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Abstract: In the last decade permutation entropy (PE) has become a popular tool to analyze the
degree of randomness within a time series. In typical applications, changes in the dynamics of a
source are inferred by observing changes of PE computed on different time series generated by that
source. However, most works neglect the crucial question related to the statistical significance of
these changes. The main reason probably lies in the difficulty of assessing, out of a single time series,
not only the PE value, but also its uncertainty. In this paper we propose a method to overcome this
issue by using generation of surrogate time series. The analysis conducted on both synthetic and
experimental time series shows the reliability of the approach, which can be promptly implemented
by means of widely available numerical tools. The method is computationally affordable for a broad
range of users.

Keywords: permutation entropy; uncertainty estimation; surrogate generation

1. Introduction

Information measures are increasingly important in the investigation of complex
dynamics that underlie processes that occur in different frameworks [1]. The task mostly
consists of evaluating the amount of information out of a discrete sequence of a given
length. The sequence can be made of symbols belonging to a finite alphabet, e.g., DNA
sequences [2], or correspond to a time series of realizations of a physical random variable,
which ideally takes on values out of a continuous set. The latter case can be, at the expense
of a loss in resolution, reduced to the former one by encoding trajectories into symbols upon
a suitable coarse graining of the state space [3,4]. The information content of a sequence
built on a finite alphabet can be then inferred by applying techniques such as Shannon
block entropy [2,4–6].

In time series analysis, permutation entropy (PE), first devised in 2002 by Bandt and
Pompe [7], provides an alternative approach. Possibly due to the symbolic sequences
being naturally generated by the variable of interest without further model assumptions [7]
or any preassigned partition of the phase space [8], PE has progressively become one of the
most used information measures. Given a time series and a positive, integer dimension
m, PE is estimated by first encoding m-dimensional, consecutive sections of that time
series into symbolic sequences corresponding to permutations, and then by counting their
occurrences. PE finally corresponds to the plug-in Shannon entropy computed on the
sample distribution of the observed occurrence frequencies. Due to the simplicity in its
evaluation, PE has become popular in many research areas ranging from medicine [9–11]
to neuroscience [12–15], from climatology [16] to optoelectronics [17,18] and even transport
complexity analysis [19].

A major property of PE is the fact that its growth rate with the dimension m asymptot-
ically coincides with the Kolmogorov–Sinai entropy of the time series source [7]: the larger
the m, the more reliable the measure. Unfortunately, given m, the number of the possible
symbolic sequences can be as large as m!. For this reason, the required computational load
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typically becomes cumbersome when m exceeds 10. In addition, in order to yield reliable
sample distributions and avoid finite-size bias [20], the length of the input time series has
to be much larger than the size of the set of the visited symbolic sequences.

The difficulty of reliably assessing PE at large values of the dimension m presents
a likely reason why PE, rather than being employed as an estimator of entropy rate, is
often used at fixed m as an irregularity or complexity marker. Indeed, PE reaches the
maximum value log(m!) (throughout the paper we use “nat” units) in the case of purely
stochastic time series, and the minimum value, zero, in the case of monotonic functions.
More interestingly, the variation—again at fixed m—of PE computed on different segments
of a time series can provide a marker of different states of the underlying system, i.e., of
a nonstationary behavior. Cao et al. [21] first described the use of PE to detect dynamical
changes in complex time series. In a sample application, they showed how the method
could be used to detect the onset of epileptic seizures out of clinical electroencephalographic
(EEG) recordings. The approach has been since successfully applied in a wide spectrum of
fields, ranging from economics [22,23] to neurophysiology [24–27] and geophysics [28,29].

Due to it being a statistic computed on sample time series, detecting statistically
significant differences of PE in different segments immediately calls for the necessity of
estimating the variability, or uncertainty, of the PE computed on each single segment.
(We assume here that, as far as PE is concerned, each segment is stationary. Needless
to say, characterizing a segment as being stationary requires the same statistical tools
to detect changes. In other words, addressing the stationary requirement can promptly
lead to circular reasoning.) A standard approach consists of observing different time
series produced under the very same conditions and then applying basic statistics to
assess the uncertainty of PE. Unfortunately, in fields such as geophysics and astrophysics,
experimental conditions are neither controllable nor reproducible. Reproducibility is also a
major issue in life sciences; a way to circumvent it consists of observing samples recorded
from different individuals, under the rather strong assumption that they provide similar
responses [27,30,31].

An alternative approach to the assessment of the uncertainty of sample PE relies on
the symbolic sequence generation being approximated as a Markov process [32,33]. The
inference of the corresponding stochastic matrix would analytically lead to the evaluation
of the uncertainty out of a single measurement [34], a special case thereof occurring when
the process is memoryless [35]. Alternatively, the uncertainty can be estimated by bootstrap
methods [36]. Unfortunately, the number of nonzero elements of a stochastic matrix
describing the generation of symbolic sequences with dimension m can be as large as m ·m!
(each one of the m! symbolic sequences can be followed by up to m symbolic sequences),
thus making a reliable inference of each element of the matrix mostly unpractical.

In this paper, we investigate an alternative method to phenomenologically assess
the PE variability out of the single time series which the PE was computed on. The
method exploits the generation of surrogate time series, a randomization technique that
is commonly used to conduct data-driven hypothesis testing [37,38]. We rely here on the
iterative amplitude-adjusted Fourier transform (IAAFT) algorithm [39], possibly the most
reliable among the methods that address continuous processes [38]. Both PE and IAAFT
can be promptly implemented by using numerical packages that are available from open
source repositories (more details are provided in Sections 2 and 3).

To check the robustness of the method, we consider time series generated by two
test bench systems: the chaotic Lorenz attractor with different degrees of observational
noise, and an autoregressive process with different autocorrelation time values. The use
of both these systems provides a reliable emulation of a wide range of real experimental
situations. Our analysis shows that the variability of PE can be indeed reliably estimated on
a single time series. We then applied the method on an experimental case that concerns the
recognition, via analysis of EEG recordings, of cognitive states corresponding to closed and
opened eyes in resting state. Furthermore, in this case, the method definitely stood the test.
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The work is organized as follows. A summary of PE and its variability is presented in
Section 2, whereas surrogate generation is the topic of Section 3. In Section 4, we discuss
the surrogate-based estimation of PE variability on time series produced by two synthetic
systems. The application of the method to experimental time series is addressed in Section 5.
Final remarks are discussed in Section 6.

2. Permutation Entropy and Its Variability

Given a scalar time series X = {xn}, let the vector xn ≡ (xn, xn+1, . . . , xn+m−1) be a
window, or trajectory, comprised of m consecutive observations. Following Bandt and
Pompe [7], the window xn is encoded as the permutation, (sn,1, sn,2, . . . , sn,m), where each
number sn,j (1 6 j 6 m) is an integer that belongs to the range [1, m] and corresponds to
the rank, from the smallest to the largest, of xn+j−1 within xn. Ties between two or more x
values are solved by assigning the relative rank according to the index j. Let p̂S be the rate
with which a symbolic sequence S is observed within a sufficiently long time series X. The
sample PE of X, computed by setting the symbolic sequence dimension m, is defined as

Ĥm(X) = −∑
{S}

( p̂S log p̂S) +
M̂− 1

2(N −m + 1)
, (1)

where the sum, corresponding to the so-called plug-in estimator, runs over the set {S} of the
visited permutations of m distinct numbers, whose size M̂ satisfies M̂ 6 m!. In Equation (1),
the additional term M̂−1

2(N−m+1) is instead the so-called Miller–Madow correction [40–43],
which compensates for the negative bias affecting the plug-in estimator. Software packages
that implement PE are available from open source repositories [44–46].

In Equation (1) the symbol ·̂ on both pS and Hm expresses their being sample statistics,
which makes the sample PE Ĥm(X) a quantity affected by an uncertainty σHm(X). The
uncertainty σHm(X) is crucial in order to express the significance of the sample value given
by Equation (1). As discussed in Section 1, a special case in which the uncertainty σHm(X)

can be estimated out of the set { p̂S} occurs when the symbolic sequence generation is
memoryless [35]. However, besides the fact that most dynamical systems do have a
memory, the standard PE encoding procedure requires overlapping trajectories, which
intrinsically produces a memory effect on the succession of symbols [32]. Thus, for example
in the case m = 3, the permutation (1, 2, 3) can be only followed by itself or by (1, 3, 2),
(3, 1, 2).

Nevertheless, for the sake of comparison, it is worth evaluating the uncertainty σHm ,0
that would occur in the memoryless case. As shown by Basharin [40], the variance of
sample Shannon entropy ĤShannon computed on an N-fold realization of a memoryless,
multinomial process described by the set of probabilities {pi}, scales with N as

σ2
ĤShannon

=
Λ0

N
+O

(
1

N2

)
,

where the parameter Λ0, defined as Λ0 = ∑i(pi log2 pi)− (∑i pi log pi)
2, is a sort of popu-

lation variance of the random variable − log pi. Applying this scaling behavior to PE and
defining the plug-in estimator Λ̂0 of the parameter Λ0 as [34,35]

Λ̂0(X) = ∑
{S}

( p̂S log2 p̂S)−

∑
{S}

p̂S log p̂S

2

,

the uncertainty σHm ,0 of the sample PE in the memoryless case can be estimated as

σHm ,0(X) ≈

√
Λ̂0(X)

N −m + 1
, (2)
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where N is the length of the time series X.

3. Summary of Surrogate Generation

Given a time series, henceforth referred to as the “original” one, the goal of surrogate
generation is the synthesis of a set of close replicas that share basic statistical properties
with the original one [38]. The approach was first proposed [37] to generate data sets
consistent with the null hypothesis of an underlying linear process, with the ultimate aim
of testing the presence of nonlinearity. The method was then generalized to test other
null hypotheses, most notably to evaluate the statistical significance of cross-correlation
estimates [47–49], as well as other coupling metrics such as transfer entropy [50].

The implementation of surrogate generation requires the algorithm to mirror the null
hypothesis to be tested. Therefore, a straightforward random shuffling of data points
preserves the amplitude distribution of the original time series while destroying any
temporal structure, and thus allows for testing the null hypothesis of a white noise source
having a given amplitude distribution [37]. Another implementation targets the null
hypothesis of an underlying Gaussian process with a given finite autocorrelation. In this
case, the surrogate generation is conducted by Fourier-transforming the original time series
and then randomizing the phase of the resulting frequency domain sequence: by virtue
of the Wiener–Kinchine theorem, computing the inverse Fourier transform of this last
sequence leads to a time series that has the same autocorrelation as the original one [37].
While the exact, simultaneous conservation of both the amplitude distribution and the
autocorrelation function is impossible, the IAAFT algorithm conserves the amplitude
distribution while approximating the spectrum and thus the autocorrelation [39].

A more general way of producing surrogate data consists of setting up a “simulated
annealing” pipeline in which, at each step, time series samples are randomly swapped and,
depending on the effect of the swap on a suitably defined cost function, the step is either
accepted or rejected [51]. This way, the statistical properties to be preserved in surrogate
data—and thus the details of the null hypothesis to be tested—are transferred from the
algorithm to the definition of the cost function, so that in principle any hypothesis can be
tested. However, this versatility comes at the expense of increased computational costs [38].

In the present work, the IAAFT algorithm for surrogate generation, first described by
Schreiber and Schmitz [39] and possibly the most reliable one in the case of continuous
processes, was used. The main feature of IAAFT is the simultaneous quasi-conservation
of the amplitude distribution and the autocorrelation. Consequently, the local structure
of the trajectories, and thus the statistical properties of the encoded symbolic sequences,
is expected to be preserved. On the contrary, possibly the simplest surrogate generation
method, namely a random shuffling of data points, would directly act on the symbolic
sequences similarly to the superposition of white noise. It has to be stressed that, while
the analysis described below proves IAAFT to be satisfactory, the choice of an optimal
surrogate generation method can be a matter of further investigation, as discussed in
Section 6.

The main steps of the algorithm are summarized below [52]. Software packages that
implement IAAFT are available from open source repositories [53–57]. An implementation
in Matlab and Python, developed by the authors, is also available [58].

Given the n-th value xn of a time series X = {xn}, let rn be the amplitude rank, from
the smallest to the largest, of xn within the time series X.

• In step 0 of the algorithm, the values of the time series X are randomly shuffled so as
to yield a sequence Y0 = {y0,n}.

• Step 1 consists of FFT-transforming the two time series X, Y0, thus producing the
frequency domain sequences {X̃k}, {Ỹ0,k}, respectively. Let φ0,k be the phase, i.e., the
argument, of the complex number Ỹ0,k (Ỹ0,k = |Ỹ0,k|eiφ0,k ).

• Step 2 consists of two parts. First, the two Fourier sequences {X̃k}, {Ỹ0,k} are mingled
together to produce the sequence {Z̃0,k}, where Z̃0,k = |X̃k|eiφ0,k ; in other words, Z̃0,k
has the amplitude of X̃k and the phase of Ỹ0,k. Second, the inverse Fourier transform of
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the sequence {Z̃0,k} is computed, thus yielding the time-domain sequence Z0 = {z0,n}.
For each value z0,n, let q0,n be the rank, from the smallest to the largest, of z0,n within
the time series Z0.

• Step 3 consists of replacing the n-th value z0,n with the value xm such that rm = q0,n.
This step leads to the amplitude-adjusted sequence Y1 = {y1,n}.

• Steps (1) to (3) are finally iteratively repeated until the i-th cycle characterized by

∑
n
(yi,n − yi−1,n)

2 < 10−6 ·∑
n

y2
i,n ,

i.e., until the Euclidean distance between the sequences Yi, Yi−1 (considering them as
vectors) becomes sufficiently small with respect to their norms.

Let Y be the final sequence Yi produced by the iteration. By construction, each sequence Yi,
and therefore also Y, has the same amplitude distribution as the original one X. As shown
by Schreiber and Schmitz [39], the iteration leads to a discrepancy between the spectra of X
and Y whose order can be quantified as

∑k
(
|Ỹk| − |X̃k|

)2

∑k |X̃k|2
∼ 1

N3/2 .

Despite its robustness, IAAFT is sensitive to amplitude mismatches between the
beginning and the end of the input original time series [38]. This issue, referred to as
periodicity artifacts, can be overcome by trimming the original time series to generate a
shorter segment whose end points have sufficiently close amplitudes [37,38]. While in the
case of synthetic time series the operation can be implemented without losing information
(for example, arbitrarily large numbers of equivalent original time series can be produced),
the same is not true for experimental time series. We therefore opted for an alternative
approach that consists of detrending the time series so that the end points have equal
values. To this purpose, each value xn of an input time series X is modified according to
the following expression:

x′n = xn −
xN − x1

N − 1
(n− 1) , (3)

where n ∈ [1, N]. Henceforth, for the sake of simplicity, the resulting time series X′ is
renamed as X.

Indeed the detrending operation of Equation (3) can slightly modify the number of
occurrences of the symbolic sequences and consequently the sample PE value: within the
same m-dimensional trajectory, the end points are mutually displaced by an amount of
order mσ/N, where σ is the standard deviation of the time series. However, whenever
m� N, the effects on the PE assessment are negligible.

4. Surrogate-Based Estimation of PE Variability in the Case of Synthetic Sequences

This section describes the details of surrogate-based estimation of PE variability. To
evaluate the performance of the method we consider two synthetic dynamical systems,
which allow for the generation of arbitrary numbers of similar time series. The two systems
are a Lorenz attractor affected by observational noise and an autoregressive fractionally-
integrated moving-average (ARFIMA) process. Both are described in Section 4.3.

4.1. Reference Value of PE Variability

Let X be the realization of a time series of length N generated by a dynamical system.
As explained in the previous section, the time series is supposed to be detrended so as
to avoid periodicity artifacts. We use the following standard statistical approach, which
exploits the system being synthetic, to evaluate the reference uncertainty σHm(X) on the PE
assessment Ĥm(X). The uncertainty σHm(X) will be then used to evaluate the reliability of
the surrogate-based estimation.
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Given X, a set of L− 1 additional realizations X`, with 1 6 ` 6 L− 1 is generated out
of the same system by randomly changing the starting seed and applying the detrending
operation described by Equation (3). Upon setting X0 ≡ X and evaluating the sample mean
〈Ĥm(X)〉 as

〈Ĥm(X)〉 = 1
L

L−1

∑
`=0

Ĥm(X`) ,

the sample variance s2
Ĥm(X)

is evaluated as

s2
Ĥm(X)

=
1

L− 1

L−1

∑
`=0

[
Ĥm(X`)− 〈Ĥm(X)〉

]2 .

The resulting sample standard deviation sĤm(X) is an estimate of the uncertainty σHm(X) of
the permutation entropy of the original time series X. In the present work, L = 100.

4.2. Surrogate-Based Estimation of PE Variability

The uncertainty of the permutation entropy of the original sequence X is then esti-
mated by relying on surrogate generation as follows. Let {Y`}, with 1 6 ` 6 L (again, L is
set to 100), a set of surrogates of the time series X generated via IAAFT and detrended via
Equation (3).

Upon evaluating the sample mean 〈Ĥm(Y)〉 as

〈Ĥm(Y)〉 =
1
L

L−1

∑
`=0

Ĥm(Y`) ,

the sample variance s2
Ĥm(Y)

is evaluated as

s2
Ĥm(Y) =

1
L− 1

L−1

∑
`=0

[
Ĥm(Y`)− 〈Ĥm(Y)〉

]2 . (4)

The resulting sample standard deviation sĤm(Y) is taken as a measure of the surrogate-based
variability of the permutation entropy of a time series X.

4.3. Synthetic Dynamical Systems

The noiseless Lorenz attractor is described by the following differential equation system

dx
dt

= a(y− x) ,

dy
dt

= x(c− z)− y ,

dz
dt

= xy− bz .

Here, the three parameters are set to a = 10, b = 8/3, c = 28. The system is integrated
by means of a Runge–Kutta (8,9) Prince–Dormand algorithm, with the integration time
dt = 0.3 that also coincides with the sampling time. The value xn of the x coordinate
computed at the n-th step is then added to a realization of a normal random variable with
zero mean and standard deviation η · σLorenz, where η is a non-negative amplitude and
σLorenz = 7.9252822 is the standard deviation of the x coordinate of the noiseless Lorenz
attractor. One has:

x′n = xn + σLorenz · η · εn ,

where εn is a standard normal random variable. In the following, for the sake of simplicity,
the result x′n is renamed as xn: x′n → xn. The case η = 0 corresponds to the noiseless Lorenz
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attractor. For any other positive value η, the resulting signal has a power signal-to-noise
ratio given by η−2.

The ARFIMA process is defined as

xn =
kmax

∑
k=1

ρ Γ(k− ρ)

Γ(1− ρ) Γ(k + 1)
xn−k + εn ,

where εn is a standard normal random variable, kmax = 100 (ideally, kmax = ∞), and ρ is a
parameter that tunes the autocorrelation time of the process: from purely white noise in the
case ρ = 0, to a progressively more correlated process when ρ→ 1. (Negative values of ρ,
which produce anti-correlated processes, are not considered here).

For both dynamical systems, integration starts from randomly chosen points. To avoid
transient effects, the first 103 steps of each integration are discarded. The resulting original
time series are made of N = 10,006 points.

The chosen length is representative of many experimental situations. For example,
the EEG time series analyzed in Section 5 are made of 1.5 · 104 points. Indeed, the length
of the time series is not expected to play a role in the present method: if the surrogate
generation reliably replicates the statistical properties of the original time series, both the
intrinsic variability of the original time series and those inferred by surrogate generation are
expected to scale as N−

1
2 , so that their ratio, modulo higher-order corrections, is expected

to be N-independent.

4.4. Numerical Results

Before discussing the results concerning PE uncertainties, it is worth considering the
PE sample means 〈Ĥm(X)〉 and 〈Ĥm(Y)〉 as a function of the parameters η and 1−ρ and for
m = 4, 5, 6, 7. We remind that the noise content of a synthetic time series is tuned by means
of the parameter η for the Lorenz system, and ρ for the ARFIMA process.

Figure 1 shows, for each system and upon a normalization by log(m!), both sample
means. As expected, the normalized PE sample means approach unity as the time series be-
come progressively more white-noise-like, i.e., when η & 0.5 (Lorenz system) and 1−ρ & 0.9
(ARFIMA process). It is worth noting that, for m = 7 and for both systems, Equation (1)
performs well even when the number of visited symbolic sequences approaches 7! = 5040
and thus becomes comparable with the time series length of N −m + 1 = 10000.

In the case of the ARFIMA process, the two sample means continue coinciding also
at progressively longer autocorrelation times (1−ρ → 0). Conversely, in the case of the
Lorenz system and for η . 10−2, the values of PE evaluated on surrogate time series
(yellow squares) start to significantly diverge from the values (blue dots) computed out
of the set {X` | 0 6 ` 6 L− 1}, consisting of the original synthetic time series X and its
equivalent replicas. Indeed, surrogate data yield higher PE values than original time series,
thus underpinning the deterministic nature of the system’s dynamics. The fact that no
divergence is observed in the case of the ARFIMA process hints at an intrinsically noisy
content of the time series also at long autocorrelation times.

In the case of the Lorenz system, the sample standard deviations sĤm(X) and sĤm(Y)
are shown in Figure 2 as a function of the parameter η. Similarly, in the case of the ARFIMA
process, sĤm(X) and sĤm(Y) are shown in Figure 3 as a function of the parameter 1−ρ. In both
cases, results are presented for m = 4, 5, 6, 7. In addition, each figure shows the uncertainty
estimate σHm ,0 given by Equation (2) and corresponding to the memoryless (multinomial)

case, as well as the Harris limit [42]. This limit is given by
√

m!−1
2N2 and corresponds to the

special case in which the multinomial distribution is uniform. This situation is reached
in the case of sufficiently high noise, so that all symbolic sequences become equiprobable.
Finally, Figures 2 and 3 also show the ratio sĤm(Y)/sĤm(X) between the surrogate estimates
of the PE uncertainty and the related reference values.
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Figure 1. Sample mean of PE, normalized by log(m!), as a function of the tuning parameters η and
1− ρ for the Lorenz system (a–d) and for the ARFIMA process (e–h), respectively: each panel pair
corresponds to a different value of the dimension m. Blue dots and lines correspond to the reference PE
sample mean 〈Ĥm(X)〉 computed out of L = 100 independent realization of the synthetic time series,
as described in Section 4.1. Yellow squares and lines correspond to the PE sample mean 〈Ĥm(Y)〉
computed out of L = 100 surrogate time series (Section 4.2). Error bars are too small to be displayed.
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Figure 2. Sample standard deviation of PE, normalized by log(m!), as a function of the tuning
parameter η for the Lorenz system: (a) m = 4; (b) m = 5; (c) m = 6; (d) m = 7. In the upper part
of each panel, blue dots and lines correspond to the reference PE sample standard deviation sĤm(X)

computed out of L = 100 independent realization of the synthetic time series (Section 4.1). Yellow
squares and lines correspond to the PE sample standard deviation sĤm(Y) computed out of L = 100
surrogate time series (Section 4.2). The black, solid line corresponds to the memoryless uncertainty
estimator σHm ,0 given by Equation (2). Finally, the black, dashed line displays the Harris limit (see
main text). The lower part of each panel shows the ratio sĤm(Y)/sĤm(X) between the surrogate
estimate of the PE uncertainty and its reference value.
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Figure 3. Sample standard deviation of PE, normalized by log(m!), as a function of the tuning
parameter 1−ρ for the ARFIMA process. (a) m = 4; (b) m = 5; (c) m = 6; (d) m = 7. The description
of the data representation (dots, lines and colors) is the same as in Figure 2.

Unless the autocorrelation time becomes too large, the ratio sĤm(Y)/sĤm(X) lays within
the interval [0.5, 1]. This ratio being of order 1 is a remarkable result. The light underesti-
mation of the real uncertainty of the PE assessment is likely due to the IAAFT surrogate
generation producing high-fidelity replicas of the original signal, though without predicting
its exact variability due to the intrinsic lack of knowledge of the signal source. Nevertheless,
the level of prediction of the real PE assessment uncertainty is surprisingly good: a factor
0.5 is small enough so as to allow for reasonable estimates of the level of significance of a
PE assessment.

4.5. Assignment of the Surrogate-Based PE Uncertainty

Considering the results of the analysis described above, the procedure to evaluate the
uncertainty of a single PE assessment via IAAFT surrogate generation can be summarized
as follows.

Given an input time series X:

1. Compute a detrended version of X by applying Equation (3) of Section 3;
2. Generate a set {Y`} of L surrogate time series via IAAFT;
3. Upon evaluating the PE on each Yn, compute the standard deviation sĤm(Y) via

Equation (4);
4. Finally, assign the uncertainty ΣĤm

of the PE assessment on X by setting

ΣĤm(X) = α · sĤm(Y) .

We suggest L = 100 and α = 2. The former value is justified by ŝĤm(Y) being a sample
standard deviation, and thus being affected by a relative uncertainty that approximately
scales as (2L)−1/2. The value L = 100 is then a reasonable trade-off between the urge of
obtaining a reliable estimate of ŝĤm(Y) and affordable computational costs. The latter value
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α = 2 corresponds to the reciprocal of the ratio sĤm(Y)/sĤm(X), as described at the end of
Section 4.4. The setting of the parameter α is further discussed in Section 6.

5. Estimation of PE Variability on Experimental Time Series

In the present section, we discuss the implementation of the surrogate-based estimation
of PE variability in the case of a PE analysis of experimental electrophysiological data.

The data correspond to resting-state EEG time series recorded on 30 young healthy
subjects and made available on the LEMON database [59,60]. Data recording was conducted
in accordance with the Declaration of Helsinki. The related study protocol was approved by
the ethics committee at the medical faculty of the University of Leipzig, Germany (reference
number 154/13-ff). Details of the set of subjects, the recording procedure, the preprocessing
steps, and source reconstruction, are extensively described in two recent papers [61,62].

The reconstructed time series considered here correspond to the two “V1” brain areas
as defined in the atlas by Glasser et al. [63], which belong to the left and right visual
cortex. Each EEG acquisition session was comprised of 16 successive and interleaved
segments corresponding to eyes-closed (eight segments) and eyes-opened (eight segments)
conditions; recordings commenced with closed eyes. To maximize stationarity, and to
therefore avoid both transient effects at the beginning and fatigue effects at the end, we
neglect here the first and the last pairs of conditions. Because the recorded segments had a
duration between 60 s and 90 s, the corresponding raw time series were trimmed down to
60 s each by symmetrically removing leading and trailing data points. The preprocessing
resulted, for each subject, in two reconstructed time series of brain activity, each composed
of two interleaved sets of six 60 s long segments. An example of a preprocessed time series
corresponding to a single brain area of a subject is shown in Figure 4.
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Figure 4. (below) Time series corresponding to the left visual cortex of a single subject. The blue
and red segments correspond to the eyes-closed and eyes-opened conditions, respectively. (above)
PE analysis of the segments that make up the time series: each blue (red) dot is positioned above
the center of the respective eyes-closed (eyes-opened) segment plotted below, while its ordinate
corresponds to the normalized PE value Ĥm(X)/ log(m!), with m = 7, computed on that segment.
Each error bar corresponds to the PE uncertainty ΣĤm(X) assessed via the surrogate-based procedure
summarized in Section 4.5. Finally, the blue (red) dashed line corresponds to the best-fit quadratic
law that describes the time drift of the PE values in the eyes-closed (eyes-opened) condition.
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In addition to the time series, Figure 4 shows the normalized PE values with m = 7
computed on each segment and the related surrogate-based uncertainty estimate on each
PE value.

It is graphically apparent that the error bars on the PE assessments are approximately
equal to each other and also correspond to the fluctuations of the PE values. This observa-
tion can be quantified by means of an analysis based on a least-squares fit, as follows.

Our null hypothesis consists of two assumptions. The first corresponds to the very
claim of this paper, namely that the surrogate-based uncertainties, i.e., the error bars,
correctly estimate the real uncertainty of the related PE values. Second, we assume that
the PE values drift in time, e.g., due to fatigue or habituation, according to a quadratic law
a + bk + ck2.

Given a subject, a brain area and a condition—there are 120 different combinations—a
least-squares fit of the quadratic law on the set of six points is carried out (see dashed lines
in Figure 4). The fit consists of finding the parameters â, b̂, ĉ that minimize the sum of the
normalized residuals

S(a, b, c) =
6

∑
k=1

[Ĥm(Xk)− (a + bk + ck2)]2

Σ2
Ĥm(Xk)

,

where Xk, with k = 1, . . . , 6, are the time series corresponding to the six segments.
If the null hypothesis holds, the sum S(â, b̂, ĉ) is to be distributed as a χ-square variable

χ2
3 with ν = 3 degrees of freedom. Figure 5 shows, for each one of the four m values 4, 5, 6, 7,

the histogram of the 120 values of S(â, b̂, ĉ). In all four cases, the histograms are in very
good agreement with the plots of the χ2

3 probability density function fχ2
3
(x) given by

fχ2
3
(x) =

√
x

2π
e−x/2 . (5)

The few outliers (less than 15%, identified via p < 0.01) are samples in which the quadratic
description does not hold. It is worth mentioning that a similar analysis was carried out
also assuming a linear time dependence for the PE drift. Furthermore, in this case, the
agreement was satisfactory except for about 20% of the samples for which, again, the
assumed drift law was not appropriate.
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Figure 5. Histograms, normalized to unit area, of the sum S(â, b̂, ĉ), evaluated for 120 different
subjects, brain areas and conditions: (a) m = 4; (b) m = 5; (c) m = 6; (d) m = 7. Each panel
also displays the theoretical probability density function fχ2

3
(x) of the χ2

3 random variable with
ν = 3 degrees of freedom, given by Equation (5).

We conclude this section by stating that in the example shown in Figure 4, all data
points corresponding to the eyes-closed condition have a PE value that is significantly lower
than any point of the eyes-opened condition. The closest pair is given by the eyes-closed
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segment in the time range between 4 min and 5 min (third blue point from left), and the
last, eyes-opened segment in the time range between 11 min and 12 min (sixth red point
from left). The PE values of the two points are 0.487 and 0.507, respectively. Their ΣĤm(X)
uncertainties are 0.006 and 0.007, respectively. By using a standard two-sided z statistical
test and assuming as a null hypothesis the fact that the difference is due to chance, the
resulting p-value turns out to be about 0.03.

6. Discussion

In the method described in Section 4.5 the only parameter that requires an “educated
guess” is the factor α that magnifies the sample standard deviation computed on a set of
surrogate time series so as to provide the uncertainty value of the PE assessment. Our
analysis shows that α typically ranges between 1 and 2, which is in any case a very small
range to cope with. Remarkably, at least in the case of deterministic chaos provided by the
Lorenz attractor contaminated by observational noise, α approaches unity in the noiseless
limit or when the noise is dominant, while approaching two whenever noise and signal
are comparable.

An important point to highlight is the fact that the approach described in this paper can
be promptly generalized to other kinds of information measures, for example approximated
entropy [64,65] and sample entropy [66], and in particular to those relying, such as PE, on
symbolic sequence encoding, for which a major example is provided by Shannon block
entropy [2].

A topic for further investigation is the location of the surrogate generation within the
pipeline that leads from a time series to the assessment of information and its uncertainty:
the approach proposed in this work implements the surrogate generation on the very
input of the pipeline, namely the original time series. An alternative approach could
instead operate on the symbolic sequence encoded out of the original time series, under
the constraint that the chosen randomization technique preserves statistical and dynamical
properties of the original encoding.

It has to be stressed that the choice of a suitable surrogate generation algorithm
constitutes a core ingredient of the method proposed. For the cases dealt with in the
present work, IAAFT proved to be a reliable technique: as expressed in Section 3, the
simultaneous quasi-conservation of the amplitude distribution and the autocorrelation is
crucial to preserve the local structure of the trajectories and thus the statistical properties of
the encoded symbolic sequences. Nevertheless, the investigation of an optimal surrogate
generation algorithm to be employed in a specific context is expected to make up an
interesting development of the method.

An example is provided by how surrogate generation can be applied to the inference
of information variability in the case of point processes, for which phase randomization or
IAAFT are unsuitable [38]. A possibility consists of using approaches based on dithering of
the event occurrence times [47,67] or on the observation of the joint probability distribution
of consecutive inter-event intervals [52,68].

In conclusion, the method proposed in this paper provides a reliable estimation of the
variability affecting a PE evaluation out of a single time series. The method, which relies
on the generation of surrogate time series and can be promptly implemented by means of
standard analytical tools, allows one to address issues concerning stationarity as well as
statistically significant changes in the dynamics of a source via PE. The analysis conducted
on the noisy Lorenz attractor and an ARFIMA process demonstrated that the method
performs well both in the case of time series contaminated by observational noise [8] and
in the case of noise with long autocorrelation time. Possible developments of the method
concern its application to other information measures.
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