Human mobility is a complex phenomenon emerging from the nexus between social, demographic, economic, political and environmental systems. In this thesis we develop novel mathematical models for the study of complex systems, to improve our understanding of mobility patterns and enhance our ability to predict local and global flows for real-world applications.The first and second chapters introduce the concept of human mobility from the point of view of complex systems science, showing the relation between human movements and their predominant drivers. In the second chapter in particular, we will illustrate the state of the art and a summary of our scientific contributions. The rest of the thesis is divided into three parts: structure, causes and effects.The third chapter is about the structure of a complex system: it represents our methodological contribution to Network Science, and in particular to the problem of network reconstruction and topological analysis. We propose a novel methodological framework for the definition of the topological descriptors of a complex network, when the underlying structure is uncertain. The most used topological descriptors are redefined – even at the level of a single node – as probability distributions, thus eluding the reconstruction phase. With this work we have provided a new approach to study the topological characteristics of complex networks from a probabilistic perspective. The forth chapter deals with the effects of human mobility: it represents our scientific contribution to the debate about the COVID-19 pandemic and its consequences. We present a complex-causal analysis to investigate the relationship between environmental conditions and human activity, considered as the components of a complex socio-environmental system. In particular, we derive the network of relations between different flavors of human mobility data and other social and environmental variables. Moreover, we studied the effects of the restrictions imposed on human mobility – and human activities in general – on the environmental system. Our results highlight a statistically significant qualitative improvement in the environmental variable of interest, but this improvement was not caused solely by the restrictions due to COVID-19 pandemic, such as the lockdown.The fifth and sixth chapters deal with the modelling of causes of human mobility: the former is a concise chapter that illustrate the phenomenon of human displacements caused by environmental disasters. Specifically, we analysed data from different sources to understand the factors involved in shaping mobility patterns after tropical cyclones. The latter presents the Feature-Enriched Radiation Model (FERM), our generalization of the Radiation Model which is a state-of-the-art mathematical model for human mobility. While the original Radiation Model considers only the population as a proxy for mobility drivers, the FERM can handle any type of exogenous information that is used to define the attractiveness of different geographical locations. The model exploits this information to divert the mobility flows towards the most attractive locations, balancing the role of the population distribution. The mobility patterns at different scales can be reshaped, following the exogenous drivers encoded in the features, without neglecting the global configuration of the system.

Network Models for Large-Scale Human Mobility / Raimondo, Sebastian. - (2022 Jun 03), pp. 1-162. [10.15168/11572_346543]

Network Models for Large-Scale Human Mobility

Raimondo, Sebastian
2022-06-03

Abstract

Human mobility is a complex phenomenon emerging from the nexus between social, demographic, economic, political and environmental systems. In this thesis we develop novel mathematical models for the study of complex systems, to improve our understanding of mobility patterns and enhance our ability to predict local and global flows for real-world applications.The first and second chapters introduce the concept of human mobility from the point of view of complex systems science, showing the relation between human movements and their predominant drivers. In the second chapter in particular, we will illustrate the state of the art and a summary of our scientific contributions. The rest of the thesis is divided into three parts: structure, causes and effects.The third chapter is about the structure of a complex system: it represents our methodological contribution to Network Science, and in particular to the problem of network reconstruction and topological analysis. We propose a novel methodological framework for the definition of the topological descriptors of a complex network, when the underlying structure is uncertain. The most used topological descriptors are redefined – even at the level of a single node – as probability distributions, thus eluding the reconstruction phase. With this work we have provided a new approach to study the topological characteristics of complex networks from a probabilistic perspective. The forth chapter deals with the effects of human mobility: it represents our scientific contribution to the debate about the COVID-19 pandemic and its consequences. We present a complex-causal analysis to investigate the relationship between environmental conditions and human activity, considered as the components of a complex socio-environmental system. In particular, we derive the network of relations between different flavors of human mobility data and other social and environmental variables. Moreover, we studied the effects of the restrictions imposed on human mobility – and human activities in general – on the environmental system. Our results highlight a statistically significant qualitative improvement in the environmental variable of interest, but this improvement was not caused solely by the restrictions due to COVID-19 pandemic, such as the lockdown.The fifth and sixth chapters deal with the modelling of causes of human mobility: the former is a concise chapter that illustrate the phenomenon of human displacements caused by environmental disasters. Specifically, we analysed data from different sources to understand the factors involved in shaping mobility patterns after tropical cyclones. The latter presents the Feature-Enriched Radiation Model (FERM), our generalization of the Radiation Model which is a state-of-the-art mathematical model for human mobility. While the original Radiation Model considers only the population as a proxy for mobility drivers, the FERM can handle any type of exogenous information that is used to define the attractiveness of different geographical locations. The model exploits this information to divert the mobility flows towards the most attractive locations, balancing the role of the population distribution. The mobility patterns at different scales can be reshaped, following the exogenous drivers encoded in the features, without neglecting the global configuration of the system.
3-giu-2022
XXXIV
2020-2021
Matematica (29/10/12-)
Mathematics
De Domenico, Manlio
Agostinelli, Claudio
no
Inglese
File in questo prodotto:
File Dimensione Formato  
PhD_Thesis_Sebastian_Raimondo_Network_Models_for_Large_Scale_Human_Mobility.pdf

accesso aperto

Descrizione: Manoscritto Tesi di Dottorato
Tipologia: Tesi di dottorato (Doctoral Thesis)
Licenza: Creative commons
Dimensione 26.27 MB
Formato Adobe PDF
26.27 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/346543
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact