Given an open and bounded set ω n and a family - = (X 1, ..., X m) of Lipschitz vector fields on ω, with m ≤ n, we characterize three classes of local functionals defined on first-order X-Sobolev spaces, which admit an integral representation in terms of X, i.e. F (u, A) = A f (x, u (x), X u (x)) x, with f being a Carathéodory integrand.
Integral representation of local functionals depending on vector fields / Essebei, F.; Pinamonti, A.; Verzellesi, S.. - In: ADVANCES IN CALCULUS OF VARIATIONS. - ISSN 1864-8258. - 2022:(2022), pp. 1-23. [10.1515/acv-2021-0054]
Integral representation of local functionals depending on vector fields
Essebei, F.;Pinamonti, A.;Verzellesi, S.
2022-01-01
Abstract
Given an open and bounded set ω n and a family - = (X 1, ..., X m) of Lipschitz vector fields on ω, with m ≤ n, we characterize three classes of local functionals defined on first-order X-Sobolev spaces, which admit an integral representation in terms of X, i.e. F (u, A) = A f (x, u (x), X u (x)) x, with f being a Carathéodory integrand.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
10.1515_acv-2021-0054.pdf
accesso aperto
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Creative commons
Dimensione
820.84 kB
Formato
Adobe PDF
|
820.84 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione