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Abstract: Given an open and bounded set Ω ⊆ ℝn and a family X = (X1, . . . , Xm) of Lipschitz vector fields
on Ω, with m ≤ n, we characterize three classes of local functionals defined on first-order X-Sobolev spaces,
which admit an integral representation in terms of X, i.e.

F(u, A) = ∫
A

f(x, u(x), Xu(x)) dx,

with f being a Carathéodory integrand.
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1 Introduction
The representation of local functionals as integral functionals of the form

F(u) = ∫
Ω

f(x, u(x), Du(x)) dx

has a very long history and exhibits a natural application when dealing with relaxed functionals and related
Γ-limits in a suitable topology. In the Euclidean setting, this problem is now very well understood, and we
refer the interested reader to the papers [2, 6–9] for a complete overview of the subject.

Recently, in [16], Franchi, Serapioni and Serra Cassano started the study of variational functionals
driven by a family of Lipschitz vector fields. By a family of Lipschitz vector fields we mean an m-tuple
X = (X1, . . . , Xm), with m ≤ n, where each Xj is a first-order differential operator with Lipschitz coeffi-
cients cj,i defined on a bounded open set Ω ⊆ ℝn, i.e.

Xj(x) =
n
∑
i=1

cj,i(x)∂i , j = 1, . . . ,m.

Moreover, according to [20], we assume that the family X satisfies the structure assumption (LIC), which
roughly means that X1(x), . . . , Xm(x) are linearly independent for a.e. x ∈ Ω as vectors of ℝn (cf. Defini-
tion 2.1). We stress that this point of view is pretty general and encompasses, among other things, the
Euclidean setting and many interesting sub-Riemannian manifolds.
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Since [16], the possibility to extend the classical results of the calculus of variations to the setting of
variational functionals driven by vector fields has been the object of study of many papers. For example,
the homogenization theory has been intensively studied so far in the setting of special sub-Riemannian
manifolds, i.e. Carnot groups (see, for instance, [3, 18, 22]). More recently, in [20, 21] Maione, Pinamonti
and Serra Cassano started the investigation of the Γ-convergence of translation-invariant local functionals
F : Lp(Ω) ×A→ [0,∞], with A being the class of all open subsets of Ω. In [20, Theorem 3.12], they found
conditions under which F can be represented as

F(u, A) = ∫
A

f(x, Xu(x)) dx (1.1)

for any A ⊆ Ω open and u ∈ Lp(Ω) such that u|A∈ W1,p
X,loc(A) (cf. Definition 2.2 and [15]), and for a suitable

f : Ω ×ℝm → [0,∞). Finally, they applied this characterization to prove a Γ-compactness theorem for inte-
gral functionals of the form (1.1) when 1 < p < +∞. Similar results have been proved in [22], under stronger
conditions on the family X. To conclude, we also point out that functional (1.1) was studied in [16] as far as
its relaxation and in connection with the so-called Meyers–Serrin theorem forW1,p

X (Ω).
Inspired by the results proved in [7, 8], the aim of the present paper is to extend the results achieved

in [20] when we drop the assumption of translation-invariance. We find some sufficient and necessary con-
ditions under which a local functional

F : W1,p
X,loc(Ω) ×A→ [0, +∞]

admits an integral representation of the form

F(u, A) = ∫
A

f(x, u(x), Xu(x)) dx for all u ∈ W1,p
X,loc(Ω) and all A ∈ A, (1.2)

for a suitable Carathéodory function f : Ω ×ℝ ×ℝm → [0,∞). We point out that in this new framework, due
to the lack of translation-invariance, a dependence of the integrand with respect to the function is expected.
Let us observe that if F is defined on Lploc(Ω) ×A instead of W1,p

X,loc(Ω) ×A, under reasonable improvements
of some assumptions, it is easy to extend the integral representation to get

F(u, A) = ∫
A

f(x, u(x), Xu(x)) dx for all A ∈ A and all u ∈ Lploc(Ω) such that u|A∈ W
1,p
X,loc(A).

The main goal of this paper is to obtain a representation formula as in (1.2) for the following three different
classes of functionals:
(i) Convex functionals (Theorem 3.3).
(ii) W1,∞ weakly*-seq. l.s.c. functionals (Theorem 4.3).
(iii) None of the above (Theorem 5.6).
Unlike in Sobolev spaces, in this context no analogue of approximation results by a reasonable notion of
piecewise X-affine function holds in general (cf. [20, Section 2.3]). To overcome this difficulty, we rely on the
method employed in [20], consisting of three steps:
(i) Apply one of the classical results for Sobolev spaces [7, 8] to the functional, obtaining an integral repre-

sentation with respect to a “Euclidean” Lagrangian fe of the form

F(u, A) = ∫
A

fe(x, u(x), Du(x)) dx for all u ∈ W1,p
loc (Ω) and all A ∈ A.

(ii) Find sufficient conditions on fe that guarantee the existence of a “non-Euclidean” Lagrangian f such that

∫
A

fe(x, u(x), Du(x)) dx = ∫
A

f(x, u(x), Xu(x)) dx for all A ∈ A and all u ∈ C∞(A). (1.3)

(iii) Extend the previous equality to the whole spaceW1,p
X,loc(Ω).
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The second step crucially exploits third-argument convexity of the Euclidean Lagrangian fe. Indeed, convex-
ity of fe(x, u, ⋅ ) is sufficient to guarantee (1.3) (cf. Proposition 3.2). This is shown in [20], and the same ideas
can be adapted to cases (i) and (ii) of convex and weakly*-seq. l.s.c. functionals, for which the convexity of
fe(x, u, ⋅ ) is granted. On the contrary, due to the weaker assumptions on the functional, case (iii) is more
demanding and requires a further step. In Section 5, we show that the convexity of fe(x, u, ⋅ ) is not neces-
sary for (1.3). Thus, in order to find a more suitable notion of convexity, we define the weaker concept of
X-convexity (cf. Definition 5.3), which strongly depends on the chosen family of vector fields. We show that,
under a classical growth assumption on the functional, this new condition is equivalent to (1.3) (cf. Proposi-
tion 5.4). Finally, by slightlymodifying a zig-zag argument due to Buttazzo andDalMaso [8, Lemma2.11], we
show that X-convexity is a consequence of a reasonable lower semicontinuity assumption (cf. Lemma 5.5).
This procedure allows to generalize the final case aswell. Finally, for each of the previous resultswe show that
our hypotheses are also necessary, in order to give a complete characterization of the classes of functionals
studied.

The structure of the paper is the following. In Section 2, we briefly recall some basic facts about vector
fields and X-Sobolev spaces. In Section 3, we get an integral representation result for a class of convex func-
tionals. In Section 4, we deal with weakly*-sequentially l.s.c functionals. In Section 5, we drop both previous
requirements, obtaining as well an integral representation result.

2 Vector fields and X-Sobolev spaces

2.1 Notation

Unless otherwise specified, we let 1 ≤ p < +∞ and m, n ∈ ℕ \ {0} with m ≤ n, we denote by Ω an open and
bounded subset of ℝn and by A the family of all open subsets of Ω. Given two open sets A and B, we write
A ⋐ B whenever A ⊆ B. We setA0 to be the subfamily ofA of all open subsets A of Ω such that A ⋐ Ω. For any
u, v ∈ ℝn, we denote by ⟨u, v⟩ the Euclidean scalar product, and by |v| the induced norm. We denote by Ln

the restriction to Ω of the n-th dimensional Lebesgue measure, and for any set E ⊆ Ω we write |E| := Ln(E).
Given an integrable function f : Ω → ℝ, we write

∫
Ω

f(x) dx := ∫
Ω

f(x) dLn(x).

Given x ∈ ℝn and R > 0, we let BR(x) := {y ∈ ℝn : |x − y| < R}, and given an integrable function f : BR(x)→ ℝ
we denote its integral average by −∫

BR(x)

f dx := 1
|BR(x)|

∫
BR(x)

f dx.

We usually omit the variable of integration when writing an integral: for instance, given two functions
f : Ω ×ℝ→ ℝ and u : Ω → ℝ such that x → f(x, u(x)) is integrable overΩ,wewrite its integral as∫Ω f(x, u) dx
instead of ∫Ω f(x, u(x)) dx. Finally, for x ∈ ℝ

n, u ∈ ℝ and ξ ∈ ℝn we set

φx,u,ξ (y) := u + ⟨ξ, y − x⟩. (2.1)

2.2 Basic definitions and properties

We will always identify a first order differential operator X := ∑ni=1 ci ∂
∂xi with the map

X(x) := (c1(x), . . . , cn(x)) : Ω → ℝn .

Definition 2.1. Let m ≤ n. We say that X := (X1, . . . , Xm) is a family of Lipschitz vector fields on Ω if for any
j = 1, . . . ,m and for any i = 1, . . . , n there exists a function cj,i ∈ Lip(Ω) such that

Xj(x) = (cj,1(x), . . . , cj,n(x)).
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We will denote by C(x) the m × n matrix defined by

C(x) := [cj,i(x)] i=1,...,n
j=1,...,m

We say that X satisfies the linear independence condition (LIC) on Ω if the set

NX := {x ∈ Ω : X1(x), . . . , Xm(x) are linearly dependent}

is such that |NX | = 0. In this case, we set ΩX := Ω \ NX.

Let us point out that (LIC) embraces many relevant families of vector fields studied in the literature. In par-
ticular, neither the Hörmander condition for X, that is, each vector field Xj is smooth and the rank of the Lie
algebra generated by X1, . . . , Xm equals n at any point of Ω, nor the (weaker) assumption that the X-gradient
induces a Carnot–Carathéodory metric in Ω is requested. An exhaustive account of these topics can be found
in [4].

Definition 2.2. Letm ≤ n, u ∈ L1loc(Ω) and v ∈ L
1
loc(Ω,ℝ

m), and letX be a family of Lipschitz vector fields. We
say that v is the X-gradient of u if for any φ ∈ C∞c (Ω,ℝm) it holds that

−∫
Ω

u
m
∑
j=1

n
∑
i=1

∂
∂xi
(cj,iφj) dx = ∫

Ω

φ ⋅ v dx.

Whenever it exists, the X-gradient is shown to be unique a.e. In this case, we set Xu := v.
If p ∈ [1, +∞], we define the vector spaces

W1,p
X (Ω) := {u ∈ L

p(Ω) : Xu ∈ Lp(Ω)}

and
W1,p

X,loc(Ω) := {u ∈ L
p
loc(Ω) : u|A∈ W1,p

X (A
) for all A ∈ A0}.

We refer to them as X-Sobolev spaces, and to their elements as X-Sobolev functions.

The next proposition can be found in [15].

Proposition 2.3. Let p ∈ [1, +∞]. Then the vector spaceW1,p
X (Ω), endowed with the norm

‖u‖W1,p
X (Ω)

:= ‖u‖Lp(Ω) + ‖Xu‖Lp(Ω,ℝm),

is a Banach space. Moreover, if 1 < p < +∞, it is a reflexive Banach space.

The following proposition tells us that X-Sobolev spaces are actually a generalization of the classical Sobolev
spaces, both because each Sobolev function is in particular an X-Sobolev function, whatever X we choose,
and because, as expected, the choice of the “standard” family of vector fields

{
∂
∂x1

, . . . , ∂
∂xn
}

gives rise to the classical Sobolev spaces.

Proposition 2.4. The following facts hold:
(i) If n = m and cj,i(x) = δj,i for every i, j = 1, . . . , n, thenW1,p(Ω) = W1,p

X (Ω).
(ii) W1,p(Ω) ⊆ W1,p

X (Ω), the inclusion is continuous and

Xu(x) = C(x)Du(x)

for every u ∈ W1,p(Ω) and a.e. x ∈ Ω.

Let us notice that, with Ω being bounded, we have that

W1,∞(Ω) ⊆ W1,p(Ω) ⊆ W1,p
X (Ω)

for any familyXof Lipschitz vector fields. The followingproposition tells us that theweak convergence inW1,p
X

is weaker than the weak*-convergence inW1,∞.
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Proposition 2.5. Let X be a family of Lipschitz vector fields. Then, for any sequence (uh)h ⊆ W1,∞(Ω) and any
u ∈ W1,∞(Ω), it follows that

uh ⇀∗ u inW1,∞(Ω) implies uh ⇀ u inW1,p
X (Ω).

Proof. This follows easily from [5, Theorem 3.10].

2.3 Approximation by regular functions

When dealing with representation theorems for local functionals defined on classical Sobolev spaces, a typ-
ical strategy is to exploit classical differentiation theorems for measures to get an integral representation of
the form

F(u, A) = ∫
A

fe(x, u, Du) dx

for classes of “simple” functions, that is, for instance, linear or affine functions. Then one can combine some
semicontinuity properties of the functional together with approximation results bymeans of piecewise affine
functions (see, for instance, [13, Chapter X, Proposition 2.9]) in order to extend the integral representation to
all Sobolev functions. In this context, one of themain difficulties is that an analogue of [13, Chapter X, Propo-
sition 2.9] does not hold. We mean that, if we call a C∞-function X-affine when Xu is constant, then there
are choices of X for which not all X-Sobolev functions can be approximated in W1,p

X by piecewise X-affine
functions [20, Section 2.3]. So, as shown in Section 3, we have to adopt a different strategy. Anyway, we
present some useful Meyers–Serrin-type results that are still true even in this non-Euclidean framework and
that allow us to approximate X-Sobolev functions with smooth functions. For the following fundamental
theorem, we refer to [17, Theorem 1.2.3].

Theorem 2.6. Let Ω be an open subset ofℝn. For any u ∈ W1,p
X (Ω), there exists a sequence

uϵ ∈ W
1,p
X (Ω) ∩ C

∞(Ω)

such that
uϵ → u inW1,p

X (Ω) as ϵ → 0.

Proposition 2.7. Given u ∈ W1,p
X,loc(Ω) and let A

 ⋐ Ω. Then there exists a function v ∈ W1,p
X (Ω)which coincides

with u on A.

Proof. Let φ be a smooth cut-off function between A and Ω. It is straightforward to verify that the function
v(x) := φ(x)u(x) satisfies the desired requirements.

The previous proposition, together with Theorem 2.6, allows to prove the following result.

Proposition 2.8. Consider a function u ∈ W1,p
X,loc(Ω) and an open set A ⋐ Ω. Then there exists a sequence

(uϵ)ϵ ⊆ W
1,p
X (Ω) such that

uϵ|A∈ W1,p
X (A
) ∩ C∞(A) and uϵ|A→ u|A inW1,p

X (A
).

Proof. Let us fix u ∈ W1,p
X,loc(Ω) and A

 ∈ A0. By Proposition 2.7, we can find a function ũ ∈ W1,p
X (Ω) such that

u|A= ũ|A , and by Theorem 2.6 there exists a sequence (uϵ)ϵ ⊆ W1,p
X (Ω) ∩ C∞(Ω) converging to ũ inW

1,p
X (Ω).

It is easy to see that
(uϵ|A )ϵ ⊆ W1,p

X (A
) ∩ C∞(A).

Moreover, since u|A= ũ|A , we conclude that uϵ|A→ u|A inW1,p
X (A
).

2.4 Failure of a Lusin-type theorem

Whendealingwith integral representation in classical Sobolev spaces, onemight exploit the following Lusin-
type result (cf. [10, Theorem 13]).
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Proposition 2.9. Let Ω ⊆ ℝn be open and bounded, let 1 ≤ p ≤ +∞ and let u ∈ W1,p(Ω). Then, for any ϵ > 0,
there exist Aϵ ∈ A and v ∈ C1(Ω) such that |Aϵ| ≤ ϵ and u|Ω\Aϵ= v|Ω\Aϵ .

Under reasonable assumptions (cf. [8, Lemma 2.7]), this result allows to extend an integral representation
result from C1(Ω) ×A to W1,p(Ω) ×A. The following counterexample shows that an analogue of Proposi-
tion 2.9 does not hold in a general X-Sobolev space.

Counterexample 2.10. In this example, we speak about approximate differentiability and approximate par-
tial derivatives according to [14, Section 3.1.2]. Let us take n = 2, m = 1, Ω = (0, 1) × (0, 1) and X = X1 = ∂

∂x
(which satisfies (LIC)). Let us consider a function w : (0, 1)→ ℝ which is bounded and continuous but
not approximately differentiable for a.e. x ∈ (0, 1) (see, for instance, [23, p. 297]), and define the function
u : Ω → ℝ by

u(x, y) := w(y).

We have that u ∈ L∞(Ω), and it is constant with respect to x. Thus, for any φ ∈ C∞c (Ω), we have that

−∫
Ω

u ∂φ
∂x

dx = −
1

∫
0

dy w(y)
1

∫
0

dx ∂φ
∂x
= 0,

and so Xu = 0. Hence u ∈ W1,∞
X (Ω), and in particular we have that u ∈ W1,p

X (Ω) for any p ∈ [1, +∞]. If it
was the case that u satisfies the desired property, then we would have, for a.e. (x, y) in Ω, that u is approx-
imately differentiable at (x, y) (see [19, Theorem 1]). Thus, according to [23, Theorem 12.2] and to the fact
that u is constant with respect to x, we would have that for any x ∈ (0, 1) and for a.e. y ∈ (0, 1) the function
z → u(x, z) = w(z) is approximately differentiable at y, but this last assertion is in contradiction with our
choice of w.

2.5 Algebraic properties of X

Here we present some algebraic properties of the coefficient matrix C : Ω → ℝm×n. The following results have
been achieved in [20, Section 3.2].

Definition 2.11. Suppose X is a family of Lipschitz vector fields. For any x ∈ Ω, we define the linear map
Lx : ℝn → ℝm by

Lx(v) := C(x)v if v ∈ ℝn ,

and
Nx := ker(Lx), Vx := {C(x)Tz : z ∈ ℝm}.

From standard linear algebra, we know thatℝn = Nx ⊕ Vx, and so, for any x ∈ Ω and ξ ∈ ℝn, there is a unique
choice of ξNx ∈ Nx and ξVx ∈ Vx such that

ξ = ξNx + ξVx .

Finally, we define Πx : ℝn → Vx ⊂ ℝn as the projection Πx(ξ) := ξVx .

These definitionsmake sense for a generic family of Lipschitz vector fields, but the following two propositions
list some very useful invertibility and continuity properties that are typical of those families of vector fields
satisfying (LIC).

Proposition 2.12. Let X be a family of Lipschitz vector fields satisfying (LIC) on Ω. Then the following facts
hold:
(i) dim Vx = m for each x ∈ ΩX and Lx(Vx) = ℝm. In particular, Lx : Vx → ℝm is an isomorphism.
(ii) Let

B(x) := C(x)CT(x) x ∈ Ω.

Then, for each x ∈ ΩX , B(x) is a symmetric invertible matrix of order m. Moreover, the map

B−1 : ΩX → L(ℝm ,ℝm),
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defined by
B−1(x)(z) := B(x)−1z if z ∈ ℝm ,

is continuous.
(iii) For each x ∈ ΩX , the projection Πx can be represented as

Πx(ξ) = ξVx = C(x)TB(x)−1C(x)ξ for all ξ ∈ ℝn .

Remark 2.13. It is easy to see that NX = {x ∈ Ω : det B(x) = 0}. Hence, NX is closed in Ω.

Proposition 2.14. LetX be a family of Lipschitz vector fields satisfying (LIC) on Ω. Then themap Lx : Vx → ℝm

is invertible and the map L−1 : ΩX → L(ℝm ,ℝn), defined by

L−1(x) := L−1x if x ∈ ΩX ,

belongs to C0(ΩX ,L(ℝm ,ℝn)).

2.6 Local functionals

We conclude this section by giving some definitions about increasing set functions, for which we refer to
[12, Chapter 14], and local functionals defined on W1,p

X . From now on, we assume that X is a family of
Lipschitz vector fields satisfying (LIC) on Ω.

Definition 2.15. We say that ω : Ω × [0, +∞)→ [0, +∞) is a locally integrable modulus of continuity if and
only if

r → ω(x, r) is increasing, continuous and ω(x, 0) = 0 for a.e. x ∈ Ω,

and
x → ω(x, r) ∈ L1loc(Ω) for all r ≥ 0.

Definition 2.16. Let us consider a functional F : F ×A→ [0, +∞], where F is a functional space such that
C1(Ω) ⊆ F. We make the following definitions:
(i) F satisfies the strong condition (ω) if there exists a sequence (ωk)k of locally integrable moduli of conti-

nuity such that
|F(v, A) − F(u, A)| ≤ ∫

A ωk(x, r) dx (2.2)

for any k ∈ ℕ, A ∈ A0, r ∈ [0,∞) and u, v ∈ C1(Ω) such that

|u(x)|, |v(x)|, |Du(x)|, |Dv(x)| ≤ k,
|u(x) − v(x)|, |Du(x) − Dv(x)| ≤ r

for all x ∈ A.
(ii) F satisfies theweak condition (ω) if there exists a sequence (ωk)k of locally integrablemoduli of continuity

such that
|F(u + s, A) − F(u, A)| ≤ ∫

A ωk(x, |s|) dx

for any k ∈ ℕ, A ∈ A0, s ∈ ℝ and u ∈ C1(Ω) such that

|u(x)|, |u(x) + s|, |s| ≤ k for all x ∈ A.

Definition 2.17. Let α : A→ [0, +∞] be a function. We make the following definitions:
(i) α is increasing if it holds that α(A) ≤ α(B) for any A, B ∈ A such that A ⊆ B.
(ii) α is inner regular if it is increasing and α(A) = sup{α(A) : A ⋐ A} for any A ∈ A.
(iii) α is subadditive if it is increasing and, for any A, B, C ∈ A with A ⊆ B ∪ C,

α(A) ≤ α(B) + α(C).
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(iv) α is superadditive if it is increasing and, for any A, B, C ∈ A with A ∩ B = 0 and A ∪ B ⊆ C,

α(C) ≥ α(A) + α(B).

(v) α is ameasure if it is increasing and the restriction toA of a non-negative Borel measure.

Definition 2.18. Let us consider a functional

F : W1,p
X,loc(Ω) ×A→ [0, +∞].

Wemake the following definitions:
(i) F is ameasure if, for any u ∈ W1,p

X,loc(Ω),

F(u, ⋅ ) : A→ [0, +∞]

is a measure.
(ii) F is local if, for any A ∈ A0 and u, v ∈ W1,p

X,loc(Ω),

u|A= v|A implies F(u, A) = F(v, A).

(iii) F is convex if, for any A ∈ A0, the function F( ⋅ , A) : W1,p
X (Ω)→ [0, +∞] is convex.

(iv) F is p-bounded if there exist a ∈ L1loc(Ω) and b, c > 0 such that, for any A
 ∈ A0 and for any u ∈ W1,p

X (Ω),
it holds that

F(u, A) ≤ ∫
A a(x) + b|Xu|

p + c|u|p dx.

(v) F is lower semicontinuous (resp. weakly sequentially lower semicontinuous) if, for any A ∈ A0,

F( ⋅ , A) : W1,p
X (Ω)→ [0, +∞]

is sequentially l.s.c. with respect to the strong (resp. weak) topology ofW1,p
X (Ω).

(vi) F is weakly*-sequentially lower semicontinuous if, for any A ∈ A0,

F( ⋅ , A) : W1,∞(Ω)→ [0, +∞]

is sequentially l.s.c. with respect to the weak*-topology ofW1,∞(Ω).

3 Integral representation of convex functionals
In this section,we completely characterize a class of convex local functionals definedonW1,p

X . As announced,
we exploit [7, Lemma 4.1] to get an integral representation of the form

F(u, A) = ∫
A

fe(x, u, Du) dx for all A ∈ A and all u ∈ W1,p(Ω).

Then the forthcoming Propositions 3.1 and3.2 guarantee the existence of a non-Euclidean Lagrangian f such
that

∫
A

f(x, u, Xu) dx = ∫
A

fe(x, u, Du) dx for all A ∈ A and all u ∈ C∞(A).

Finally, we extend the integral representation to the wholeW1,p
X,loc(Ω).

The followingpropositions,which are almost totally inspiredby [20, Theorem3.5] and [20, Lemma3.13],
allow us to pass from a Euclidean to a non-Euclidean integral representation.

Proposition 3.1. Let fe : Ω ×ℝ ×ℝn → [0,∞]be aCarathéodory function. Define f : Ω ×ℝ ×ℝm → [0,∞]by

f(x, u, η) := {
fe(x, u, L−1(x)(η)) if (x, u, η) ∈ ΩX ×ℝ ×ℝm ,
0 otherwise.

(3.1)

Then the following facts hold:
(i) f is a Carathéodory function.
(ii) If fe(x, ⋅ , ⋅ ) is convex for a.e. x ∈ Ω, then f(x, ⋅ , ⋅ ) is convex for a.e. x ∈ Ω.
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(iii) If fe(x, u, ⋅ ) is convex for a.e. x ∈ Ω and for any u ∈ ℝ, then f(x, u, ⋅ ) is convex for a.e. x ∈ Ω and for any
u ∈ ℝ.

(iv) If we assume that

fe(x, u, ξ) = fe(x, u, Πx(ξ)) for a.e. x ∈ Ω and all (u, ξ) ∈ ℝ ×ℝn , (3.2)

then it follows that

∫
A

fe(x, u, Du) dx = ∫
A

f(x, u, Xu) dx for all A ∈ A and all u ∈ C∞(A). (3.3)

Proof. (i) First we want to show that, for any (u, η) ∈ ℝ ×ℝm, the function x → f(x, u, η) is measurable. Let
us fix then (u, η) ∈ ℝ ×ℝm, define the function Φ : ΩX → ℝ ×ℝn by Φ(x) := (u, L−1(x)(η)) and extend it to
be zero on Ω \ ΩX. By Proposition 2.14, Φ|ΩX is continuous, and so in particular Φ is measurable. Noticing
that

f(x, u, η) = fe(x, Φ(x)) for all x ∈ ΩX ,

with fe being a Carathéodory function, and recalling [11, Proposition 3.7], we conclude that x → f(x, u, η) is
measurable. Let us define now the function

Ψ : ΩX ×ℝ ×ℝm → ΩX ×ℝ ×ℝn , Ψ(x, u, η) := (x, u, L−1(x)(η)).

Since on ΩX we have that f = fe ∘ Ψ, for any fixed x ∈ ΩX such that fe(x, ⋅ , ⋅ ) is continuous, f(x, ⋅ , ⋅ ) is the
composition of a continuous function and a linear function, and so it is continuous.

(ii) If x ∈ ΩX is such that fe(x, ⋅ , ⋅ ) is convex, then f = fe ∘ Ψ is the composition of a convex function and
a linear function, and so it is convex.

(iii) This follows as (ii).
(iv) Assume that (3.2) holds. Let us fix A ∈ A and u ∈ C∞(A). From the regularity of u, we have that

Xu(x) = C(x)Du(x). By Proposition 2.12, we get

Lx(Πx(Du)) = Lx(C(x)TB(x)−1C(x)Du)
= C(x)C(x)TB(x)−1C(x)Du
= B(x)B(x)−1C(x)Du
= C(x)Du
= Lx(Du)

and
f(x, u, Xu) = f(x, u, C(x)Du)

= f(x, u, Lx(Du))
= f(x, u, Lx(Πx(Du)))
= fe(x, u, L−1x (Lx(Πx(Du))))
= fe(x, u, Πx(Du))
= fe(x, u, Du).

Now, (3.3) follows by integrating over A.

In the following result, we provide some sufficient conditions to guarantee (3.2).

Proposition 3.2. Let fe : Ω ×ℝ ×ℝn → [0, +∞] be a Carathéodory function such that the following conditions
hold:
(i) fe(x, u, ⋅ ) is convex for a.e x ∈ Ω and any u ∈ ℝ.
(ii) There exist a ∈ L1loc(Ω) and b, c > 0 such that

fe(x, u, ξ) ≤ a(x) + b|C(x)ξ|p + c|u|p (3.4)

for a.e. x ∈ Ω and any (u, ξ) ∈ ℝ ×ℝn.
Then fe satisfies (3.2).



776 | F. Essebei, A. Pinamonti and S. Verzellesi, Integral representation of local functionals

Proof. This follows with some trivial modifications as in [20, Lemma 3.13].

Let us now state and prove the main result of this section.

Theorem 3.3. Let F : W1,p
X,loc(Ω) ×A→ [0, +∞] be such that the following conditions hold:

(i) F is a measure.
(ii) F is local.
(iii) F is convex.
(iv) F is p-bounded.
Then there exists a Carathéodory function f : Ω ×ℝ ×ℝm → [0, +∞) such that

(u, ξ) → f(x, u, ξ) is convex for a.e. x ∈ Ω, (3.5)
f(x, u, ξ) ≤ a(x) + b|ξ|p + c|u|p for a.e. x ∈ Ω and all (u, ξ) ∈ ℝ ×ℝm , (3.6)

and the following representation formula holds:

F(u, A) = ∫
A

f(x, u, Xu) dx for all u ∈ W1,p
X,loc(Ω) and all A ∈ A. (3.7)

Moreover, if f1, f2 : Ω ×ℝ ×ℝm → [0, +∞) are two Carathéodory functions satisfying (3.5)–(3.7), then there
exists Ω̃ ⊆ Ω such that |Ω̃| = |Ω| and

f1(x, u, ξ) = f2(x, u, ξ) for all x ∈ Ω̃ and all (u, ξ) ∈ ℝ ×ℝm . (3.8)

Proof. We prove this theorem in five steps.

First step. Let
C := max{sup{|cj,i(x)| : x ∈ Ω} : i = 1, . . . , n, j = 1, . . . ,m}.

Then, from our assumptions on X, it follows that 0 < C < +∞. Let b̃ := Cpb. By using (iv) and recalling that
for all u ∈ W1,p(Ω) we have that Xu(x) = C(x)Du(x), it follows that

F(u, A) ≤ ∫
A a(x) + c|u|

p + b̃|Du|p dx for all A ∈ A0 and all u ∈ W1,p(Ω).

Thus, we can apply [7, Lemma 4.1] to get a Carathéodory function fe : Ω ×ℝ ×ℝn → [0, +∞] such that

F(u, A) = ∫
A

fe(x, u, Du) dx for all A ∈ A and all u ∈ W1,p
loc (Ω), (3.9)

fe(x, u, ξ) ≤ a(x) + b̃|ξ|p + c|u|p for a.e. x ∈ Ω and all (u, ξ) ∈ ℝ ×ℝn ,
fe(x, ⋅ , ⋅ ) : ℝ ×ℝn → [0,∞] is convex for a.e. x ∈ Ω. (3.10)

Second step. We want to prove that fe satisfies (3.2). By Proposition 3.2 and (3.10), we only need to
prove (3.4). Let us then take Ω ⊆ Ω such that |Ω| = |Ω| and

(u, ξ) → fe(x, u, ξ) is convex and finite for all x ∈ Ω,

and fix x ∈ Ω, u ∈ ℚ and ξ ∈ ℚn. By (3.9), for any R > 0 small enough to ensure that BR(x) ⋐ Ω, we have that

F(φx,u,ξ , BR(x)) = ∫
BR(x)

fe(y, u + ⟨ξ, y − x⟩, ξ) dy,

and from (iv) we have that

F(φx,u,ξ , BR(x)) ≤ ∫
BR(x)

a(y) + c|u + ⟨ξ, y − x⟩|p + b|C(y)ξ|p dy,

where φx,u,ξ is as in (2.1). Combining these two facts and dividing by |BR(x)|, we obtain that−∫
BR(x)

fe(y, u + ⟨ξ, x − y⟩, ξ) dy ≤ −∫
BR(x)

a(y) + c|u + ⟨ξ, y − x⟩|p + b|C(y)ξ|p dy. (3.11)
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Since the integrand on the right-hand side is in L1loc(Ω), and (3.11) holds indeed for all A
 ∈ A0, the one on

the left-hand side is in L1loc(Ω) as well. Therefore, thanks to the Lebesgue theorem, we can find Ωu,ξ ⊆ Ω such
that |Ωu,ξ | = |Ω| and

fe(x, u, ξ) ≤ a(x) + c|u|p + b|C(x)ξ|p for all x ∈ Ωu,ξ .

Setting
Ω̃ := ⋂
(u,ξ)∈ℚ×ℚn

Ωu,ξ ,

it holds that |Ω̃| = |Ω| and

fe(x, u, ξ) ≤ a(x) + c|u|p + b|C(x)ξ|p for all x ∈ Ω̃ and all (u, ξ) ∈ ℚ ×ℚn .

Since the map (u, ξ) → fe(x, u, ξ) is continuous for any x ∈ Ω̃ andℚ ×ℚn is dense inℝ ×ℝn, inequality (3.4)
holds and the conclusion follows.

Third step. Thanks to the previous step, we can apply Proposition 3.1 (iv). Hence, we get

∫
A

fe(x, u, Du) dx = ∫
A

f(x, u, Xu) dx for all A ∈ A, u ∈ C∞(A), (3.12)

where f : Ω ×ℝ ×ℝm → [0, +∞] is the function defined in (3.1). First of all, we can assume that f is finite up
to modifying it on a set of measure zero. Moreover, thanks to (3.10) and Proposition 3.1 (ii), we have that f
satisfies (3.5). Now we want to prove that f satisfies (3.6). Let us fix x ∈ Ω, u ∈ ℚ and ξ ∈ ℚn. By (iv), (3.9)
and (3.12), we have that

∫
BR(x)

f(y, φx,u,ξ , Xφx,u,ξ ) dy ≤ ∫
BR(x)

a(y) + c|φx,u,ξ |p + b|Xφx,u,ξ |p dy

= ∫
BR(x)

a(y) + c|u + ⟨ξ, y − x⟩|p + b|C(y)ξ|p dy,

and so, dividing by |BR(x)|, we get that−∫
BR(x)

f(y, u + ⟨ξ, y − x⟩, C(y)ξ) dy ≤ −∫
BR(x)

a(y) + c|u + ⟨ξ, y − x⟩|p + b|C(y)ξ|pdy.

Arguing as in the second step, we can conclude that

f(x, u, C(x)ξ) ≤ a(x) + b|C(x)ξ|p + c|u|p for a.e. x ∈ Ω and all (u, ξ) ∈ ℝ ×ℝn .

Finally, by recalling that for x ∈ ΩX the map Lx : Vx → ℝm is surjective, inequality (3.6) follows.

Fourth step. Here we want to prove that (3.7) holds. Let us fix u ∈ W1,p
X (Ω) and A ∈ A0, and consider the

two functionals
FA , GA : ({v|A : v ∈ W1,p

X (Ω)}, ‖ ⋅ ‖W1,p
X (A))→ [0, +∞]

defined by
FA (v|A ) := F(v, A) and GA (v|A ) := ∫

A f(x, v, Xv) dx,
respectively. Thanks to (iii), (iv), (3.5) and (3.6), they are convex and bounded on bounded subsets of

{v|A : v ∈ W1,p
X (Ω)}.

Hence, they are continuous (cf. [13, Lemma 2.1]). Moreover, from Proposition 2.8 we can find a sequence
(uϵ)ϵ ⊆ W

1,p
X (Ω) such that

(uϵ|A )ϵ ⊆ W1,p
X (A
) ∩ C∞(A) and uϵ|A→ u|A inW1,p

X (A
).
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From (3.9) and (3.12), we get that

F(u, A) = lim
ϵ→0

F(uϵ , A)

= lim
ϵ→0
∫
A fe(x, uϵ , Duϵ)

= lim
ϵ→0
∫
A f(x, uϵ , Xuϵ)

= ∫
A f(x, u, Xu) dx,

and so we assert that

F(u, A) = ∫
A

f(x, u, Xu) dx for all u ∈ W1,p
X (Ω) and all A

 ∈ A0. (3.13)

Let us take now u ∈ W1,p
X,loc(Ω), A ∈ A and A ⋐ A, and, thanks to Proposition 2.7, take a function v ∈ W1,p

X (Ω)
such that u|A= v|A . Thus, from hypothesis (ii) and from (3.13), we have that

F(u, A) = F(v, A) = ∫
A f(x, v, Xv) dx = ∫A f(x, u, Xu) dx. (3.14)

Since by hypothesis the function B → F(u, B) is inner regular (cf. [12, Theorem 14.23]), and noticing that the
function B → ∫B f(x, u, Xu) dx is inner regular, thanks to (3.14) we have that

F(u, A) = sup{F(u, A) : A ⋐ A}

= sup { ∫
A f(x, u, Xu) dx : A

 ⋐ A}

= ∫
A

f(x, u, Xu) dx,

and so we can conclude that (3.7) holds.

Fifth step. Let us show the uniqueness of the Lagrangian. Fix then x ∈ Ω, u ∈ ℚ and ξ ∈ ℚn: since (3.7) holds
both for f1 and f2, for any R > 0 small enough, we have that−∫

BR(x)

f1(y, u + ⟨ξ, y − x⟩, C(y)ξ) dy = −∫
BR(x)

f2(y, u + ⟨ξ, y − x⟩, C(y)ξ) dy.

Since both integrand functions satisfy (3.6), they are both in L1loc(Ω). Again, thanks to the Lebesgue theorem,
there exists Ωu,ξ ⊆ Ω such that |Ωu,ξ | = |Ω| and

f1(x, u, C(x)ξ) = f2(x, u, C(x)ξ) for all x ∈ Ωu,ξ .

If we set
Ω̃ := ⋂
(u,ξ)∈ℚ×ℚn

Ωu,ξ ∩ {x ∈ Ω : (3.5) and (3.6) hold for f1 and f2} ∩ ΩX ,

clearly we have |Ω̃| = |Ω|, and it holds that

f1(x, u, C(x)ξ) = f2(x, u, C(x)ξ) for all x ∈ Ω̃ and all (u, ξ) ∈ ℚ ×ℚn .

Since (u, ξ) → f1(x, u, ξ) and (u, ξ) → f2(x, u, ξ) are continuous for any x ∈ Ω̃, and by recalling again that Lx
is surjective for any x ∈ ΩX, we infer (3.8).

The following theorem tells us that all hypotheses of Theorem 3.3 are also necessary.
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Theorem 3.4. Let f : Ω ×ℝ ×ℝm → [0, +∞) be a Carathéodory function such that

(u, ξ) → f(x, u, ξ) is convex for a.e. x ∈ Ω, (3.15)
f(x, u, ξ) ≤ a(x) + b|ξ|p + c|u|p for a.e. x ∈ Ω and all (u, ξ) ∈ ℝ ×ℝm , (3.16)

for some b, c > 0 and a ∈ L1loc(Ω). If we set the functional F : W1,p
X,loc(Ω) ×A→ [0, +∞] as

F(u, A) := ∫
A

f(x, u, Xu) dx for all u ∈ W1,p
X,loc(Ω) and all A ∈ A,

then F satisfies hypotheses (i)–(iv) of Theorem 3.3.

Proof. Let us fix u ∈ W1,p
X,loc(Ω). Our aim is to prove that α(A) := F(u, A) is a measure. Notice that, with f ≥ 0,

α is increasing, and of course α(0) = 0. Then, according to [12, Theorem 14.23], it suffices to show that α is
subadditive, superadditive and inner regular. The first two properties are trivial, so let us focus on the third
one. Let us fix A ∈ A and define the sequence of sets (Ah)h by Ah := {x ∈ A : dist(x, ∂A) > 1

h }. We have that
(Ah)h ⊆ A0, Ah ⋐ Ah+1 ⋐ A and⋃h∈ℕ+ Ah = A. Thus by themonotone convergence theorem,we conclude that

∫
A

f(x, u, Xu) dx = ∫
A

lim
h→+∞

χAh f(x, u, Xu) dx = lim
h→+∞
∫
Ah

f(x, u, Xu) dx,

and so α is ameasure. Property (ii) is straightforward, noticing that the X-gradients of two a.e. equal functions
coincide a.e. Finally, (iii) and (iv) follow from (3.15) and (3.16).

4 Integral representation of weakly*-sequentially lower
semicontinuous functionals

In this section, we characterize a class of local functionals defined on W1,p
X for which we require neither

translation-invariance nor convexity, but which are weakly*-sequentially lower semicontinuous in W1,∞. It
is well known (cf. [1]) that, for an integral functional of the form

F(u, A) := ∫
A

fe(x, u, Du) dx,

theweak*-lower semicontinuity is equivalent to the convexity in the third entry of fe. Therefore, we can adopt
the same strategy employed in the previous section, exploiting [8, Theorem 1.10] to get a Euclidean integral
representation of the form

F(u, A) = ∫
A

fe(x, u, Du) dx for all A ∈ A and all u ∈ W1,p(Ω).

Again, Propositions 3.1 and 3.2 guarantee the existence of a non-Euclidean Lagrangian f such that

∫
A

f(x, u, Xu) dx = ∫
A

fe(x, u, Du) dx for all A ∈ A and all u ∈ C∞(A).

We now start by proving a useful continuity result in W1,p
X , whose classical version is usually known as

Carathéodory continuity theorem.

Theorem 4.1. Let f : Ω ×ℝ ×ℝm → [0, +∞] be a Carathéodory function such that there exist a ∈ L1loc(Ω) and
b, c > 0 such that

f(x, u, ξ) ≤ a(x) + b|ξ|p + c|u|p for a.e. x ∈ Ω and all (u, ξ) ∈ ℝ ×ℝm . (4.1)

Then it holds that, for any A ∈ A0, the functional

F : W1,p
X (A
)→ [0, +∞)
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defined by
F(u) := ∫

A f(x, u, Xu) dx
is continuous with respect to the strong topology ofW1,p

X (A
).

Proof. We prove this theorem in two steps.

First step. Let us prove that F is lower semicontinuous. Fix u ∈W1,p
X (A
) and take a sequence (uh)h ⊆W1,p

X (A
)

converging to u and such that there exists

lim
h→+∞

F(uh) < +∞.

Up to a subsequence, we can assume that (uh(x))h converges to u(x) and (Xuh(x))h converges to Xu(x) for a.e.
x ∈ A. Since f is Carathéodory, it follows that

lim
h→∞

f(x, uh(x), Xuh(x)) = f(x, u(x), Xu(x)) for a.e. x ∈ Ω.

Thanks to Fatou’s lemma, we conclude that

F(u) = ∫
A f(x, u, Xu) dx
= ∫
A lim inf

h→+∞
f(x, uh , Xuh)

≤ lim inf
h→+∞
∫
A f(x, uh , Xuh)

= lim
h→+∞

F(uh).

Second step. Here we want to prove that F is upper semicontinuous. Again, fix u ∈ W1,p
X (A
) and take

a sequence (uh)h ⊆ W1,p
X (A
) converging to u and such that there exists

lim
h→+∞

F(uh) > −∞.

Up to a subsequence, we can assume that (uh(x))h converges to u(x) and (Xuh(x))h converges to Xu(x) for
almost every x ∈ A. Let us define the sequence of functions

gh(x) := −f(x, uh , Xuh) + C(|Xuh|p + |uh|p),

where C := max{b, c} > 0. Using (4.1), we get

gh(x) ≥ −a(x) for a.e. x ∈ A,

Since the right-hand side belongs to L1(A), we can apply Fatou’s lemma and get that

∫
A −f(x, u, Xu) dx + ‖u‖W1,p

X (A) = ∫
A lim inf

h→+∞
gh(x, u, Xu) dx

= ∫
A lim inf

h→+∞
(−f(x, uh , Xuh) + C(|Xuh|p + |uh|p)) dx

≤ lim inf
h→+∞
∫
A −f(x, uh , Xuh) + C(|Xuh|

p + |uh|p)) dx

= lim
h→+∞
∫
A −f(x, uh , Xuh) + C lim

h→+∞
‖uh‖W1,p

X (A)
= lim

h→+∞
∫
A −f(x, uh , Xuh) + ‖u‖W1,p

X (A),
as desired.
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In the following proposition, we prove that the notion of lower semicontinuity introduced in Definition 2.18
is actually equivalent to a more useful condition.

Proposition 4.2. Let F : W1,p
X,loc(Ω) ×A→ [0, +∞] be such that the following conditions hold:

(i) F is a measure.
(ii) F is local.
Then the following conditions are equivalent:
(a) F is lower semicontinuous.
(b) For all A ∈ A0,

FA : ({u|A : u ∈ W1,p
X (Ω)}, ‖ ⋅ ‖W1,p

X (A))→ [0, +∞]
defined by FA (u|A ) := F(u, A) is lower semicontinuous.

Proof. “(b) ⇒ (a)”: It is straightforward.
“(a) ⇒ (b)”: Fix an open set A ∈ A0 and take (uh)h , u inW1,p

X (Ω) such that

‖uh|A−u|A‖W1,p(A) → 0.

Now, for any k ∈ ℕ, take an open set Ak such that Ak ⋐ Ak+1 ⋐ A and ⋃+∞k=0 Ak = A, and a smooth cut-off
function φk between Ak and A. For any h, k ∈ ℕ, define the functions vk := φku and vkh := φkuh. We have,
for any h, k ∈ ℕ, that the vkh, v

k belong toW1,p
X (Ω), v

k
h|Ak= uh|Ak , vk|Ak= u|Ak , and moreover

lim
h→∞
‖vkh − v

k‖W1,p
X (Ω)
= 0 for any k ∈ ℕ.

Using (i) and (ii), we get

F(u, A) = lim
k→∞

F(u, Ak)

= lim
k→∞

F(vk , Ak)

≤ lim
k→∞

lim inf
h→∞

F(vkh , Ak)

= lim
k→∞

lim inf
h→∞

F(uh , Ak)

≤ lim
k→∞

lim inf
h→∞

F(uh , A)

= lim inf
h→∞

F(uh , A),

as desired.

We are ready to state the main result of this section.

Theorem 4.3. Let F : W1,p
X,loc(Ω) ×A→ [0, +∞] be such that the following conditions hold:

(i) F is a measure.
(ii) F is local.
(iii) F satisfies the weak condition (ω).
(iv) F is p-bounded.
(v) F is weakly*-sequentially lower semicontinuous.
(vi) F is lower semicontinuous.
Then there exists a unique Carathéodory function f : Ω ×ℝ ×ℝm → [0, +∞) such that

ξ → f(x, u, ξ) is convex for a.e. x ∈ Ω and all u ∈ ℝ, (4.2)
f(x, u, ξ) ≤ a(x) + b|ξ|p + c|u|p for a.e. x ∈ Ω and all (u, ξ) ∈ ℝ ×ℝm , (4.3)

and the following representation formula holds:

F(u, A) = ∫
A

f(x, u, Xu) dx for all u ∈ W1,p
X,loc(Ω) and all A ∈ A. (4.4)



782 | F. Essebei, A. Pinamonti and S. Verzellesi, Integral representation of local functionals

Remark 4.4. If we substitute hypotheses (v) and (vi) with
(v’) F is weakly sequentially lower semicontinuous,
then the conclusions of Theorem 4.3 still hold. Indeed, thanks to Proposition 2.5, the latter is stronger than
both (v) and (vi), even if not equivalent in general.

Proof of Theorem 4.3. We prove this theorem in two steps.

First step. By arguing as in the first step of the proof of Theorem 3.3, the restriction of F to W1,p
loc (Ω) ×A

satisfies all hypotheses of [8, Theorem 1.10]. Thus there exist b̃ > 0 and a Carathéodory function

fe : Ω ×ℝ ×ℝn → [0, +∞]

such that

F(u, A) = ∫
A

fe(x, u, Du) dx for all A ∈ A and all u ∈ W1,p
loc (Ω), (4.5)

fe(x, u, ξ) ≤ a(x) + b̃|ξ|p + c|u|p for a.e. x ∈ Ω and all (u, ξ) ∈ ℝ ×ℝn , (4.6)
fe(x, u, ⋅ ) : ℝn → [0,∞] is convex for a.e. x ∈ Ω and all u ∈ ℝ. (4.7)

Now, arguing as in the second step of the proof of Theorem 3.3, from (4.6) and (4.7) and recalling Proposi-
tions 3.1 and 3.2, we obtain that

∫
A

fe(x, u, Du) dx = ∫
A

f(x, u, Xu) dx for all A ∈ A, u ∈ C∞(A), (4.8)

where f : Ω ×ℝ ×ℝm → [0, +∞] is the Carathéodory function defined in (3.1). Up to modifying f on a set
of measure zero, we can assume that it is finite. Moreover, by arguing as in the third step of the proof of
Theorem 3.3, f satisfies (4.2) and (4.3).

Second step. Here we prove that (4.4) holds. Let us start by fixing u ∈ W1,p
X (Ω) and A ∈ A0. Thanks to

Proposition 2.8, we can find a sequence (uh)h ⊆ W1,p
X (Ω) such that

(uh|A )h ⊆ W1,p
X (A
) ∩ C∞(A) and uh|A→ u|A inW1,p

X (A
).

From this, (vi), (4.5), (4.8), Theorem 4.1 and Proposition 4.2, it follows that

F(u, A) ≤ lim inf
h→+∞

F(uh , A)

= lim inf
h→+∞
∫
A fe(x, uh , Duh) dx

= lim
h→+∞
∫
A f(x, uh , Xuh) dx

= ∫
A f(x, u, Xu) dx,

and hence we obtain that

F(u, A) ≤ ∫
A f(x, u, Xu) dx for all A ∈ A0 and all u ∈ W1,p

X (Ω). (4.9)

To prove the converse inequality, fix u0 ∈ W1,p
X (Ω) and set

H : W1,p
X,loc(Ω) ×A→ [0, +∞], H(u, A) := F(u + u0, A).

It is straightforward to check that H satisfies all hypotheses of the theorem. Hence, there exist a Carathéodory
function h : Ω ×ℝ ×ℝm → [0, +∞), aH ∈ L1loc(Ω) and bH , cH > 0 such that

h(x, u, ξ) ≤ aH(x) + bH |ξ|p + cH |u|p for a.e. x ∈ Ω and all (u, ξ) ∈ ℝ ×ℝm .
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Moreover, it holds that

H(u, A) = ∫
A

h(x, u, Xu) dx for all A ∈ A and all u ∈ C∞(A), (4.10)

and
H(u, A) ≤ ∫

A h(x, u, Xu) dx for all A ∈ A0 and all u ∈ W1,p
X (Ω). (4.11)

Fix then A ∈ A0. Arguing as before, we can find a sequence (uh)h ⊆ W1,p
X (Ω) such that

(uh|A )h ⊆ W1,p
X (A
) ∩ C∞(A) and uh|A→ u0|A inW1,p

X (A
).

Thus, thanks to Theorem 4.1, we get

∫
A h(x, 0, 0) = H(0, A

) (by (4.10))

= F(u0, A)

≤ ∫
A f(x, u0, Xu0) dx (by (4.9))

= lim
h→+∞
∫
A f(x, uh , Xuh) dx

= lim
h→+∞

F(uh , A)

= lim
h→+∞

H(uh − u0, A)

≤ lim
h→+∞
∫
A h(x, uh − u0, Xuh − Xu0) dx (by (4.11))

= ∫
A h(x, 0, 0) dx,

and all inequalities are indeed equalities. Since u0 is arbitrarily chosen, we conclude that

F(u, A) = ∫
A f(x, u, Xu) dx for all u ∈ W1,p

X (Ω) and all A
 ∈ A0.

The rest of the proof follows as in the proof of Theorem 3.3.

The following theorem shows that the hypotheses of Theorem 4.3 are also necessary.

Theorem 4.5. Let f : Ω ×ℝ ×ℝm → [0, +∞) be a Carathéodory function such that

ξ → f(x, u, ξ) is convex for a.e. x ∈ Ω and all u ∈ ℝ,
f(x, u, ξ) ≤ a(x) + b|ξ|p + c|u|p for a.e. x ∈ Ω and all (u, ξ) ∈ ℝ ×ℝm , (4.12)

for b, c > 0 and a ∈ L1loc(Ω), and define the functional F : W1,p
X,loc(Ω) ×A→ [0, +∞] by

F(u, A) := ∫
A

f(x, u, Xu) dx for all u ∈ W1,p
X,loc(Ω) and all A ∈ A.

Then F satisfies hypotheses (i)–(vi) of Theorem 4.3.

Proof. Condition (i) follows as in the proof of Theorem 3.4, while (ii) is trivial. In order to prove (iii), let us
show that F satisfies the strong property (ω). This suffices, according to [8]. Since f is Carathéodory, the set

Ω := {x ∈ Ω : (u, ξ) → f(x, u, ξ) is continuous}
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satisfies |Ω| = |Ω|. For any k ∈ ℕ and ϵ > 0, set Ekϵ ⊆ ℝ ×ℝ ×ℝm ×ℝm as

Ekϵ := {(u, v, ξ, η) : |u|, |v|, |ξ|, |η| ≤ k, |u − v|, |ξ − η| ≤ ϵ}

and the function

ωk(x, ϵ) := {
sup{|f(x, u, ξ) − f(x, v, η)| : (u, v, ξ, η) ∈ Ekϵ} if x ∈ Ω,
0 otherwise.

We show that, for any k, ωk is a locally integrable modulus of continuity. Let us then fix ϵ ≥ 0. Since
(u, ξ) → f(x, u, ξ) is continuous for almost every x ∈ Ω, the supremum in the definition of ωk can be taken
over a countable subset of Ekϵ . Since for any (u, v, ξ, η) the function x → |f(x, u, ξ) − f(x, v, η)| is measurable,
we have that ωk( ⋅ , ϵ) is measurable. We are left to show that it belongs to L1loc(Ω). Observe that by (4.12) it
follows that, for any (u, v, ξ, η) ∈ Ekϵ ,

|f(x, u, ξ) − f(x, v, η)| ≤ 2|a(x)| + b|ξ|p + b|η|p + c|u|p + c|v|p

≤ 2|a(x)| + 4k(b + c).

Since the right-hand side does not depend on (u, v, ξ, η) ∈ Ekϵ , we conclude that

ωk(x, ϵ) ≤ 2|a(x)| + 4k(b + c).

Hence, ωk( ⋅ , ϵ) ∈ L1loc(Ω). Fix now x ∈ Ω. Since Ekϵ ⊆ Ekδ for any ϵ ≤ δ, we have that ωk(x, ⋅ ) is increasing,
and ωk(x, 0) = 0. Finally, its continuity follows from the continuity of f( ⋅ , u, ξ). Then (ωk)k is a sequence of
locally integrable moduli of continuity. Let us recall that, if we define

C := max{sup{|cj,i(x)| : x ∈ Ω} : i = 1, . . . , n, j = 1, . . . ,m},

it holds that 0 < C < +∞. Let us define now, for any k ∈ ℕ, the function

ω̃k(x, ϵ) := ω(⌊C⌋+1)k(x, Cϵ) for all x ∈ Ω and all ϵ ≥ 0.

Of course, we have that (ω̃k)k is still a sequence of locally integrable moduli of continuity: we show that such
a sequence satisfies (2.2). Take A ∈ A0, k ∈ ℕ, ϵ ≥ 0 and u, v ∈ C1(Ω) such that

|u(x)|, |v(x)|, |Du(x)|, |Dv(x)| ≤ k, |u(x) − v(x)|, |Du(x) − Dv(x)| ≤ ϵ for all x ∈ A.

Then it follows that

|Xu(x)| = |C(x)Du(x)| ≤ C|Du(x)| ≤ Ck ≤ (⌊C⌋ + 1)k,
|Xv(x)| = |C(x)Dv(x)| ≤ C|Dv(x)| ≤ Ck ≤ (⌊C⌋ + 1)k,

|Xu(x) − Xv(x)| = |C(x)(Du(x) − Dv(x))| ≤ C|Du(x) − Dv(x)| ≤ Cϵ.

Thus we conclude that

|F(u, A) − F(v, A)| ≤ ∫
A |f(x, u, Xu) − f(x, v, Xv)| dx ≤ ∫A ω̃k(x, ϵ) dx,

and so also (iii) is proved. Condition (iv) follows easily from (4.12), while (vi) is a direct consequence of
Theorem 4.1. Let us now define H : W1,∞(Ω) ×A→ [0, +∞] as the restriction toW1,∞(Ω) ×A of F. Since for
every u ∈ W1,∞(Ω) it holds that Xu(x) = C(x)Du(x), if we define fe : Ω ×ℝ ×ℝn → [0, +∞) by

fe(x, u, ξ) := f(x, u, C(x)ξ),

we can easily notice that fe is a Carathéodory function, convex in the third argument and such that

H(u, A) = ∫
A

fe(x, u, Du) dx.

By applying [1, Theorem 2.1], condition (v) holds for H, and hence for F.
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5 Integral representation of non-convex functionals
In this section, wewant to exploit [8, Theorem 1.8] to characterize a class of local functionals for which again
we neither require translation-invariance nor convexity, and for which we want to weaken the assumption
of weak*-sequential lower semicontinuity in Theorem 4.3. Convexity was a crucial assumption in Proposi-
tion 3.2 to guarantee the validity of (3.2), which can be easily seen to fail if we drop it. Indeed, we have the
following example.

Example 5.1. Let us take Ω = B1(0) ⊆ ℝ2, m = 1 and

X1 := x
∂
∂y

.

Then X1 is a Lipschitz vector field satisfying (LIC) on Ω, with NX := {(x, y) ∈ Ω : x = 0}. Clearly, for all
(x, y) ∈ ΩX we have

C((x, y))T ⋅ B−1((x, y)) ⋅ C((x, y)) = [0
x
] ⋅ [

1
x2
] ⋅ [0 x] = [0 0

0 1
] .

Thus by Proposition 2.12, it follows that

Π(x,y)(ξ1, ξ2) = (0, ξ2) for all (ξ1, ξ2) ∈ ℝ2 and all (x, y) ∈ ΩX . (5.1)

Let us define the map fe : Ω ×ℝ ×ℝ2 → [0, +∞) by

fe((x, y), u, (ξ1, ξ2)) := {
1 − ξ21 − ξ22 if ξ21 + ξ22 ≤ 1,
0 otherwise.

Clearly, fe is a bounded Carathéodory function not convex in the third entry. Moreover, for any (x, y) ∈ ΩX
and (ξ1, ξ2) ∈ ℝ2 with ξ21 + ξ

2
2 ≤ 1, thanks to (5.1) it holds that

fe((x, y), u, Π(x,y)(ξ1, ξ2)) = 1 − ξ22 .

We conclude that (3.2) does not hold.

On the other hand, it is easy to see that there are cases when Proposition 3.2 still holds even if the Lagrangian
is not convex in the third argument, as the following example shows.

Example 5.2. Let us take n,m,X and Ω as in the previous example, and define the function

fe : Ω ×ℝ ×ℝ2 → [0, +∞)

by

fe((x, y), u, (ξ1, ξ2)) := {
1 − ξ22 if |ξ2| ≤ 1,
0 otherwise.

Then fe is again a bounded Carathéodory function which is not convex in the third entry. Anyway, we can
easily see that fe satisfies (3.2).

At this point,wemayask ourselves if there is away toweaken the convexity of fe in the third entrywhich is still
able to guarantee the validity of (3.2). In the previous example, we see that even if fe is not globally convex
in the third entry, it is anyway convex along the direction indicated by Nx. This leads us to the following
definition.

Definition 5.3. We say that a Carathéodory function fe : Ω ×ℝ ×ℝn → [0, +∞] is X-convex if, for a.e. x ∈ Ω
and for any u ∈ ℝ, t ∈ (0, 1) and ξ1, ξ2 ∈ ℝn such that ξ2 − ξ1 ∈ Nx, it holds that

fe(x, u, tξ1 + (1 − t)ξ2) ≤ tfe(x, u, ξ1) + (1 − t)fe(x, u, ξ2).

The following proposition tells us that X-convexity is the proper requirement that we have to assume on the
Euclidean Lagrangian.
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Proposition 5.4. Let fe : Ω ×ℝ ×ℝn → [0, +∞] be a Carathéodory function such that there exist a ∈ L1loc(Ω)
and b, c > 0 such that

fe(x, u, ξ) ≤ a(x) + b|C(x)ξ|p + c|u|p for a.e. x ∈ Ω and all (u, ξ) ∈ ℝ ×ℝn . (5.2)

Then the following facts are equivalent:
(i) fe is X-convex.
(ii) For a.e. x ∈ Ω and for any (u, ξ) ∈ ℝ ×ℝn, the function g : Nx → [0, +∞] defined by g(η) := fe(x, u, ξ + η)

is constant.
(iii) It holds

fe(x, u, ξ) = fe(x, u, Πx(ξ)) for a.e. x ∈ Ω and all (u, ξ) ∈ ℝ ×ℝn .

Proof. “(ii)⇐⇒ (iii)”: Fix x ∈ Ω such that (ii) holds. For any (u, ξ) ∈ ℝ ×ℝn, we have that

fe(x, u, ξ) = fe(x, u, ξNx + Πx(ξ)) = fe(x, u, Πx(ξ)).

Conversely, take x ∈ Ω such that (iii) holds. For any (u, ξ) ∈ ℝ ×ℝn and η ∈ Nx, it holds that

fe(x, u, ξ + η) = fe(x, u, Πx(ξ + η)) = fe(x, u, Πx(ξ)) = fe(x, u, ξ).

“(i)⇐⇒ (ii)”: The fact that (ii) implies (i) is trivial. Conversely, assume (i) and fix x ∈ Ω such that (i) holds
and a(x) < +∞. Thanks to (5.2), we have that, for any fixed u ∈ ℝ, ξ ∈ ℝn and η ∈ Nx,

g(η) = fe(x, u, ξ + η)
≤ a(x) + b|C(x)ξ + C(x)η|p + c|u|p

= a(x) + b|C(x)ξ|p + c|u|p

< +∞.

Since the right-hand side does not depend on η, g is bounded on Nx. Since by assumption it is also convex
on Nx, g is constant.

In order to guarantee the X-convexity of the Euclidean Lagrangian,we exploit the zig-zag argument employed
in [8, Lemma 2.11].

Lemma 5.5. Let F : W1,p
loc (Ω) ×A→ [0, +∞] be such that the following conditions hold:

(i) For all u ∈ W1,p
loc (Ω), the map A → F(u, A) is a measure.

(ii) For all u, v ∈ W1,p
loc (Ω) and all A

 ∈ A0,

u|A= v|A implies F(u, A) = F(v, A).

(iii) F satisfies the weak condition (ω).
(iv) For any A ∈ A0 and (uh)h ⊆ W1,p(Ω), u ∈ W1,p(Ω) such that

lim
h→∞
‖uh − u‖W1,p

X (Ω)
= 0,

it holds
F(u, A) ≤ lim inf

h→∞
F(uh , A).

If for any x ∈ Ω, u ∈ ℝ and ξ ∈ ℝn we define

fe(x, u, ξ) := lim sup
R→0

F(φx,u,ξ , BR(x))
|BR(x)|

, (5.3)

then it holds that fe is X-convex.

Proof. A slight modification of [8, Lemma 2.10] ensures the existence of a sequence (ωk)k of locally inte-
grable moduli of continuity and a set Ω ⊆ Ω such that |Ω| = |Ω| and all points in Ω are Lebesgue points of
x → ωk(x, r) for any k ∈ ℕ and for any r ≥ 0. Moreover,

|fe(x, u, ξ) − fe(x, v, ξ)| ≤ ωk(x, |u − v|) (5.4)
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for any x ∈ Ω, k ∈ ℕ, u, v ∈ ℝ and ξ ∈ ℝn such that

|ξ|, |u|, |v| ≤ k.

Take x ∈ Ω, z ∈ ℝ, t ∈ (0, 1) and ξ1 ̸= ξ2 inℝn such that ξ2 − ξ1 ∈ Nx, and set ξ := tξ1 + (1 − t)ξ2. We want to
prove that

fe(x, z, ξ) ≤ tfe(x, z, ξ1) + (1 − t)fe(x, z, ξ2).

Let us define
ξ0 :=

ξ2 − ξ1
|ξ2 − ξ1|

and, for any h ∈ ℕ, k ∈ ℤ and i = 1, 2, set

Ω1
h,k := {y ∈ Ω : k − 1

h
≤ (ξ0, y) <

k − 1 + t
h },

Ω2
h,k := {y ∈ Ω : k − 1 + t

h
≤ (ξ0, y) <

k
h }

,

Ωi
h := ⋃

k∈ℤ
Ωi
h,k ,

u(y) := z + (ξ, y − x) for all y ∈ Ω,

vh(y) :=
{{{
{{{
{

(1 − t) k − 1
h
|ξ2 − ξ1| + z + (ξ1, y − x) if y ∈ Ω1

h,k ,

−t k
h
|ξ2 − ξ1| + z + (ξ2, y − x) if y ∈ Ω2

h,k .

Arguing as in the proof of [7, Lemma 2.11], we have that vh → u uniformly on Ω. Hence, in particular, vh → u
strongly in Lp(Ω).Moreover, since ξ2 − ξ1 belongs toNx and ξ is a convex combinationof ξ1 and ξ2, both ξ − ξ1
and ξ − ξ2 belong to Nx. Thus for i = 1, 2 and for any y ∈ Ωi

h,k, we have that

|Xu(y) − Xvh(y)| = |C(x)ξ − C(x)ξi| = |C(x)(ξ − ξi)| = 0.

Therefore, vh converges to u strongly inW1,p
X (Ω). Takenow k ∈ ℕ+ such that, for any y ∈ Ω and for any h ∈ ℕ+,

|ξ1|, |ξ2|, |u1(y)|, |u2(y)|, |vh(y)| ≤ k.

Then, thanks to (5.4) and by noticing that (see [8, Lemma 2.4])

F(u, A) = ∫
A

fe(x, u, Du) dx for all u affine on Ω and all A ∈ A,

arguing as in [7, Lemma 2.11] and setting Bi
h,R(x) := BR(x) ∩ Ωi

h for i = 1, 2 and for any R > 0 such that
BR(x) ⋐ Ω, we obtain that

F(vh , BR(x)) ≤ ∫
B1
h,R(x)

fe(y, u1, Du1) dy + ∫
B2
h,R(x)

fe(y, u2, Du2) dy + ∫
Ω

wk(y, aR +
b
h )

,

with a := |ξ2 − ξ1| and b := at(1 − t). Since vh converges to u strongly in W1,p
X (Ω) and thanks to hypothe-

sis (iv), it is easy to see that

F(u, BR(x)) ≤ tF(u1, BR(x)) + (1 − t)F(u2, BR(x)) + ∫
Ω

wk(y, ϵ),

where this inequality holds for any ϵ > 0 and for any R ∈ (0, ϵ
a ]. Dividing both sides by |BR(x)|, passing to the

limsup and recalling that x is a Lebesgue point of y → wk(y, ϵ), we have that

fe(x, z, ξ) ≤ tfe(x, z, ξ1) + (1 − t)fe(x, z, ξ2) + wk(x, ϵ).

By letting ϵ go to zero, the lemma is proved.
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We are now ready to state and prove the main result of this section.

Theorem 5.6. Let F : W1,p
X,loc(Ω) ×A→ [0, +∞] be such that the following conditions hold:

(i) F is a measure.
(ii) F is local.
(iii) F satisfies the strong condition (ω).
(iv) F is p-bounded.
(v) F is lower semicontinuous.
Then there exists a unique Carathéodory function f : Ω ×ℝ ×ℝm → [0, +∞) such that

f(x, u, ξ) ≤ a(x) + b|ξ|p + c|u|p for a.e. x ∈ Ω and all (u, ξ) ∈ ℝ ×ℝm , (5.5)

and the following representation formula holds:

F(u, A) = ∫
A

f(x, u, Xu) dx for all u ∈ W1,p
X,loc(Ω) and all A ∈ A. (5.6)

Proof. Let us consider the restriction of F toW1,p
loc (Ω) ×A. By arguing as in the first step of the proof of Theo-

rem 3.3, it is easy to see that it satisfies all hypotheses of [8, Theorem 1.8]. Thus, if fe is defined as in (5.3), it
is a Carathéodory function and moreover there exists b̃ > 0 such that

F(u, A) = ∫
A

fe(x, u, Du) dx for all A ∈ A and all u ∈ W1,p
loc (Ω),

and
fe(x, u, ξ) ≤ a(x) + b̃|ξ|p + c|u|p for a.e. x ∈ Ω and all (u, ξ) ∈ ℝ ×ℝm .

Moreover, thanks to Lemma 5.5, fe is X-convex. So, recalling Proposition 5.4 and Proposition 3.1 (iv), we get
that

∫
A

fe(x, u, Du) dx = ∫
A

f(x, u, Xu) dx for all A ∈ A, u ∈ C∞(A),

where f : Ω ×ℝ ×ℝm → [0, +∞] is the function defined in (3.1). Such an f can be supposed to be finite up
to modifying it on a set of measure zero. By arguing as in the third step of the proof of Theorem 3.3, inequal-
ity (5.5) holds, while (5.6) follows exactly as in the last step of the proof of Theorem 4.3. Finally, uniqueness
follows as usual.

Proceeding exactly as in Theorem 4.5, we have the following theorem.

Theorem 5.7. Let f : Ω ×ℝ ×ℝm → [0, +∞) be a Carathéodory function such that

f(x, u, ξ) ≤ a(x) + b|ξ|p + c|u|p for a.e. x ∈ Ω and all (u, ξ) ∈ ℝ ×ℝm ,

for b, c > 0 and a ∈ L1loc(Ω). If we define the functional F : W1,p
X,loc(Ω) ×A→ [0, +∞] by

F(u, A) := ∫
A

f(x, u, Xu) dx for all u ∈ W1,p
X,loc(Ω) and all A ∈ A,

then F satisfies hypotheses (i)–(v) of Theorem 5.6.
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