Trichoderma atroviride SC1 (SC1) was isolated from hazelnut wood and it is effective in the biocontrol of soil-borne pathogens. However, its effectiveness decreases as its population declines in the soil over time. To improve its persistency in the soil, lignocellulosic materials (wood pellets) were tested to be used as carriers to sustain the population of SC1 and facilitate its incorporation into the soil. A method was developed to coat wood pellets of fir, beech, and chestnut with a conidial suspension to reach a preset concentration (i.e. 10^4, 10^5, and 10^6 cfu/ g of wood). The growth of SC1 on each type of wood was compared. Chestnut pellets were excluded from further experiments because they had low counts of colony-forming units (cfu) of SC1. Beech pellets were preferred over fir pellets for showing more suitable physicochemical characteristics for soil application. In addition, for the same wood type, increased initial coating concentrations did not impact the final colony counts of SC1 and no significant difference was observed between the counts of 10^4, 10^5, and 10^6 cfu/g of wood at the end of the experiment. The addition of small quantities of nitrogen increased the final cfu on all types of wood pellets. The growth of SC1 on beech pellets was then tested by adding cheap nitrogen sources namely, soy flour, soy protein isolates, and proteins that originated from animal wastes. The best results were obtained with soy protein isolates (1 g/L) and the population of SC1 reached 10^9 cfu/ g of beech wood. Finally, this carrier of coated beech pellets with soy protein isolates was tested in the soil under controlled conditions, in an experimental greenhouse at 25°C and 60% of soil humidity. The pellets were coated to reach a final concentration of 5×10^5 cfu/ g of beech and 10 g of beech coated pellets were mixed with 1 kg of soil in plastic pots to reach the final concentration of 5×10^3 cfu/ g of soil. The carrier increased the bacterial richness and diversity of the soil and decreased the fungal ones. The total Trichoderma population persisted in the first month and then declined after three months with competition from other bacteria such as Massilia spp. and fungi such as Stachybotrys spp. and Mortierella spp.

Lignocellulosic materials coated with Trichoderma atroviride SC1 increase its persistency in the soil and impact soil microbiota / Chammem, Hamza. - (2022 Apr 14), pp. 1-126. [10.15168/11572_338092]

Lignocellulosic materials coated with Trichoderma atroviride SC1 increase its persistency in the soil and impact soil microbiota

Chammem, Hamza
2022-04-14

Abstract

Trichoderma atroviride SC1 (SC1) was isolated from hazelnut wood and it is effective in the biocontrol of soil-borne pathogens. However, its effectiveness decreases as its population declines in the soil over time. To improve its persistency in the soil, lignocellulosic materials (wood pellets) were tested to be used as carriers to sustain the population of SC1 and facilitate its incorporation into the soil. A method was developed to coat wood pellets of fir, beech, and chestnut with a conidial suspension to reach a preset concentration (i.e. 10^4, 10^5, and 10^6 cfu/ g of wood). The growth of SC1 on each type of wood was compared. Chestnut pellets were excluded from further experiments because they had low counts of colony-forming units (cfu) of SC1. Beech pellets were preferred over fir pellets for showing more suitable physicochemical characteristics for soil application. In addition, for the same wood type, increased initial coating concentrations did not impact the final colony counts of SC1 and no significant difference was observed between the counts of 10^4, 10^5, and 10^6 cfu/g of wood at the end of the experiment. The addition of small quantities of nitrogen increased the final cfu on all types of wood pellets. The growth of SC1 on beech pellets was then tested by adding cheap nitrogen sources namely, soy flour, soy protein isolates, and proteins that originated from animal wastes. The best results were obtained with soy protein isolates (1 g/L) and the population of SC1 reached 10^9 cfu/ g of beech wood. Finally, this carrier of coated beech pellets with soy protein isolates was tested in the soil under controlled conditions, in an experimental greenhouse at 25°C and 60% of soil humidity. The pellets were coated to reach a final concentration of 5×10^5 cfu/ g of beech and 10 g of beech coated pellets were mixed with 1 kg of soil in plastic pots to reach the final concentration of 5×10^3 cfu/ g of soil. The carrier increased the bacterial richness and diversity of the soil and decreased the fungal ones. The total Trichoderma population persisted in the first month and then declined after three months with competition from other bacteria such as Massilia spp. and fungi such as Stachybotrys spp. and Mortierella spp.
14-apr-2022
XXXIII
2019-2020
Ingegneria civile, ambientale e mecc (29/10/12-)
Civil, Environmental and Mechanical Engineering
Pertot, Ilaria
Ciolli, Marco
no
Inglese
Settore AGR/16 - Microbiologia Agraria
Settore BIO/11 - Biologia Molecolare
File in questo prodotto:
File Dimensione Formato  
PhD_Unitn_Hamza_Chammem.pdf

Open Access dal 15/04/2023

Tipologia: Tesi di dottorato (Doctoral Thesis)
Licenza: Creative commons
Dimensione 2.42 MB
Formato Adobe PDF
2.42 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/338092
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact