In the last decade permutation entropy (PE) has become a popular tool to analyze the degree of randomness within a time series. In typical applications, changes in the dynamics of a source are inferred by observing changes of PE computed on different time series generated by that source. However, most works neglect the crucial question related to the statistical significance of these changes. The main reason probably lies in the difficulty of assessing, out of a single time series, not only the PE value, but also its uncertainty. In this paper we propose a method to overcome this issue by using generation of surrogate time series. The analysis conducted on both synthetic and experimental time series shows the reliability of the approach, which can be promptly implemented by means of widely available numerical tools. The method is computationally affordable for a broad range of users.

Estimating Permutation Entropy Variability via Surrogate Time Series / Ricci, Leonardo; Perinelli, Alessio. - In: ENTROPY. - ISSN 1099-4300. - 24:7(2022), p. 853. [10.3390/e24070853]

Estimating Permutation Entropy Variability via Surrogate Time Series

Ricci, Leonardo
;
Perinelli, Alessio
2022-01-01

Abstract

In the last decade permutation entropy (PE) has become a popular tool to analyze the degree of randomness within a time series. In typical applications, changes in the dynamics of a source are inferred by observing changes of PE computed on different time series generated by that source. However, most works neglect the crucial question related to the statistical significance of these changes. The main reason probably lies in the difficulty of assessing, out of a single time series, not only the PE value, but also its uncertainty. In this paper we propose a method to overcome this issue by using generation of surrogate time series. The analysis conducted on both synthetic and experimental time series shows the reliability of the approach, which can be promptly implemented by means of widely available numerical tools. The method is computationally affordable for a broad range of users.
2022
7
Ricci, Leonardo; Perinelli, Alessio
Estimating Permutation Entropy Variability via Surrogate Time Series / Ricci, Leonardo; Perinelli, Alessio. - In: ENTROPY. - ISSN 1099-4300. - 24:7(2022), p. 853. [10.3390/e24070853]
File in questo prodotto:
File Dimensione Formato  
Entropy_2022_24_853_Ricci_Perinelli.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 467.1 kB
Formato Adobe PDF
467.1 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/348819
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact