For flowing quantum gases, it has been found that at long times an initial black-hole laser (BHL) configuration exhibits only two possible states: the ground state or a periodic self-oscillating state of continuous emission of solitons. So far, all the works on this subject are based on a highly idealized model, quite difficult to implement experimentally. Here we study the instability spectrum and the time evolution of a recently proposed realistic model of a BHL, thus providing a useful theoretical tool for the clear identification of black-hole lasing in future experiments. We further confirm the existence of a well-defined phase diagram at long times, which bespeaks universality in the long-time behavior of a BHL. Additionally, we develop a complementary model in which the same potential profile is applied to a subsonic homogeneous flowing condensate that, despite not forming a BHL, evolves toward the same phase diagram as the associated BHL model. This result reveals an even stronger form of robustness in the long-time behavior with respect to the transient, which goes beyond what has been described in the previous literature.

Long time universality of black-hole lasers / de Nova, Jrm; Palacios, Pf; Carusotto, I; Sols, F. - In: NEW JOURNAL OF PHYSICS. - ISSN 1367-2630. - 23:2(2021). [10.1088/1367-2630/abdce2]

Long time universality of black-hole lasers

Carusotto I;
2021

Abstract

For flowing quantum gases, it has been found that at long times an initial black-hole laser (BHL) configuration exhibits only two possible states: the ground state or a periodic self-oscillating state of continuous emission of solitons. So far, all the works on this subject are based on a highly idealized model, quite difficult to implement experimentally. Here we study the instability spectrum and the time evolution of a recently proposed realistic model of a BHL, thus providing a useful theoretical tool for the clear identification of black-hole lasing in future experiments. We further confirm the existence of a well-defined phase diagram at long times, which bespeaks universality in the long-time behavior of a BHL. Additionally, we develop a complementary model in which the same potential profile is applied to a subsonic homogeneous flowing condensate that, despite not forming a BHL, evolves toward the same phase diagram as the associated BHL model. This result reveals an even stronger form of robustness in the long-time behavior with respect to the transient, which goes beyond what has been described in the previous literature.
2
de Nova, Jrm; Palacios, Pf; Carusotto, I; Sols, F
Long time universality of black-hole lasers / de Nova, Jrm; Palacios, Pf; Carusotto, I; Sols, F. - In: NEW JOURNAL OF PHYSICS. - ISSN 1367-2630. - 23:2(2021). [10.1088/1367-2630/abdce2]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/343920
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 3
social impact