Prempreesuk, Noppakaew, and Pongsriiam determined the Zeckendorf representation of the multiplicative inverse of 2 modulo F-n, for every positive integer n not divisible by 3, where F-n denotes the nth Fibonacci number. We determine the Zeckendorf representation of the multiplicative inverse of a modulo F-n, for every fixed integer a >= 3 and for all positive integers n with gcd(a, F-n) = 1. Our proof makes use of the so-called base-phi expansion of real numbers.

Zeckendorf representation of multiplicative inverses modulo a Fibonacci number / Alecci, Gessica; Murru, Nadir; Sanna, Carlo. - In: MONATSHEFTE FÜR MATHEMATIK. - ISSN 0026-9255. - 201:1(2023), pp. 1-9. [10.1007/s00605-022-01724-y]

Zeckendorf representation of multiplicative inverses modulo a Fibonacci number

Murru, Nadir
;
2023-01-01

Abstract

Prempreesuk, Noppakaew, and Pongsriiam determined the Zeckendorf representation of the multiplicative inverse of 2 modulo F-n, for every positive integer n not divisible by 3, where F-n denotes the nth Fibonacci number. We determine the Zeckendorf representation of the multiplicative inverse of a modulo F-n, for every fixed integer a >= 3 and for all positive integers n with gcd(a, F-n) = 1. Our proof makes use of the so-called base-phi expansion of real numbers.
2023
1
Alecci, Gessica; Murru, Nadir; Sanna, Carlo
Zeckendorf representation of multiplicative inverses modulo a Fibonacci number / Alecci, Gessica; Murru, Nadir; Sanna, Carlo. - In: MONATSHEFTE FÜR MATHEMATIK. - ISSN 0026-9255. - 201:1(2023), pp. 1-9. [10.1007/s00605-022-01724-y]
File in questo prodotto:
File Dimensione Formato  
main.pdf

Solo gestori archivio

Tipologia: Pre-print non referato (Non-refereed preprint)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 280.97 kB
Formato Adobe PDF
280.97 kB Adobe PDF   Visualizza/Apri
s00605-022-01724-y.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 260.16 kB
Formato Adobe PDF
260.16 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/351100
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact