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Abstract
Prempreesuk, Noppakaew, and Pongsriiam determined the Zeckendorf representation
of the multiplicative inverse of 2 modulo Fn , for every positive integer n not divisible
by 3, where Fn denotes the nth Fibonacci number. We determine the Zeckendorf
representation of the multiplicative inverse of a modulo Fn , for every fixed integer
a ≥ 3 and for all positive integers n with gcd(a, Fn) = 1. Our proof makes use of the
so-called base-ϕ expansion of real numbers.
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1 Introduction

Let (Fn)n≥1 be the sequence of Fibonacci numbers, which is defined by the initial
conditions F1 = F2 = 1 and by the linear recurrence Fn = Fn−1 + Fn−2 for n ≥ 3. It
is well known [22] that every positive integer n can be written as a sum of distinct non-
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consecutive Fibonacci numbers, that is, n = ∑m
i=1 di Fi , where m ∈ N, di ∈ {0, 1},

and didi+1 = 0 for all i ∈ {1, . . . ,m−1}. This is called the Zeckendorf representation
of n and, apart from the equivalent use of F1 instead of F2 or vice versa, is unique.

The Zeckendorf representation of integer sequences has been studied in sev-
eral works. For instance, Filipponi and Freitag [6, 7] studied the Zeckendorf
representation of numbers of the form Fkn/Fn , F2

n /d and L2
n/d, where Ln are

the Lucas numbers and d is a Lucas or Fibonacci number. Filipponi, Hart, and
Sanchis [8, 13, 14] analyzed the Zeckendorf representation of numbers of the
form mFn . Filipponi [8] determined the Zeckendorf representation of mFnFn+k and
mLnLn+k for m ∈ {1, 2, 3, 4}. Bugeaud [3] studied the Zeckendorf representation of
smooth numbers. The study of Zeckendorf representations has been also approached
from a combinatorial point of view [1, 9, 12, 21]. Moreover, generalizations of the
Zeckendorf representation to linear recurrences other than the sequence of Fibonacci
numbers have been considered [4, 5, 10, 11, 16].

For all integers a andm ≥ 1 with gcd(a,m) = 1, let (a−1 mod m) denote the least
positive multiplicative inverse of a modulo m, that is, the unique b ∈ {1, . . . ,m} such
that ab ≡ 1 (mod m). Prempreesuk, Noppakaew, and Pongsriiam [17] determined
the Zeckendorf representation of (2−1 mod Fn), for every positive integer n that is not
divisible by 3. (The condition 3 � n is necessary and sufficient to have gcd(2, Fn) = 1.)
In particular, they showed [17,Theorem 3.2] that

(2−1 mod Fn) =
{∑(n−7)/2

k = 0 Fn−3k−2 + F3 if n ≡ 1 mod 3;
∑(n−8)/2

k = 0 Fn−3k−2 + F4 if n ≡ 2 mod 3;

for every integer n ≥ 8. We extend their result by determining the Zeckendorf repre-
sentation of the multiplicative inverse of a modulo Fn , for every fixed integer a ≥ 3
and every positive integer n with gcd(a, Fn) = 1. Precisely, we prove the following
result.

Theorem 1.1 Let a ≥ 3 be an integer. Then there exist integers M, n0, i0 ≥ 1 and
periodic sequences z(0), . . . , z(M−1) and w(1), . . . ,w(i0) with values in {0, 1} such
that, for all integers n ≥ n0 with gcd(a, Fn) = 1, the Zeckendorf representation of
(a−1 mod Fn) is given by

(a−1 mod Fn) =
n−1∑

i = i0

z(n mod M)
n−i Fi +

i0−1∑

i = 1

w(i)
n Fi .

From the proof of Theorem 1.1 it follows that M, n0, i0, z(0), . . . , z(M−1), and
w(1), . . . ,w(i0) can be computed from a (see also Remark 4.1 at the end of the paper).
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2 Preliminaries on Fibonacci numbers

Let us recall that for every integer n ≥ 1 it holds the Binet formula

Fn = ϕn − ϕn

√
5

,

where ϕ := (1 + √
5)/2 is the Golden ratio and ϕ := (1 − √

5)/2 is its algebraic
conjugate. Furthermore, it is well known that for every integer m ≥ 1 the Fibonacci
sequence (Fn)n≥1 is (purely) periodic modulo m. Let π(m) denote its period length,
or the so-called Pisano period.

The next lemma gives a formula for the inverse of a modulo Fn .

Lemma 2.1 For all integers a ≥ 1 and n ≥ 3 with gcd(a, Fn) = 1, we have that

(a−1 mod Fn) = bFn + 1

a
,

where b := (−F−1
r mod a) and r := (n mod π(a)).

Proof Since r ≡ n (mod π(a)), we have that Fr ≡ Fn (mod a). In particular, it
follows that gcd(a, Fr ) = gcd(a, Fn) = 1. Hence, Fr is invertible modulo a, and
consequently b is well defined. Moreover, we have that

bFn + 1 ≡ −F−1
r Fr + 1 ≡ 0 (mod a),

and thus c := (bFn + 1)/a is an integer. On the one hand, we have that

ac ≡ bFn + 1 ≡ 1 (mod Fn).

On the other hand, since b ≤ a − 1 and n ≥ 3, we have that

0 ≤ c ≤ (a − 1)Fn + 1

a
= Fn − Fn − 1

a
< Fn .

Therefore, we get that c = (a−1 mod Fn), as desired.

3 Preliminaries on base-' expansion

We need some basic results regarding the so-called base-ϕ expansion of real numbers,
which was introduced by Bergman [2] in 1957 (see also [19]), and which is a particular
case of non-integer base expansion (see, e.g., [15, 18]). LetD be the set of sequences
in {0, 1} that have no two consecutive terms equal to 1, and that are not ultimately
equal to the periodic sequence 0, 1, 0, 1, . . . . Then for every x ∈ [0, 1) there exists
a unique sequence δ(x) = (δi (x))i∈N in D such that x = ∑∞

i=1 δi (x)ϕ−i . Precisely,
δi (x) = �T (i)(x)	 for every i ∈ N, where T (i) denotes the i th iterate of the map
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T : [0, 1) → [0, 1) defined by T (x̂) := (ϕ x̂ mod 1) for every x̂ ∈ [0, 1). Furthermore,
letting F := Q(ϕ) ∩ [0, 1), if x ∈ F then δ(x) is ultimately periodic. In particular,
if x ∈ F is given as x = x1 + x2ϕ, where x1, x2 ∈ Q, then the preperiod and the
period of δ(x) can be effectively computed by finding the smallest i ∈ N such that
T (i)(x) = T ( j)(x) for some j ∈ N with j < i . Conversely, for every ultimately
periodic sequence d = (di )i∈N in D we have that the number x = ∑∞

i=1 diϕ
−i

belongs to F , and x1, x2 ∈ Q such that x = x1 + x2ϕ can be effectively computed
in terms of the preperiod and period of d by using the formula for the sum of the
geometric series. Moreover, in the case that x is a rational number in [0, 1) then δ(x)
is purely periodic [20].

The next lemma collects two easy inequalities for sums involving sequences inD.

Lemma 3.1 For every sequence (di )i∈N in D and for every m ∈ N ∪ {∞}, we have:
(1)

∑m
i=1 diϕ

−i ∈ [0, 1) and
(2)

∑m
i=1 di (−ϕ)−i ∈ (−1, ϕ−1).

Proof Since (di )i∈N belongs to D, there exists k ∈ N such that dk = dk+1 = 0. Let k
be the minimum integer with such property. Then

∞∑

i=1

diϕ
−i =

k−1∑

i=1

diϕ
−i +

∞∑

i=k+2

diϕ
−i <

�k/2	∑

j=1

ϕ−(2 j−1) +
∞∑

i=k+2

ϕ−i

=
(
1 − ϕ−2�k/2	) + ϕ−k ≤ 1,

and (1) is proved. Let us prove (2). On the one hand, we have

m∑

i=1

di (−ϕ)−i ≤
m∑

j=1

d2 jϕ
−2 j <

∞∑

j=1

ϕ−2 j = ϕ−1,

where the second inequality is strict because D does not contain sequences that are
ultimately equal to (0, 1, 0, 1, . . . ). On the other hand, similarly, we have

m∑

i=1

di (−ϕ)−i ≥ −
m∑

j=1

d2 j−1ϕ
−(2 j−1) > −

∞∑

j=1

ϕ−(2 j−1) = −1.

Thus (2) is proved.

The following lemma relates base-ϕ expansion and Zeckendorf representation.

Lemma 3.2 Let N be a positive integer and write N = xϕm/
√
5 for some x ∈ F and

some integer m ≥ 2. Then the Zeckendorf representation of N is given by

N =
m−1∑

i=1

δm−i (x)Fi .

Moreover, we have δm(x) = 0.
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Proof Let R := N − ∑m−1
i=1 δm−i (x)Fi . We have to prove that R = 0. Since R is an

integer, it suffices to show that |R| < 1. We have

√
5N = xϕm =

∞∑

i=1

δi (x)ϕ
m−i =

m∑

i=1

δi (x)ϕ
m−i +

∞∑

i=m+1

δi (x)ϕ
m−i

=
m−1∑

i=0

δm−i (x)ϕ
i +

∞∑

i=1

δi+m(x)ϕ−i

=
m−1∑

i=0

δm−i (x)(ϕ
i − ϕi ) +

m−1∑

i=0

δm−i (x)ϕ
i +

∞∑

i=1

δi+m(x)ϕ−i

= √
5
m−1∑

i=1

δm−i (x)Fi +
m−1∑

i=0

δm−i (x)(−ϕ)−i +
∞∑

i=1

δi+m(x)ϕ−i .

Hence, we get that

√
5R =

m−1∑

i=0

δm−i (x)(−ϕ)−i +
∞∑

i=1

δi+m(x)ϕ−i .

For the sake of contradiction, suppose that δm(x) = 1. Then δm+1(x) = 0 and, by
Lemma 3.1, it follows that

√
5R=1+

m−1∑

i=1

δm−i (x)(−ϕ)−i +
∞∑

i=2

δi+m(x)ϕ−i ∈ (1−1+0, 1+ϕ−1+ϕ−1)=(0,
√
5),

which is a contradiction, since R is an integer.
Therefore, δm(x) = 0 and, again by Lemma 3.1, we have

√
5R =

m−1∑

i=1

δm−i (x)(−ϕ)−i +
∞∑

i=1

δi+m(x)ϕ−i ∈ (−1+ 0, ϕ−1 + 1) ⊆ (−√
5,

√
5),

so that |R| < 1, as desired.

The next lemma regards the base-ϕ expansions of the sum of two numbers.

Lemma 3.3 Let x, y ∈ [0, 1), m ∈ N, and put v := x + yϕ−m. Suppose that there
exists λ ∈ N such that λ + 2 ≤ m and δλ(x) = δλ+1(x) = 0. Then, putting

w :=
∞∑

i=λ+2

δi (x)ϕ
−i +

∞∑

i=m+1

δi−m(y)ϕ−i ,
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we have that v,w ∈ [0, 1) and

δi (v) =
{

δi (x) if i ≤ λ,

δi (w) if i > λ,
(1)

for every i ∈ N.

Proof From Lemma 3.1(1), we have that

0 ≤ w < ϕ−(λ+1) + ϕ−m < ϕ−(λ+1) + ϕ−(λ+2) = ϕ−λ.

Hence, w ∈ [0, ϕ−λ) ⊆ [0, 1) and so w = ∑∞
i=λ+1 δi (w)ϕ−i . Therefore, recalling

that δλ+1(x) = 0, we get that

v = x + yϕ−m =
∞∑

i=1

δi (x)ϕ
−i +

∞∑

i=1

δi (y)ϕ
−i−m =

∞∑

i=1

δi (x)ϕ
−i +

∞∑

i=m+1

δi−m(y)ϕ−i

=
λ∑

i=1

δi (x)ϕ
−i + w =

λ∑

i=1

δi (x)ϕ
−i +

∞∑

i=λ+1

δi (w)ϕ−i ,

which is the base-ϕ expansion of v. (Note that δλ(x) = 0.) In particular, by
Lemma 3.1(1), we have that v ∈ [0, 1). Thus (1) follows.

4 Proof of Theorem 1.1

Fix an integer a ≥ 3. Let us begin by defining M, n0, i0, and z(0), . . . , z(M−1). Put
M := π(a). For each r ∈ {0, . . . , M −1}with gcd(a, Fr ) = 1, let br := (−F−1

r mod
a), xr := br/a, and z(r) := δ(xr ). Note that xr ∈ (0, 1). Since xr is a positive rational
number, we have that z(r) is a (purely) periodic sequence belonging toD. Let � be the
least common multiple of the period lengths of z(0), . . . , z(M−1), and put i0 := � + 3.
Finally, let n0 := max{i0 + 1, �log(2a)/logϕ�}.

Pick an integer n ≥ n0 with gcd(a, Fn) = 1 and, for the sake of brevity, put
r := (n mod M). From Lemma 2.1 and Binet’s formula (2), we get that

(a−1 mod Fn) = br Fn + 1

a
= br (ϕn − ϕn)√

5a
+ 1

a
= (xr + ynϕ

−n)
ϕn

√
5
, (2)

where

yn :=
√
5

a
− xr (−ϕ)−n .
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Since n ≥ n0, it follows that yn ∈ (0, 1) and xr + ynϕ−n ∈ (0, 1). Therefore, from (2)
and Lemma 3.2, we get that

(a−1 mod Fn) =
n−1∑

i = 1

δn−i (xr + ynϕ
−n)Fi .

Since δ(xr ) is (purely) periodic and belongs toD, we have that δ(xr ) contains infinitely
many pairs of consecutive zeros. Furthermore, since the period length of δ(xr ) is at
most �, we have that among every � + 1 consecutive terms of δ(xr ) there are two
consecutive zero. In particular, there existsλ = λ(r) such thatn−�−3 ≤ λ ≤ n−2 and
δλ(xr ) = δλ+1(xr ) = 0. Consequently, by Lemma 3.3, we get that δi (xr + ynϕ−n) =
δi (xr ) for each positive integer i ≤ λ and, a fortiori, for each positive integer i ≤ n−i0.
Therefore, we have that

(a−1 mod Fn) =
n−1∑

i = i0

δn−i (xr )Fi +
i0−1∑

i = 1

δn−i (xr + ynϕ
−n)Fi (3)

=
n−1∑

i = i0

z(r)n−i Fi +
i0−1∑

i = 1

w(i)
n Fi ,

where w(1), · · · ,w(i0) are the sequences defined by w
(i)
n := δn−i (xr + ynϕ−n). Note

that, by construction,

z(r)1 , z(r)2 , . . . , z(r)n−i0
, w(i0−1)

n , w(i0−2)
n , . . . , w(1)

n

is a string in {0, 1} with no consecutive zeros. Hence, (3) is the Zeckendorf represen-
tation of (a−1 mod Fn).

It remains only to prove thatw(1), · · · ,w(i0) are periodic. By (3) and the uniqueness
of the Zeckendorf representation, it suffices to prove that

R(n) := (a−1 mod Fn) −
n−1∑

i = i0

z(r)n−i Fi =
i0−1∑

i = 1

w(i)
n Fi (4)

is a periodic function of n. From the last equality in (4), we have that 0 ≤ R(n) <
∑i0−1

i = 1 Fi . (Actually, one can prove that 0 ≤ R(n) < Fi0 , but this is not necessary

for our proof.) Fix a prime number p > max{a,
∑i0−1

i = 1 Fi }. It suffices to prove that
R(n) is periodic modulo p. Recalling that (a−1 mod Fn) = (br Fn +1)/a and that the
sequence of Fibonacci numbers is periodic modulo p, it follows that (a−1 mod Fn) is
periodic modulo p. Hence, it suffices to prove that R′(n) := ∑n−1

i=i0 z
(r)
n−i Fi is periodic

modulo p. Using that z(r) has period length dividing �, we get that
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R′(n + �M) − R′(n) =
n+�M−1∑

i = i0

z((n+�M) mod M)
n+�M−i Fi −

n−1∑

i=i0

z(r)n−i Fi

=
n+�M−1∑

i = i0

z(r)n+�M−i Fi −
n−1∑

i = i0

z(r)n−i Fi

=
n+�M−1∑

i = n

z(r)n+�M−i Fi +
n−1∑

i = i0

(z(r)n+�M−i − z(r)n−i )Fi

=
�M∑

j = 1

z(r)j Fn+�M− j ,

which is a linear combination of sequences that are periodic modulo p. Hence R′(n)

is periodic modulo p. The proof is complete.

Remark 4.1 The proof of Theorem 1.1 provides a way to compute the positive
integers M, i0, n0 and the periods of the periodic sequences z(0), . . . , z(M−1) and
w(1), . . . ,w(i0). Indeed, going through the proof, we have that:M = π(a) is the Pisano
period of a, which can be computed in an obvious way; z(r) = δ

(
(−F−1

r mod a)/a
)

and so the period of z(r) can be computed as explained at the beginning of Section 3;
i0 and n0 have simple formulas in terms of �, which is the least common multiple
of the period lengths of z(0), . . . , z(M−1). Finally, the periods of w(1), . . . ,w(i0) can
be computed from (4) and the fact that R(n) is periodic with period length at most
π(p)2�M , which follows from the arguments after (4). However, note that proceeding
in this way might be impractical, since � might be exponential in M , and thus p might
be double exponential in M ; making the search for the periods of w(1), . . . ,w(i0)

extremely long.
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