Given an open and bounded set ω n and a family - = (X 1, ..., X m) of Lipschitz vector fields on ω, with m ≤ n, we characterize three classes of local functionals defined on first-order X-Sobolev spaces, which admit an integral representation in terms of X, i.e. F (u, A) = A f (x, u (x), X u (x)) x, with f being a Carathéodory integrand.
Integral representation of local functionals depending on vector fields / Essebei, Fares; Pinamonti, Andrea; Verzellesi, Simone. - In: ADVANCES IN CALCULUS OF VARIATIONS. - ISSN 1864-8258. - 2023, 16:3(2023), pp. 767-789. [10.1515/acv-2021-0054]
Integral representation of local functionals depending on vector fields
Essebei, Fares;Pinamonti, Andrea
;Verzellesi, Simone
2023-01-01
Abstract
Given an open and bounded set ω n and a family - = (X 1, ..., X m) of Lipschitz vector fields on ω, with m ≤ n, we characterize three classes of local functionals defined on first-order X-Sobolev spaces, which admit an integral representation in terms of X, i.e. F (u, A) = A f (x, u (x), X u (x)) x, with f being a Carathéodory integrand.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
10.1515_acv-2021-0054.pdf
accesso aperto
Tipologia:
Post-print referato (Refereed author’s manuscript)
Licenza:
Creative commons
Dimensione
821.3 kB
Formato
Adobe PDF
|
821.3 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione