We consider the functional ∫Ωg(∇u+X∗)dL2n where g is convex and X∗(x,y)=2(−y,x) and we study the minimizers in BV(Ω) of the associated Dirichlet problem. We prove that, under the bounded slope condition on the boundary datum, and suitable conditions on g, there exists a unique minimizer which is also Lipschitz continuous. The assumptions on g allow to consider both the case with superlinear growth and the one with linear growth. Moreover neither uniform ellipticity nor smoothness of g are assumed.

Lipschitz minimizers for a class of integral functionals under the bounded slope condition / Don, S.; Lussardi, L.; Pinamonti, A.; Treu, G.. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 216:(2022), pp. 11268901-11268927. [10.1016/j.na.2021.112689]

Lipschitz minimizers for a class of integral functionals under the bounded slope condition

Pinamonti A.;
2022

Abstract

We consider the functional ∫Ωg(∇u+X∗)dL2n where g is convex and X∗(x,y)=2(−y,x) and we study the minimizers in BV(Ω) of the associated Dirichlet problem. We prove that, under the bounded slope condition on the boundary datum, and suitable conditions on g, there exists a unique minimizer which is also Lipschitz continuous. The assumptions on g allow to consider both the case with superlinear growth and the one with linear growth. Moreover neither uniform ellipticity nor smoothness of g are assumed.
Don, S.; Lussardi, L.; Pinamonti, A.; Treu, G.
Lipschitz minimizers for a class of integral functionals under the bounded slope condition / Don, S.; Lussardi, L.; Pinamonti, A.; Treu, G.. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 216:(2022), pp. 11268901-11268927. [10.1016/j.na.2021.112689]
File in questo prodotto:
File Dimensione Formato  
DLPTFinal092020.pdf

accesso aperto

Tipologia: Pre-print non referato (Non-refereed preprint)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 234.11 kB
Formato Adobe PDF
234.11 kB Adobe PDF Visualizza/Apri
1-s2.0-S0362546X21002704-main.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 555.68 kB
Formato Adobe PDF
555.68 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/341138
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact