quasi-static Stefan problem. For theoretical results on the existence of
strong and weak solutions to (1.1) we refer to [19, 20, 26] and the references therein. Physically, the system (1.1)
was derived as amodel for solidification and liquidation ofmaterials of negligible specific heat, [33]. In addition,
the Mullins–Sekerka problem arises as the sharp interface limit of the non-degenerate Cahn–Hilliard equation,
as was proved in [1]. Here we recall that the Cahn–Hilliard equation models the process of phase separation
and coarsening in melted alloys, [16].
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As regards thenumerical approximation of theMullins–Sekerkaproblem (1.1), several different approaches
are available from the literature. Approximations based on a boundary integral formulation can be found in,
e.g., [14, 32, 37], while a front-tracking method based on parametric finite elements has been proposed in [7].
For a finite difference approximation of a levelset formulation we refer to [18], while finite element approxima-
tions of phasefield models have been considered in [9, 10, 27, 28]. In this paper we will consider a front-tracking
method, where the numerical approximation of the interface Γ(t) is completely independent of the finite ele-
ment mesh for the bulk equation (1.1a). In fact, we will propose an improvement for the unfitted finite element
approximation that was introduced by the author together with JohnW. Barrett and Harald Garcke in [7]. Here
we will put particular emphasis on the conservation of physically relevant properties on the discrete level.

By way of motivation, we observe that it is not difficult to prove that a solution to the Mullins–Sekerka
problem (1.1) reduces the surface area |Γ(t)|, while it maintains the volume of the enclosed domain Ω−(t). In
particular, it holds that

d
dt |Γ(t)| =

d
dt

∫︁
Γ(t)

1 dHd−1 = −
∫︁
Γ(t)

κV dHd−1 = −
∫︁
Ω
|∇u|2 dLd ⩽ 0 (1.2)

and
d
dt vol(Ω−(t)) =

∫︁
Γ(t)

V dHd−1 = 0 (1.3)

see, e.g., [13, Rem. 105]. We remark that these properties motivate the interpretation of (1.1) as a volume pre-
serving gradient flow of the surface area. Examples for volume preserving gradient flows of the surface area
that only depend on geometric properties of the interface are the conserved mean curvature flow and surface
diffusion (see [17, 35]). In contrast, the flow (1.1) also depends on the field u that is defined in the bulk. A detailed
description of the gradient flow structure for (1.1) can be found in [7, App. A]. Clearly, for a numerical approxi-
mation of (1.1) it would be highly desirable to have a discrete analogue of the energy dissipation law (1.2) and
the volume conservation property (1.3). The fully discrete method from [7] satisfies a discrete analogue of (1.2),
in particular it is unconditionally stable. But a discrete version of (1.3) does not hold. That means that for large
time steps, and in certain situations, a significant loss of mass can be observed in computations. On utilizing
very recent ideas from [3, 30], we will appropriately adapt the fully discrete scheme from [7] to obtain a new
method for (1.1) that satisfies discrete analogues of both (1.2) and (1.3). We believe this is the first such fully
discrete approximation of (1.1) in the literature.

In many physical applications, e.g., when considering the solidification or liquidation of materials, the den-
sity of the interfacial energy is directionally dependent. A typical example for such an anisotropic surface energy
is

|Γ(t)|γ =
∫︁
Γ(t)

γ(ν⃗) dHd−1 (1.4)

where γ is a given anisotropy function. We refer to [15, 23, 29, 36] for more details on anisotropic surface en-
ergies. On defining the anisotropic mean curvature κγ as the first variation of (1.4), so that, e.g., d

dt |Γ(t)|γ =
−
∫︀
Γ(t) κγV dHd−1, we can introduce the anisotropic Mullins–Sekerka problem by replacing κ with κγ in (1.1).

Then the energy dissipation (1.2) and volume conservation (1.3) hold as before, where of course in the former
we need to replace |Γ(t)| with |Γ(t)|γ and κ with κγ . The numerical method we discuss in this paper, by virtue
of being derived from the scheme in [7], can deal with the anisotropic Mullins–Sekerka problem as well. In ad-
dition, for a class of anisotropies that was first proposed in [4, 6], the anisotropic scheme will still be structure
preserving, in the sense that discrete analogues of the anisotropic (1.2) and (1.3) will hold.

In summary, the novel fully practical and fully discrete numerical method proposed in this paper has the
following properties:

– The method is unconditionally stable, i.e., it mimics (1.2) on the discrete level.
– The volume of the two phases, i.e., the interior and the exterior of the interface, is conserved exactly, as a
fully discrete analogue to (1.3).

– The polyhedral interface approximationmaintains a nicemesh property, leading to asymptotically equidis-
tributed polygonal curves in the case d = 2 for an isotropic surface energy.
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– The method is unfitted, meaning mesh deformations of the bulk mesh are avoided, and no remeshings of
the bulk triangulation are necessary.

– The method can take an anisotropic surface energy into account, meaning that a discrete analogue of the
anisotropic generalization of (1.2) still holds on the fully discrete level.

The remainder of the paper is organized as follows. In Section 2 we introduce a weak formulation for the
Mullins–Sekerka problem (1.1) on which our finite element method is going be based. We also state a semidis-
crete continuous-in-time approximation and briefly analyse its properties. Our novel fully discrete finite ele-
ment approximation is presented and analysed in Section 3, where in order to focus on the structure preserving
aspect of the method, we at first concentrate on the isotropic case. Subsequently, in Section 4, we discuss the
extension of the weak formulation and the finite element scheme to the anisotropic case. Finally, in Section 5
we consider several numerical simulations for the introduced numerical method, including some convergence
experiments.

2 Weak formulation and semidiscrete approximation

Our parametric finite elementmethodwill be based on a suitableweak formulation of (1.1), whichwe introduce
in this section. Here we follow the notation and presentation from the recent review article [13].

Let
GT =

⋃︁
t∈[0,T]

(︀
Γ(t) × {t}

)︀
be a smooth evolving hypersurface, such that for every t ∈ [0, T] the closed hypersurface Γ(t) ⊂ Ω partitions
the domain Ω into two phases: the interior Ω−(t) and the exterior Ω+(t) = Ω \Ω−(t), so that ∂Ω−(t) = Γ(t). In what
follows, we will often not distinguish between Γ(t)×{t} and Γ(t). Moreover, as we are interested in a parametric
formulation of the evolving interface, we assume that x⃗ : Υ × [0, T] → Rd is a global parameterization of
(Γ(t))t∈[0,T], where Υ ⊂ Rd is a smooth reference manifold. We recall that the induced full velocity of Γ(t) is
defined by

V⃗(⃗x(q⃗, t), t) = (∂t x⃗)(q⃗, t) ∀ (q⃗, t) ∈ Υ × [0, T]

and satisfies V⃗ · ν⃗ = V. Multiplying (1.1a) with a test function ϕ ∈ H1(Ω), integrating over Ω and performing
integration by parts yields

0 =
∫︁
Ω−(t)∪Ω+(t)

ϕΔu dLd =
∫︁
∂Ω

ϕ ∂u
∂ν⃗Ω

dHd−1 −
∫︁
Γ(t)

ϕ
[︂
∂u
∂ν⃗

]︂
Γ(t)

dHd−1 −
∫︁
Ω
∇u ·∇ϕ dLd

which in view of the conditions (1.1c) and (1.1d) reduces to

0 =
∫︁
Γ(t)

ϕV dHd−1 −
∫︁
Ω
∇u ·∇ϕ dLd .

The only other ingredient needed for the weak formulation is the well-known variational formulation of mean
curvature, given by ∫︁

Γ(t)
κη⃗ · ν⃗ +∇s i⃗d : ∇s η⃗ dHd−1 = 0 ∀ η⃗ ∈ [H1(Γ(t))]d (2.1)

where i⃗d denotes the identity function in Rd and ∇s is the surface gradient on Γ(t) (see, e.g., [13, Rem. 22]).
Hence, on denoting the L2-inner products over Ω and Γ(t) by (·, ·) and ⟨·, ·⟩Γ(t), respectively, we can state the
weak formulation as follows.

Given a closed hypersurface Γ(0) ⊂ Ω, we seek an evolving hypersurface (Γ(t))t∈[0,T] that separates Ω into
Ω−(t) and Ω+(t), with a global parameterization and induced velocity field V⃗, and κ : L2(GT ) as well as u :
Ω × [0, T] → R, such that for almost all t ∈ (0, T) it holds for (u(·, t), V⃗(·, t),κ(·, t)) ∈ H1(Ω) × [L2(Γ(t))]d × L2(Γ(t))
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that (︀
∇u,∇ϕ

)︀
−
⟨
V⃗, ϕν⃗

⟩
Γ(t)

= 0 ∀ ϕ ∈ H1(Ω) (2.2a)

⟨u − κ , χ⟩Γ(t) = 0 ∀ χ ∈ L2(Γ(t)) (2.2b)⟨︀
κν⃗, η⃗

⟩︀
Γ(t) +

⟨
∇s i⃗d,∇s η⃗

⟩
Γ(t)

= 0 ∀ η⃗ ∈ [H1(Γ(t))]d . (2.2c)

Clearly, choosing ϕ = u in (2.2a) and χ = V = V⃗ · ν⃗ in (2.2b) yields the energy dissipation law (1.2), while choosing
ϕ = 1 in (2.2a) leads to the volume conservation property (1.3). Mimicking these testing procedures on the
discrete level will be crucial to prove the structure preserving aspect of our finite element approximations.

For the numerical approximation of (2.2) we first introduce the necessary finite element space in the bulk.
To this end, we assume that Ω is a polyhedral domain. Then let Th be a regular partitioning of Ω into disjoint
open simplices, so that Ω =

⋃︀
o∈Th o, see [21]. Associated with Th is the finite element space

Sh =
{︁
χ ∈ C0(Ω) : χ|o is affine ∀ o ∈ Th

}︁
⊂ H1(Ω). (2.3)

In addition we need appropriate parametric finite element spaces. Let a polyhedral hypersurface Γh ⊂ Rd be
given by

Γh =
J⋃︁
j=1

σj (2.4)

where {σj}
J
j=1 is a family of disjoint, (relatively) open (d − 1)-simplices, such that σi ∩ σj for i /= j is either empty

or a common k-simplex of σi and σj , 0 ⩽ k < d. We denote the vertices of Γh by {q⃗k}Kk=1, and assume that the
vertices of σj are given by {q⃗j,k}dk=1, j = 1, . . . , J. Here the numbering of the local vertices is assumed to be such
that

ν⃗ h =
(q⃗j,2 − q⃗j,1) ∧ · · · ∧ (q⃗j,d − q⃗j,1)
|(q⃗j,2 − q⃗j,1) ∧ · · · ∧ (q⃗j,d − q⃗j,1)|

on σj , j = 1, . . . , J (2.5)

defines the outer normal ν⃗ h ∈ [L∞(Γh)]d to the interior Ωh
− of Γh = ∂Ωh

− . Here we recall the definition of the
wedge product from [13, Def. 45], i.e., for v⃗1 , . . . , v⃗d−1 ∈ Rd , the wedge product is the unique vector such that
b⃗ · (⃗v1 ∧ · · ·∧ v⃗d−1) = det(⃗v1 , . . . , v⃗d−1 , b⃗) for all b⃗ ∈ Rd . It follows that it is the usual cross product of two vectors
in R3, and the anti-clockwise rotation through π/2 of a vector in R2. We note also that

|σj| =
1

d − 1 |(q⃗j,2 − q⃗j,1) ∧ · · · ∧ (q⃗j,d − q⃗j,1)|. (2.6)

We define the finite element spaces of continuous piecewise linear functions on Γh via

V(Γh) = {χ ∈ C0(Γh) : χ|σj is affine for j = 1, . . . , J}, V(Γh) = [V(Γh)]d .

We let {ϕΓ
h

k }Kk=1 denote the standard basis of V(Γ
h), i.e.,

ϕΓ
h

i (q⃗j) = δij , i, j = 1, . . . , K .

Moreover, we let πΓh : C0(Γh) → V(Γh) be the standard interpolation operator, and let ⟨·, ·⟩Γh denote the L
2-inner

product on Γh . For two piecewise continuous functions u, v ∈ L∞(Γh), with possible jumps across the edges of
{σj}

J
j=1, we introduce the mass lumped inner product ⟨·, ·⟩

h
Γh as

⟨u, v⟩hΓh =
1
d

J∑︁
j=1

|σj|
d∑︁
k=1

(uv)((q⃗j,k)−) (2.7)

where u((q⃗)−) = limσj∋p⃗→q⃗ u(p⃗). The definition (2.7) is naturally extended to vector- and tensor-valued functions.
On recalling (2.5), we define the vertex normal vector ω⃗h ∈ V(Γh) to be the mass-lumped L2-projection of ν⃗ h

onto V(Γh), i.e, ⟨
ω⃗h , φ⃗

⟩h
Γh
=
⟨
ν⃗ h , φ⃗

⟩
Γh

∀ φ⃗ ∈ V(Γh). (2.8)
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From now on, we let
GhT =

⋃︁
t∈[0,T]

(︀
Γh(t) × {t}

)︀
be an evolving polyhedral hypersurface, so that Γh(t), for each t ∈ [0, T], is a polyhedral surface of the form (2.4)
for fixed J and K. That is, Γh(t) is defined through its elements {σhj (t)}

J
j=1 and its vertices {q⃗

h
k (t)}

K
k=1. Wewill often

not distinguish between GhT and (Γh(t))t∈[0,T]. Then the full velocity of Γh(t) is defined by

V⃗h (⃗z, t) =
K∑︁
k=1

[︂
d
dt q⃗k(t)

]︂
ϕΓ

h(t)
k (⃗z) ∀ (⃗z, t) ∈ GhT . (2.9)

We also define the finite element spaces

V(GhT ) = {χ ∈ C0(GhT ) : χ(·, t) ∈ V(Γh(t)) ∀ t ∈ [0, T]}, V(GhT ) = [V(GhT )]d .

Our unfitted semidiscrete finite element approximation of (2.2) can then be formulated as follows. Given
the closed polyhedral hypersurface Γh(0), find an evolving polyhedral hypersurface (Γh(t))t∈[0,T], that separates
Ω into Ωh

−(t) and Ωh
+ (t), with induced velocity V⃗h ∈ V(GhT ), and κh ∈ V(GhT ) as well as uh ∈ Sh × (0, T], such that

for all t ∈ (0, T] it holds for (uh(·, t), V⃗h(·, t),κh(·, t)) ∈ Sh × V(Γh(t)) × V(Γh(t)) that(︁
∇uh ,∇ϕ

)︁
−
⟨
πΓh(t)

[︁
V⃗h · ω⃗h

]︁
, ϕ
⟩(h)
Γh(t)

= 0 ∀ ϕ ∈ Sh (2.10a)⟨
uh , χ

⟩(h)
Γh(t)

−
⟨
κh , χ

⟩h
Γh(t)

= 0 ∀ χ ∈ V(Γh(t)) (2.10b)⟨
κhω⃗h , η⃗

⟩h
Γh(t)

+
⟨
∇s i⃗d,∇s η⃗

⟩
Γh(t)

= 0 ∀ η⃗ ∈ V(Γh(t)) (2.10c)

where the surface gradients ∇s in (2.10c) are defined piecewise on the polyhedral surface Γh(t). Here and
throughout, the notation • (h) means an expression with or without the superscript h. That is, the scheme (2.10)h

employs numerical integration in the two relevant terms in (2.10a) and (2.10b), while the scheme (2.10) uses
true integration in these two terms. We also remark that thanks to (2.8) and the piecewise constant nature of
ν⃗ h , the first term in (2.10c) is equivalent to ⟨κh ν⃗ h , η⃗⟩hΓh(t). We prefer to write it in terms of ω⃗h to make the test-
ing procedure in the analysis easier to follow. Before we present a proof for the structure preserving properties
of (2.10)(h), we recall the following fundamental results from [13].

Lemma 2.1. Let (Γh(t))t∈[0,T] be an evolving polyhedral hypersurface. Then it holds that

d
dt

⃒⃒⃒
Γh(t)

⃒⃒⃒
=
⟨
∇s i⃗d,∇sV⃗

h
⟩
Γh(t)

(2.11)

and
d
dt vol(Ω

h
−(t)) =

⟨
V⃗h , ν⃗ h

⟩
Γh(t)

. (2.12)

Proof. The result (2.11) directly follows from [13, Thm. 70, Lem. 9], while a proof for (2.12) is given in
[13, Thm. 71].

We are now in a position to prove energy decay, volume conservation and good mesh quality properties for a
solution of (2.10)(h). Here for the definition of a conformal polyhedral surface we recall [13, Def. 60].

Definition 2.1. A closed polyhedral hypersurface Γh , with unit normal ν⃗ h , is called a conformal polyhedral
hypersurface, if there exists a κh ∈ V(Γh) such that⟨

κh ν⃗ h , η⃗
⟩h
Γh
= −
⟨
∇s i⃗d,∇s η⃗

⟩
Γh

∀ η⃗ ∈ V(Γh) . (2.13)

The discussion in [5, Sect. 4.1] indicates that for d = 3 surfaces satisfying Definition 2.1 are characterized by a
goodmesh quality, and this is confirmed by a large body of numerical evidence in, e.g., [5, 8, 11, 12]. On the other
hand, for d = 2 it is shown in [13, Thm. 62] that any conformal polygonal curve is weakly equidistributed.
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Theorem 2.1. Let (uh , GhT ,κh) be a solution of (2.10)(h). Then it holds that

d
dt

⃒⃒⃒
Γh(t)

⃒⃒⃒
+
(︁
∇uh ,∇uh

)︁
= 0. (2.14)

Moreover we have that
d
dt vol(Ω

h
−(t)) = 0. (2.15)

Finally, for any t ∈ (0, T], it holds that Γh(t) is a conformal polyhedral surface. In particular, for d = 2, any two
neighbouring elements of the curve Γh(t) either have equal length, or they are parallel.

Proof. Choosing ϕ = uh(·, t) ∈ Sh in (2.10a), χ = πΓh(t)[V⃗h · ω⃗h] ∈ V(Γh(t)) in (2.10b), and η⃗ = V⃗h(·, t) ∈ V(Γh(t))
in (2.10c) gives, on recalling (2.11), that

d
dt

⃒⃒⃒
Γh(t)

⃒⃒⃒
=
⟨
∇s i⃗d,∇sV⃗

h
⟩
Γh(t)

= −
⟨
κhω⃗h , V⃗h

⟩h
Γh(t)

= −
⟨
κh , πΓh(t)

[︁
V⃗h · ω⃗h

]︁⟩h
Γh(t)

= −
⟨
πΓh(t)

[︁
V⃗h · ω⃗h

]︁
, uh
⟩(h)
Γh(t)

= −
(︁
∇uh ,∇uh

)︁
which implies (2.14). Moreover, choosing ϕ = 1 in (2.10a) and noting (2.8), on recalling (2.12), yields that

d
dt vol(Ω

h
−(t)) =

⟨
V⃗h , ν⃗ h

⟩
Γh(t)

=
⟨
V⃗h , ω⃗h

⟩h
Γh(t)

=
⟨
πΓh(t)

[︁
V⃗h · ω⃗h

]︁
, 1
⟩(h)
Γh(t)

= (∇u,∇1) = 0

which is (2.15). Finally, the mesh properties for Γh(t) follow directly from the side condition (2.10c), thanks to
Definition 2.1 and [13, Thm. 62], on noting that ⟨κhω⃗h , η⃗⟩hΓh(t) = ⟨κh ν⃗ h , η⃗⟩hΓh(t).

The motivation for the choices of numerical quadrature in (2.10) is apparent now.We employ mass lumping for
the first term in (2.10c) to ensure the good mesh properties. This in turn enforces the use of mass lumping in
the second term in (2.10b), in order to guarantee stability. Finally, for the two bulk-interface integrals we allow
a choice between true integration and mass lumping, the latter being considerably easier to implement; see the
beginning of Section 5 below.

3 Fully discrete approximation

The aim of this section is to introduce a fully practical fully discrete approximation of (2.10)(h) that maintains
the structure preserving properties from Theorem 2.1.

Let 0 = t0 < t1 < . . . < tM = T form a partition of the time interval [0, T] with time steps Δtm = tm+1 − tm ,m =
0, . . . ,M − 1. The main idea going back to the seminal paper [25] is now to construct polyhedral hypersurfaces
Γm , which approximate the true continuous solutions Γ(tm), in such a way that for m ⩾ 0 we obtain Γm+1 =
X⃗m+1(Γm) for a parameterization X⃗m+1 ∈ V(Γm). In addition we consider a sequence of bulk triangulations Tm

with associated finite element spaces Sm ,m = 0, . . . ,M −1, similarly to (2.3). For motivational purposes, we first
recall the linear fully discrete approximation of (2.10) from [13].

Let the closed polyhedral hypersurface Γ0 be an approximation of Γ(0). Then, for m = 0, . . . ,M − 1, find
(Um+1 , X⃗m+1 ,κm+1) ∈ Sm × V(Γm) × V(Γm) such that

(︁
∇Um+1 ,∇φ

)︁
−
⟨
πΓm

[︃
X⃗m+1 − i⃗d
Δtm

· ω⃗m
]︃
, φ
⟩(h)

Γm
= 0 ∀ φ ∈ Sm (3.1a)

⟨
Um+1 , χ

⟩(h)
Γm

−
⟨
κm+1 , χ

⟩h
Γm

= 0 ∀ χ ∈ V(Γm) (3.1b)⟨
κm+1ω⃗m , η⃗

⟩h
Γm

+
⟨
∇s X⃗m+1 ,∇s η⃗

⟩
Γm

= 0 ∀ η⃗ ∈ V(Γm) (3.1c)

and set Γm+1 = X⃗m+1(Γm). We observe that (3.1) corresponds to [13, Eq. (119)], which was first introduced in
[7, Eq. (3.5)]. Undermild conditions on Γm , existence and uniqueness for the linear system (3.1)(h) can be shown.
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Moreover, solutions to (3.1)(h) are unconditionally stable (see [13, Thm. 109]). However, in general the volume of
the interiorsΩm+1

− andΩm
− of Γm+1 and Γm , respectively, will differ,meaning that the fully discrete scheme (3.1)(h)

is not volumepreserving. The reason for this behaviour is the explicit approximation of ω⃗h from (2.10a) in (3.1a).
Following the recent ideas in [3], we now investigate a semi-implicit approximation of ω⃗h which will lead to a
volume preserving approximation.

Given a sequence of polyhedral surfaces (Γm)Mm=0, where each Γm is defined through its vertices {q⃗mk }
K
k=1

and elements {σmj }
J
j=1, we define the piecewise-linear-in-time family of polyhedral surfaces (̂︀Γh(t))t∈[0,T] via

̂︀Γh(t) = tm+1 − t
Δtm

Γm + t − tmΔtm
Γm+1 , t ∈ [tm , tm+1]

which means that the polyhedral surface ̂︀Γh(t) is induced by the vertices
̂︀qhk (t) = tm+1 − t

Δtm
q⃗mk + t − tmΔtm

q⃗m+1k , t ∈ [tm , tm+1]

for k = 1, . . . , K. We note that ̂︀Γh(tm) = Γm , m = 0, . . . ,M. Then it immediately follows from (2.9) that

V⃗h(·, t) = 1
Δtm

K∑︁
k=1

[︁
q⃗m+1k − q⃗mk

]︁
ϕ̂︀Γh(t)
k on ̂︀Γh(t), t ∈ (tm , tm+1).

On denoting the interior of ̂︀Γh(t) by ̂︀Ωh
−(t), with outer unit normal ̂︀νh(t), the fundamental theorem of calculus,

together with (2.12), yields that

vol(Ωm+1
− ) − vol(Ωm

− ) = vol(̂︀Ωh
−(tm+1)) − vol(̂︀Ωh

−(tm)) =
∫︁ tm+1

tm

d
dt vol(

̂︀Ωh
−(t)) dt

=
∫︁ tm+1

tm

⟨
V⃗h , ̂︀νh⟩̂︀Γh(t) dt

=
∫︁ tm+1

tm

⟨
1
Δtm

K∑︁
k=1

[︁
q⃗m+1k − q⃗mk

]︁
ϕ̂︀Γh(t)
k , ̂︀νh⟩̂︀Γh(t)

dt

= 1
Δtm

K∑︁
k=1

[︁
q⃗m+1k − q⃗mk

]︁
·
∫︁ tm+1

tm

(︂∫︁
̂︀Γh(t) ϕ

̂︀Γh(t)
k ̂︀νh dHd−1

)︂
dt

= 1
Δtm

K∑︁
k=1

[︁
q⃗m+1k − q⃗mk

]︁
·
∫︁ tm+1

tm

⎛⎝ J∑︁
j=1

∫︁
̂︀σhj (t) ϕ

̂︀Γh(t)
k ̂︀νh dHd−1

⎞⎠dt

= 1
Δtm

K∑︁
k=1

[︁
q⃗m+1k − q⃗mk

]︁
·
∫︁ tm+1

tm

⎛⎝ J∑︁
j=1

∫︁
σmj

ϕΓ
m

k dHd−1̂︀νh |̂︀σhj (t) |̂︀σhj (t)||σmj |

⎞⎠dt

= 1
Δtm

∫︁ tm+1

tm

⎛⎝ J∑︁
j=1

∫︁
σmj

X⃗m+1 − i⃗d dHd−1 · ̂︀νh |̂︀σhj (t) |̂︀σhj (t)||σmj |

⎞⎠dt

=
J∑︁
j=1

∫︁
σmj

X⃗m+1 − i⃗d dHd−1 · 1
Δtm|σmj |

∫︁ tm+1

tm
̂︀νh |̂︀σhj (t) |̂︀σhj (t)|dt (3.2)

where we have used the previously introduced notation X⃗m+1 =
∑︀K

k=1 ϕ
Γm
k q⃗m+1k ∈ V(Γm). The calculation in (3.2)

suggests the definition of the piecewise constant vector ν⃗ m+1/2 ∈ [L∞(Γm)]d by setting

ν⃗ m+1/2 = 1
Δtm|σmj |

∫︁ tm+1

tm
̂︀νh |̂︀σhj (t) |̂︀σhj (t)|dt on σmj , j = 1, . . . , J . (3.3)

We note that ν⃗ m+1/2 can be interpreted as an averaged normal vector for the linearly interpolated surfaces
between Γm and Γm+1. Note also that in general ν⃗ m+1/2 will not have unit length. Overall we have proven the
following result, which generalizes the corresponding results from [3, Thms. 2.1, 3.1] to the case d ⩾ 2.
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Lemma 3.1. It holds that
vol(Ωm+1

− ) − vol(Ωm
− ) =

⟨
X⃗m+1 − i⃗d, ν⃗ m+1/2

⟩
Γm
.

Proof. The desired result follows immediately from (3.2) and the definition (3.3).

Remark 3.1. In practice, given Γm and Γm+1, the vector ν⃗ m+1/2 is remarkably easy to compute, since the inte-
grand in (3.3) is a polynomial of degree d − 1. In particular, it holds that

ν⃗ m+1/2 |σmj =
1
Δtm

∫︁ tm+1

tm

(︀̂︀qhj,2(t) − ̂︀qhj,1(t))︀ ∧ · · · ∧ (̂︀qhj,d(t) − ̂︀qhj,1(t))
|(q⃗mj,2 − q⃗

m
j,1) ∧ · · · ∧ (q⃗mj,d − q⃗

m
j,1)|

dt

where we have recalled (2.5) and (2.6). Using suitable quadrature rules then yields in the case d = 2 that

ν⃗ m+1/2 |σmj =
1
2
(q⃗mj,2 − q⃗

m
j,1 + q⃗

m+1
j,2 − q⃗m+1j,1 )⊥

|q⃗mj,2 − q⃗
m
j,1|

(3.4)

where ·⊥ denotes the anti-clockwise rotation through π/2 of a vector in R2, while for d = 3 we obtain

ν⃗ m+1/2 |σmj = 1
6
(q⃗mj,2 − q⃗

m
j,1) × (q⃗

m
j,3 − q⃗

m
j,1) + (q⃗

m+1
j,2 − q⃗m+1j,1 ) × (q⃗m+1j,3 − q⃗m+1j,1 )

|(q⃗mj,2 − q⃗
m
j,1) × (q⃗

m
j,3 − q⃗

m
j,1)|

+ 16
(q⃗mj,2 − q⃗

m
j,1 + q⃗

m+1
j,2 − q⃗m+1j,1 ) × (q⃗mj,3 − q⃗

m
j,1 + q⃗

m+1
j,3 − q⃗m+1j,1 )

|(q⃗mj,2 − q⃗
m
j,1) × (q⃗

m
j,3 − q⃗

m
j,1)|

. (3.5)

Before we can apply the result from Lemma 3.1 to the approximation (3.1)(h), we need to introduce a vertex
based normal corresponding to ν⃗ m+1/2. Analogously to (2.8) we therefore define ω⃗m+1/2 ∈ V(Γm) such that⟨

ω⃗m+1/2 , φ⃗
⟩h
Γm

=
⟨
ν⃗ m+1/2 , φ⃗

⟩
Γm

∀ φ⃗ ∈ V(Γm). (3.6)

Now our novel fully discrete approximation of (2.10)(h) is given as follows.
Let the closed polyhedral hypersurface Γ0 be an approximation of Γ(0). Then, for m = 0, . . . ,M − 1, find

(Um+1 , X⃗m+1 ,κm+1) ∈ Sm × V(Γm) × V(Γm) and Γm+1 = X⃗m+1(Γm) such that

(︁
∇Um+1 ,∇φ

)︁
−
⟨
πΓm

[︃
X⃗m+1 − i⃗d
Δtm

· ω⃗m+1/2
]︃
, φ
⟩(h)

Γm
= 0 ∀ φ ∈ Sm (3.7a)

⟨
Um+1 , χ

⟩(h)
Γm

−
⟨
κm+1 , χ

⟩h
Γm

= 0 ∀ χ ∈ V(Γm) (3.7b)⟨
κm+1ω⃗m+1/2 , η⃗

⟩h
Γm

+
⟨
∇s X⃗m+1 ,∇s η⃗

⟩
Γm

= 0 ∀ η⃗ ∈ V(Γm). (3.7c)

We note that in contrast to (3.1)(h), the scheme (3.7)(h) leads to a system of nonlinear equations at each time level,
because ω⃗m+1/2 depends on X⃗m+1.

The next theorem proves the structure preserving properties of the fully discrete approximation (3.7)(h).

Theorem 3.1. Let (Um+1 , X⃗m+1 ,κm+1) ∈ Sm × V(Γm) × V(Γm) be a solution to (3.7)(h). Then the enclosed volume is
preserved, i.e.,

vol(Ωm+1
− ) = vol(Ωm

− ). (3.8)

In addition, if d = 2 or d = 3, then the solution satisfies the stability estimate

|Γm+1| + Δtm
(︁
∇Um+1 ,∇Um+1

)︁
⩽ |Γm|. (3.9)

Proof. On choosing φ = 1 in (3.7a), it follows from (3.6) and Lemma 3.1 that

0 =
⟨
πΓm

[︃
X⃗m+1 − i⃗d
Δtm

· ω⃗m+1/2
]︃
, 1
⟩(h)

Γm
=
⟨
X⃗m+1 − i⃗d
Δtm

, ω⃗m+1/2
⟩h

Γm
=
⟨
X⃗m+1 − i⃗d
Δtm

, ν⃗ m+1/2
⟩
Γm

= 1
Δtm

(︁
vol(Ωm+1

− ) − vol(Ωm
− )
)︁
.
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This proves (3.8). It remains to prove the stability bound. Here we choose φ = Um+1 in (3.7a), χ = πΓm [(X⃗m+1 −
i⃗d) · ω⃗m+1/2] in (3.7b) and η⃗ = X⃗m+1 − i⃗d|Γm in (3.7c) in order to obtain

Δtm
(︁
∇Um+1 ,∇Um+1

)︁
+
⟨
∇s X⃗m+1 ,∇s(X⃗m+1 − i⃗d)

⟩
Γm

= 0. (3.10)

Now we recall from [13, Lem. 57] the well-known bound⟨
∇s X⃗m+1 ,∇s(X⃗m+1 − i⃗d)

⟩
Γm

⩾ |Γm+1| − |Γm| (3.11)

for the cases d = 2 and d = 3. Combining (3.10) and (3.11) yields the desired result (3.9).

In practice the system of nonlinear equations (3.7)(h) can be solved with a simple lagged iteration. Given Γm , let
Γm+1,0 = Γm . Then for i ⩾ 0 define ω⃗m+1/2,i ∈ V(Γm) through (3.6) and (3.3), but with Γm+1 replaced by Γm+1,i ,
and find (Um+1,i+1 , X⃗m+1,i+1 ,κm+1,i+1) ∈ Sm × V(Γm) × V(Γm) such that

(︁
∇Um+1,i+1 ,∇φ

)︁
−
⟨
πΓm

[︃
X⃗m+1,i+1 − i⃗d

Δtm
· ω⃗m+1/2,i

]︃
, φ
⟩(h)

Γm
= 0 ∀ φ ∈ Sm (3.12a)

⟨
Um+1,i+1 , χ

⟩(h)
Γm

−
⟨
κm+1,i+1 , χ

⟩h
Γm

= 0 ∀ χ ∈ V(Γm) (3.12b)⟨
κm+1,i+1ω⃗m+1/2,i , η⃗

⟩h
Γm

+
⟨
∇s X⃗m+1,i+1 ,∇s η⃗

⟩
Γm

= 0 ∀ η⃗ ∈ V(Γm) (3.12c)

and set Γm+1,i+1 = X⃗m+1,i+1(Γm). The iteration can be repeated until the stopping criterion

‖X⃗m+1,i+1 − X⃗m+1,i‖∞ ⩽ tol (3.13)

is satisfied. Note that the existence of a unique solution to the linear system of equations (3.12)(h), which is of
the same form as (3.1)(h), can be shown under mild assumptions on Γm , recall [13, Thm. 109].

4 Generalization to anisotropic surface energies

In this section we briefly discuss the extension of the finite element approximation (3.7)(h) to the case of an
anisotropic surface energy of the form (1.4), i.e.,

|Γ(t)|γ =
∫︁
Γ(t)

γ(ν⃗) dHd−1 .

On defining the anisotropic curvature through

κγ = −∇s · γ′(ν⃗) on Γ(t)

where γ′ denotes the spatial gradient of γ : Rd → R, which itself is defined as a one-homogeneous extension of
the originally given density on the unit ball, we introduce the anisotropic analogue of (1.1) via

−Δu = 0 in Ω \ Γ(t), u = κγ on Γ(t),
[︂
∂u
∂ν⃗

]︂
Γ(t)

= −V on Γ(t), ∂u
∂ν⃗Ω

= 0 on ∂Ω. (4.1)

From now on we are going to restrict ourselves to a class of anisotropies first proposed in [4, 6]. That is, we
assume that the anisotropy can be written as

γ(p⃗) =
(︃ L∑︁

ℓ=1
[Gℓ p⃗ · p⃗]r/2

)︃1/r
(4.2)
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where r ∈ [1, ∞) and Gℓ ∈ Rd×d , ℓ = 1, . . . , L, are symmetric and positive definite. We also define ̃︀Gℓ =
[detGℓ]1/(d−1)G−1ℓ for ℓ = 1, . . . , L. Using a suitable differential calculus, the authors in [6] then derived the fol-
lowing anisotropic analogue of (2.1)⟨︀

κγ ν⃗, η⃗
⟩︀
Γ(t) +

⟨
∇

̃︀G
s i⃗d,∇

̃︀G
s η⃗
⟩
Γ(t),γ

= 0 ∀ η⃗ ∈ [H1(Γ(t))]d

see [6] and [13, Eq. (110)] for the precise definitions. Hence the natural anisotropic analogue of (2.2) is given by(︀
∇u,∇ϕ

)︀
−
⟨
V⃗, ϕν⃗

⟩
Γ(t)

= 0 ∀ ϕ ∈ H1(Ω) (4.3a)

⟨u − κγ , χ⟩Γ(t) = 0 ∀ χ ∈ L2(Γ(t)) (4.3b)⟨︀
κγ ν⃗, η⃗

⟩︀
Γ(t) +

⟨
∇

̃︀G
s i⃗d,∇

̃︀G
s η⃗
⟩
Γ(t),γ

= 0 ∀ η⃗ ∈ [H1(Γ(t))]d . (4.3c)

The same testing procedure as in the isotropic setting shows that solutions to (4.3) satisfy

d
dt |Γ(t)|γ = − ⟨κγ ,V⟩Γ(t) = − (∇u,∇u) ⩽ 0, d

dt vol(Ω−(t)) = 0 (4.4)

where in the first equation we have noted from [13, Lem. 97].
For the adaptation of (3.7)(h) to the anisotropic setting we make use of the stable discretization of (4.3c)

introduced in [6]. To this end, we define⟨
∇

̃︀Gℓ
s X⃗m+1 ,∇̃︀Gℓ

s η⃗
⟩
Γm ,γ

=
L∑︁
ℓ=1

∫︁
Γm

[︂
γℓ(ν⃗ m+1 ∘ X⃗m+1)
γ(ν⃗ m+1 ∘ X⃗m+1)

]︂r−1
(∇̃︀Gℓ

s X⃗m+1 ,∇̃︀Gℓ
s η⃗)̃︀Gℓ

γℓ(ν⃗ m) dHd−1 (4.5)

for Γm+1 = X⃗m+1(Γm) with normal ν⃗ m+1 and X⃗m+1 , η⃗ ∈ V(Γm). Here ∇̃︀Gℓ
s is a surface differential operator

weighted by ̃︀Gℓ, while (·, ·)̃︀Gℓ
denotes the inner product inRd induced by the symmetric positive definite matrix̃︀Gℓ, see [13, Eqs. (108), (111)] for details. We note that (4.5) depends linearly on X⃗m+1 if r = 1. Then our fully

discrete approximation of (4.1) is given as follows.
Let the closed polyhedral hypersurface Γ0 be an approximation of Γ(0). Then, for m = 0, . . . ,M − 1, find

(Um+1 , X⃗m+1 ,κm+1
γ ) ∈ Sm × V(Γm) × V(Γm) and Γm+1 = X⃗m+1(Γm) such that

(︁
∇Um+1 ,∇φ

)︁
−
⟨
πΓm

[︃
X⃗m+1 − i⃗d
Δtm

· ω⃗m+1/2
]︃
, φ
⟩(h)

Γm
= 0 ∀ φ ∈ Sm (4.6a)

⟨
Um+1 , χ

⟩(h)
Γm

−
⟨
κm+1
γ , χ

⟩h
Γm

= 0 ∀ χ ∈ V(Γm) (4.6b)⟨
κm+1
γ ω⃗m+1/2 , η⃗

⟩h
Γm

+
⟨
∇

̃︀Gℓ
s X⃗m+1 ,∇̃︀Gℓ

s η⃗
⟩
Γm ,γ

= 0 ∀ η⃗ ∈ V(Γm). (4.6c)

Once again, (4.6)(h) is a structure preserving approximation, in that its solution satisfy discrete analogues of (4.4).

Theorem 4.1. Let (Um+1 , X⃗m+1 ,κm+1
γ ) ∈ Sm × V(Γm) × V(Γm) be a solution to (4.6)(h). Then the enclosed volume is

preserved, i.e., vol(Ωm+1
− ) = vol(Ωm

− ). In addition, if d = 2 or d = 3, then the solution satisfies the stability estimate

|Γm+1|γ + Δtm
(︁
∇Um+1 ,∇Um+1

)︁
⩽ |Γm|γ . (4.7)

Proof. The volume preservation property follows as in the proof of Theorem 3.1, on choosing φ = 1 in (4.6a).
Similarly, for the discrete stability bound we choose φ = Um+1 in (4.6a), χ = πΓm [(X⃗m+1 − i⃗d) · ω⃗m+1/2] in (4.6b) and
η⃗ = X⃗m+1 − i⃗d|Γm in (4.6c) in order to obtain

Δtm
(︁
∇Um+1 ,∇Um+1

)︁
+
⟨
∇

̃︀Gℓ
s X⃗m+1 ,∇̃︀Gℓ

s (X⃗m+1 − i⃗d)
⟩
Γm ,γ

= 0. (4.8)

Now we recall from [13, Lem. 102] the result⟨
∇

̃︀Gℓ
s X⃗m+1 ,∇̃︀Gℓ

s (X⃗m+1 − i⃗d)
⟩
Γm ,γ

⩾ |Γm+1|γ − |Γm|γ (4.9)

for the cases d = 2 and d = 3. Combining (4.8) and (4.9) yields the desired result (4.7).
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The adaptation of the iterative solution method (3.12), (3.13) to the anisotropic case is easy in the case r = 1.
For r > 1 we combine the lagging of the nonlinear term ω⃗m+1/2 in (4.6a) and (4.6c) with the lagging of ν⃗ m+1 in
the second term of (4.6c), compare with (4.5). Overall, we use the following iteration in order to find a solution
to (4.6)(h). For i ⩾ 0 find (Um+1,i+1 , X⃗m+1,i+1 ,κm+1,i+1

γ ) ∈ Sm × V(Γm) × V(Γm) such that

(︁
∇Um+1,i+1 ,∇φ

)︁
−
⟨
πΓm

[︃
X⃗m+1,i+1 − i⃗d

Δtm
· ω⃗m+1/2,i

]︃
, φ
⟩(h)

Γm
= 0 ∀ φ ∈ Sm (4.10a)

⟨
Um+1,i+1 , χ

⟩(h)
Γm

−
⟨
κm+1,i+1
γ , χ

⟩h
Γm

= 0 ∀ χ ∈ V(Γm) (4.10b)⟨
κm+1,i+1
γ ω⃗m+1/2,i , η⃗

⟩h
Γm

+
L∑︁
ℓ=1

∫︁
Γm

[︂
γℓ(ν⃗ m+1,i ∘ X⃗m+1,i)
γ(ν⃗ m+1,i ∘ X⃗m+1,i)

]︂r−1
(∇̃︀Gℓ

s X⃗m+1 ,∇̃︀Gℓ
s η⃗)̃︀Gℓ

γℓ(ν⃗ m) dHd−1 = 0 ∀ η⃗ ∈ V(Γm) (4.10c)

and set Γm+1,i+1 = X⃗m+1,i+1(Γm). The iteration is stopped when the criterion (3.13) is satisfied. We note that the
second term in (4.10c) is a linearization of (4.5). The term will be independent of X⃗m+1,i in the case r = 1.

5 Numerical results

We implemented the fully discrete finite element approximations (3.1)(h), (3.7)(h), and (4.6)(h) within the finite
element toolbox ALBERTA (see [34]). The systems of linear equations arising from (3.1)(h), (3.12)(h), and (4.10)(h),
in the case d = 2, are solved with the help of the sparse factorization package UMFPACK (see [22]). For the
simulations in 3D, on the other hand, we employ the Schur complement solver described in [7, Eq. (4.9)]. For the
stopping criterion in (3.13) we use the value tol = 10−10.

For the triangulation Tm of the bulk domain Ω, that is used for the bulk finite element space Sm , we use an
adaptive mesh that uses fine elements close to the interface Γm and coarser elements away from it. The precise
strategy is as described in [7, Sect. 5.1] and for a domain Ω = (−H , H)d and two integer parameters Nc < Nf
results in elements with maximal diameter approximately equal to hf = 2H /Nf close to Γm and elements with
maximal diameter approximately equal to hc = 2H /Nc far away from it. For all our computations we use H = 4.
An example adaptive mesh is shown in Fig. 1.

We stress that due to the unfitted nature of our finite element approximations, special quadrature rules
need to be employed in order to assemble terms that feature both bulk and surface finite element functions.
An example is the first term in (3.7b). For the schemes using numerical integration, e.g., (3.7)h , this task boils
down to finding for each vertex of Γm the bulk element om ∈ Tm it resides in, together with its barycentric
coordinates with respect to that bulk element. For the remaining schemes that task is more involved. Then the
most challenging aspect of assembling the contributions for, e.g., the first term in (3.7b), for the scheme (3.7), is
to compute intersections σm ∩ om between an arbitrary surface element σm ⊂ Γm and an element om ∈ Tm of
the bulk mesh. An algorithm that describes how these intersections can be calculated is given in [7, p. 6284], see
also [7, Fig. 4] for a visualization of possible intersections of the form σm ∩ om in R3.

Throughout this section we use (almost) uniform time steps, in that Δtm = Δt for m = 0, . . . ,M − 2 and
ΔtM−1 = T − tm−1 ⩽ Δt. For many of the presented simulations we will put particular emphasis on the volume
preserving aspect, and so we recall that given a polyhedral surface Γm , the enclosed volume can be computed
by

vol(Ωm
− ) =

1
d

∫︁
Γm

i⃗d · ν⃗ m dHd−1 (5.1)

where we have used the divergence theorem. We note that the integrand in (5.1) is piecewise constant on Γm .
For later use we also define the relative volume loss at time t = tm as

vmΔ = vol(Ω0
−) − vol(Ωm

− )
vol(Ω0−)

.
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5.1 Convergence experiment

We begin with a convergence experiment for the scheme (3.7) for the cases d = 2 and d = 3. To this end, we
recall from [7, Sect. 6.6] the following exact solution to (1.1) consisting of two concentric spheres. Let (Γ(t))t∈[0,T]
be a solution of (1.1), where Γ(t) = ∂Ω−(t) with Ω−(t) = {z⃗ ∈ R3 : r1(t) < |⃗z| < r2(t)}. Then the two radii r1 < r2
satisfy the following system of nonlinear ODEs: In the case d = 2 we have

[r1]t = −
1
r1

1
r1 +

1
r2

ln r2
r1

, [r2]t =
r1
r2
[r1]t ∀ t ∈ [0, T0) (5.2a)

while for d = 3 it holds that

[r1]t = −
2
r21

r1 + r2
r2 − r1

, [r2]t =
r21
r22
[r1]t ∀ t ∈ [0, T0) (5.2b)

where T0 is the extinction time of the smaller sphere, i.e., limt→T0 r1(t) = 0. The corresponding solution u satis-
fying (1.1) is given by the radially symmetric function

u(⃗z, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

− d−1
r2(t) , |⃗z| ⩾ r2(t)⎧⎪⎪⎨⎪⎪⎩

1
r1(t) − ln

|⃗z|
r1(t)

1
r1(t) +

1
r2(t)

ln r2(t)
r1(t)

, d = 2

− 4
r2(t)−r1(t) +

2
|⃗z|

r1(t)+r2(t)
r2(t)−r1(t) , d = 3

r1(t) ⩽ |⃗z| ⩽ r2(t)

d−1
r1(t) , |⃗z| ⩽ r1(t).

(5.3)

The volume preserving property of the flow implies that v(t) = rd2 (t) − rd1 (t) is an invariant, so that r2(t) =
(v(0) + rd1 (t))1/d . Hence r1 satisfies

[r1]t =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− 1
r1

1
r1 + (v(0) + r

2
1)−1/2

ln (v(0)+r21)1/2
r1

, d = 2

− 2
r21

r1 + (v(0) + r31)1/3

(v(0) + r31)1/3 − r1
, d = 3

∀ t ∈ [0, T0). (5.4)

In order to obtain a higher accuracy for the reference solution in our numerical convergence experiments,
rather than integrating (5.4) directly, we rather use a root-finding algorithm for the equation

0 = t +

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫︁ r1(t)

r1(0)
r

ln (v(0)+r2)1/2
r

1
r + (v(0) + r2)−1/2

dr, d = 2

∫︁ r1(t)

r1(0)

r2
2
(v(0) + r3)1/3 − r
r + (v(0) + r3)1/3

dr, d = 3

∀ t ∈ [0, T0)

in order to find r1(t).
For the initial radii r1(0) = 2.5, r2(0) = 3 and the time interval [0, T] with T = 1/2, so that r1(T) ≈ 1.66 and

r2(T) ≈ 2.35, we perform a convergence experiment for the true solution (5.2), at first for d = 2. To this end, for
i = 0 → 4, we set Nf = K /2 = 27+i , Nc = 4i , and τ = 43−i × 10−3. We visualize the evolution with the help of the
discrete solutions computed with the scheme (3.7) for the run i = 1 in Fig. 1, where we also present a plot of the
final bulk mesh TM in order to show the effect of the adaptive mesh refinement strategy.

In Table 1 we display the errors

‖Γh − Γ‖L∞ = max
m=1,...,M

max
k=1,...,K

dist(q⃗mk , Γ(tm))

and
‖Uh − u‖L∞ = max

m=1,...,M
‖Um − Imu(·, tm)‖L∞(Ω)
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Fig. 1: The solution (5.2) at times t = 0 and t = 1/2, as well as the adaptive bulk mesh TM .

Tab. 1: Convergence test for (5.2) over the time interval [0, 1/2] for the scheme (3.7).

hf hMΓ ‖Uh − u‖L∞ ‖Γh − Γ‖L∞ KM
Ω K |vMΔ |

6.2500e-02 1.1400e-01 1.5609e-01 3.4036e-02 2925 256 < 10−10

3.1250e-02 5.7282e-02 4.5306e-02 1.7416e-02 5101 512 < 10−10

1.5625e-02 2.8714e-02 1.4406e-02 8.9079e-03 9785 1024 < 10−10

7.8125e-03 1.4375e-02 5.0773e-03 4.6020e-03 21557 2048 < 10−10

3.9062e-03 7.1929e-03 2.8734e-03 2.1860e-03 96781 4096 < 10−10

Tab. 2: Convergence test for (5.2) over the time interval [0, 1/2] for the scheme (3.1).

hf hMΓ ‖Uh − u‖L∞ ‖Γh − Γ‖L∞ KM
Ω K |vMΔ |

6.2500e-02 1.1497e-01 1.4990e-01 5.1377e-03 2869 256 1.2e-02
3.1250e-02 5.7408e-02 4.3367e-02 7.7591e-03 5097 512 3.2e-03
1.5625e-02 2.8730e-02 1.3917e-02 6.4656e-03 9857 1024 8.3e-04
7.8125e-03 1.4377e-02 4.9546e-03 3.9948e-03 21593 2048 2.1e-04
3.9062e-03 7.1932e-03 2.7345e-03 2.0351e-03 96969 4096 5.1e-05

where Im : C0(Ω) → Sm denotes the standard interpolation operator. We also let Km
Ω denote the number of

degrees of freedom of Sm , and define hmΓ = maxj=1,...,J diam(σmj ). As a comparison, we show the same error
computations for the linear scheme (3.1) in Table 2. As expected, we observe true volume preservation for the
scheme (3.7) in Table 1, up to solver tolerance, while the relative volume loss in Table 2 decreases as Δt becomes
smaller. Surprisingly, the two error quantities ‖Γh−Γ‖L∞ and ‖Uh−u‖L∞ are generally lower in Table 2 compared
to Table 1, although the difference becomes smaller with smaller discretization parameters. For completeness,
we also present the errors for the same convergence experiment for the two schemes (3.7)h and (3.1)h with
numerical integration (see Tables 3 and 4).

We also perform a convergence experiment for the true solution (5.2) for d = 3. To this end, we choose
the initial radii r1(0) = 2.5, r2(0) = 3 and the time interval [0, T] with T = 0.1, so that r1(T) ≈ 2.15 and
r2(T) ≈ 2.77. Moreover, for i = 0 → 3, we set Nf = 25+i , Nc = 4i , 1/2K = ̂︀K(i), where (̂︀K(0), ̂︀K(1), ̂︀K(2), ̂︀K(3)) =
(770, 3074, 12290, 49154), and τ = 43−i × 10−3. The errors ‖Uh − u‖L∞ and ‖Γh − Γ‖L∞ for the four schemes (3.7),
(3.7)(h), (3.1), and (3.1)(h) on the interval [0, T] with T = 0.1 are displayed in Tables 5–8.

Similarly to the convergence experiments in 2D,wenote that for the schemes (3.1)(h) the relative volume loss
converges to zero as the discretization parameters get smaller, while the schemes (3.7)(h) preserve the volume
exactly in every case. The error quantities ‖Uh −u‖L∞ and ‖Γh −Γ‖L∞ behave very similarly for all four schemes.
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Tab. 3: Convergence test for (5.2) over the time interval [0, 1/2] for the scheme (3.7)h .

hf hMΓ ‖Uh − u‖L∞ ‖Γh − Γ‖L∞ KM
Ω K |vMΔ |

6.2500e-02 1.1433e-01 1.6079e-01 2.4789e-02 2941 256 < 10−10

3.1250e-02 5.7357e-02 4.9133e-02 1.3107e-02 5077 512 < 10−10

1.5625e-02 2.8733e-02 1.6422e-02 6.8358e-03 9865 1024 < 10−10

7.8125e-03 1.4380e-02 6.1040e-03 3.5755e-03 21605 2048 < 10−10

3.9062e-03 7.1941e-03 2.6860e-03 1.6743e-03 96893 4096 < 10−10

Tab. 4: Convergence test for (5.2) over the time interval [0, 1/2] for the scheme (3.1)h .

hf hMΓ ‖Uh − u‖L∞ ‖Γh − Γ‖L∞ KM
Ω K |vMΔ |

6.2500e-02 1.1530e-01 1.6291e-01 1.3785e-02 2881 256 1.2e-02
3.1250e-02 5.7482e-02 4.7307e-02 4.5358e-03 5185 512 3.2e-03
1.5625e-02 2.8749e-02 1.5926e-02 4.4224e-03 9757 1024 8.2e-04
7.8125e-03 1.4382e-02 5.9809e-03 2.9693e-03 21501 2048 2.1e-04
3.9062e-03 7.1943e-03 2.5431e-03 1.5237e-03 96997 4096 5.1e-05

Tab. 5: Convergence test for (5.2) over the time interval [0, 0.1] for the scheme (3.7).

hf hMΓ ‖Uh − u‖L∞ ‖Γh − Γ‖L∞ KM
Ω K |vMΔ |

2.5000e-01 5.6320e-01 7.3514e-01 1.3667e-01 10831 1540 < 10−10

1.2500e-01 2.8759e-01 2.5135e-01 4.6999e-02 46311 6148 < 10−10

6.2500e-02 1.4473e-01 9.1052e-02 1.9356e-02 188389 24580 < 10−10

3.1250e-02 7.2527e-02 3.5851e-02 8.7870e-03 956293 98308 < 10−10

Tab. 6: Convergence test for (5.2) over the time interval [0, 0.1] for the scheme (3.7)h .

hf hMΓ ‖Uh − u‖L∞ ‖Γh − Γ‖L∞ KM
Ω K |vMΔ |

2.5000e-01 5.6594e-01 8.9355e-01 1.3062e-01 10879 1540 < 10−10

1.2500e-01 2.8815e-01 3.1381e-01 4.3354e-02 46335 6148 < 10−10

6.2500e-02 1.4484e-01 1.2228e-01 1.7321e-02 188725 24580 < 10−10

3.1250e-02 7.2548e-02 5.7925e-02 7.6589e-03 970477 98308 < 10−10

Tab. 7: Convergence test for (5.2) over the time interval [0, 0.1] for the scheme (3.1).

hf hMΓ ‖Uh − u‖L∞ ‖Γh − Γ‖L∞ KM
Ω K |vMΔ |

2.5000e-01 5.7042e-01 6.5892e-01 6.2158e-02 10879 1540 2.3e-02
1.2500e-01 2.8847e-01 2.3273e-01 3.0705e-02 46375 6148 6.2e-03
6.2500e-02 1.4485e-01 8.6575e-02 1.5551e-02 188725 24580 1.5e-03
3.1250e-02 7.2548e-02 3.4759e-02 7.8760e-03 956293 98308 3.6e-04

Tab. 8: Convergence test for (5.2) over the time interval [0, 0.1] for the scheme (3.1)h .

hf hMΓ ‖Uh − u‖L∞ ‖Γh − Γ‖L∞ KM
Ω K |vMΔ |

2.5000e-01 5.7401e-01 7.8420e-01 6.5619e-02 10879 1540 2.2e-02
1.2500e-01 2.8908e-01 2.9887e-01 2.7440e-02 46423 6148 6.0e-03
6.2500e-02 1.4497e-01 1.1943e-01 1.3544e-02 188965 24580 1.5e-03
3.1250e-02 7.2572e-02 5.7009e-02 6.8226e-03 956821 98308 3.6e-04
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Fig. 2: Γm at times t = 0, 0.1, . . . , 1, T = 2 for the scheme (3.7). We also show a plot of the discrete energy |Γm| and of the relative volume
loss vmΔ over time.
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Fig. 3: Γm at times t = 0, 0.1, . . . , 1, T = 2 for the scheme (3.1). We also show a plot of the discrete energy |Γm| and of the relative volume
loss vmΔ over time.

5.2 Simulations in 2D

In this subsection we consider some numerical experiments for the case d = 2. In the first computation, we
numerically confirm the well-known result shown in [31], which says that the Mullins–Sekerka flow (1.1) does
not preserve convexity. To this end, we choose for Γ(0) an elongated cigar shape of total dimension 7 × 1. The
discretization parameters for the computation are Nf = 128, Nc = 16, Δt = 10−3, T = 2 and K = 256, and
the results are shown in Fig. 2. We observe that during the evolution the interface becomes nonconvex, before
reaching a circular steady state. As expected, the enclosed volume is preserved during the evolution. This is not
the case when using the scheme (3.1), as can be seen from Fig. 3, where for completeness we show the same
simulation for this alternative finite element approximation.

Our second simulation is for an anisotropic surface energy. Here we make use of the fact that anisotropies
of the form (4.2) can be used to approximate crystalline surface energies, where the isoperimetric minimizers
(the so-called Wulff shapes) exhibit flat parts and sharp corners. In particular, we choose the density

γ0(p) =
1
4

4∑︁
ℓ=1

√︁[︀(︀
R
(︀ π
4
)︀ℓ]︀TD(δ)(︀R(︀ π4 )︀)︀ℓp · p, δ = 10−4 (5.5)

where R(ϑ) =
(︀ cos ϑ sin ϑ
− sin ϑ cos ϑ

)︀
and D(δ) = diag(1, δ2). Then, inspired by the initial curve from [2, Fig. 0], see also

[24, Fig. 7], we perform a computation for our scheme (4.6). We observe that all the facets of the initial data are
aligned with the Wulff shape of (5.5) with δ = 0, i.e., regular octagon. For the computations shown in Fig. 4 we
employed the discretization parameters Nf = 256, Nc = 32, K = 512, and Δt = 10−3. We note that during the
evolution all the facets remain aligned with the facets of the Wulff shape. Some facets grow at the expense of
others, leading to some facets vanishing completely. Eventually a scaled Wulff shape is approached as a steady
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Fig. 4: Γm at times t = 0, 0.1, . . . , 1, and at time t = T = 3, for the scheme (4.6). We also show a plot of the discrete energy |Γm|γ over
time.
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Fig. 5: Γm at times t = 0, 0.1, . . . , 1, and at time t = T = 3, for the scheme (3.7). We also show a plot of the discrete energy |Γm| over time.

state of the flow. As a comparison, we also show the evolution for the isotropic case for the same initial data,
in Fig. 5. Here the nonconvex initial data soon evolves to a convex curve, which then converges towards a circle.

5.3 Simulations in 3D

We end this sectionwith some numerical simulations for the case d = 3. All the initial data will always be chosen
symmetric with respect to the origin. First we look at the 3D analogue of the experiment in Fig. 2, that is we start
with an initial interface in the shape of a rounded cylinder with total dimensions 7 × 1 × 1. The discretization
parameters for this computation are Nf = 128, Nc = 16, τ = 10−3, T = 2, and K = 1154.

We observe that the initially convex interface loses its convexity during the evolution, which numerically
confirms that such evolutions also exist in the case d = 3. Recall that the corresponding result for d = 2 has been
shown in [31]. For the numerical simulation in Fig. 6 we also note that the discrete energy is monotonically
decreasing, while the enclosed volume is maintained up to the chosen solver tolerance.

In a second experiment where an initially convex interface loses its convexity, we start the evolution with
a rounded cylinder of total dimension 6 × 6 × 1. We see from the evolution in Fig. 7 that the moving interface
becomes nonconvex, before it approaches the shape of a sphere. The discretization parameters for this compu-
tation are Nf = 128, Nc = 16, τ = 10−3, T = 2, and K = 1538.

We also present two simulations for an anisotropic surface energy. In the first one, we repeat the simulation
in Fig. 6, with the same discretization parameters as before, but now for the anisotropy

γ(p⃗) =
3∑︁
i=1

[︁
δ2|p⃗|2 + p2i (1 − δ

2)
]︁1/2

, δ = 0.1
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Fig. 6: Γm at times t = 0, 0.1, 0.2, 0.5, 2. Below we show a plot of the discrete energy |Γm| and of the relative volume loss vmΔ over time.
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Fig. 7: Γm at times t = 0, 0.1, 0.2, 0.5, 2. Below we show a plot of the discrete energy |Γm| and of the relative volume loss vmΔ over time.

which approximates the ℓ1-norm of p⃗. For the computation in Fig. 8 it can be observed that, as in the isotropic
case, the interface loses its convexity. Eventually it settles down to an approximation of the Wulff shape, which
here is a smoothed cube.

In the final simulation we use an anisotropic energy of the form (4.2) with r > 1, so that the iteration (4.10)
also has to account for the nonlinearity in the approximation of the anisotropy in (4.6). In particular, we choose

γ(p⃗) =
(︃ 3∑︁

i=1

[︁
δ2|p⃗|2 + p2i (1 − δ

2)
]︁r/2)︃1/r

, δ = 0.1, r = 9

in order to model an anisotropy with an octahedral Wulff shape (see, e.g., [6, Figs. 4, 15]). For the experiment
in Fig. 9 we start from the same rounded cylinder of total dimension 6 × 6 × 1 from Fig. 7, and also use the dis-
cretization parameters from the earlier simulation. During the interesting evolution the moving interface ap-
proaches theWulff shape, and decreases its anisotropic surface energy as it does so. As expected, the numerical
approximation conserves the enclosed volume exactly.
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Fig. 8: Γm at times t = 0, 0.05, 0.1, 0.2, 2. Below we show a plot of the discrete energy |Γm|γ and of the relative volume loss vmΔ over time.
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Fig. 9: Γm at times t = 0, 0.1, 0.2, 0.5, 2. Below we show a plot of the discrete energy |Γm| and of the relative volume loss vmΔ over time.
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