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ABSTRACT:

Trichoderma atroviride SC1 (SC1) was isolated from hazelnut wood and it is effective in the biocontrol of
soil-borne pathogens. However, its effectiveness decreases as its population declines in the soil over time. To
improve its persistency in the soil, lignocellulosic materials (wood pellet) were tested to be used as carriers to
sustain the population of SC1 and facilitate its incorporation into the soil. A method was developed to coat
wood pellets of fir, beech and, chestnut with a conidial suspension to reach a preset concentration (i.e. 104,
105, and 10° cfu/ g of wood). The growth of SC1 on each type of wood was compared. Chestnut pellets were
excluded from further experiments because they had low counts of colony-forming units (cfu) of SC1. Beech
pellets were preferred over fir pellets for showing more suitable physicochemical characteristics for soil
application. In addition, for the same wood type, increased initial coating concentrations did not impact the
final colony counts of SC1 and no significant difference was observed between the counts of 104, 103, and 10°
cfu/g of wood at the end of the experiment. The addition of small quantities of nitrogen increased the final cfu
on all types of wood pellets. The growth of SC1 on beech pellets was then tested by adding cheap nitrogen
sources namely, soy flour, soy protein isolates, and proteins that originated from animal wastes. The best
results were obtained with soy protein isolates (1 g/L) and the population of SC1 reached 10° cfu/ g of beech
wood. Finally, this carrier of coated beech pellets with soy protein isolates was tested in the soil under
controlled conditions, in an experimental greenhouse at 25°C and 60% of soil humidity. The pellets were
coated to reach a final concentration of 5x103 cfu/ g of beech and 10 g of beech coated pellets were mixed with
1 kg of soil in plastic pots to reach the final contentarion of 5x10° cfu/ g of soil. The carrier increased the
bacterial richness and diversity of the soil and decreased the fungal ones. The total Trichoderma population
persisted in the first month and then declined after three months with competition from other bacteria such as
Massilia spp. and fungi such as Stachybotrys spp. and Mortierella spp.

Keywords: Trichoderma, soil, formulation, wood, coating, metabarcoding
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Chapterl: Introduction

Chapter 1: Introduction

Trichoderma species (Ascomycetes, Hypocreales) are ubiquitous, and
dominante the soil microflora (Domsch et al., 1980; Gams and Bissett,
1998; Klein and Eveleigh, 1998; Killham, 1994). Considering the
morphological characteristics of the genus, Bissett (1991 a, b, and ¢)
identified four sections: Trichoderma, Pachybasium, Longibrachiatum,
and Hypocreanum. To date, 256 species have been described, and some
of these species are considered the anamorphs of Hypocrea species
(Samuels 1996; Samuels, 2006; Bisset et al., 2015). Trichoderma spp.
reproduce asexually by growing from hyphae fragments or by
producing spores (Gams and Bissett, 1998).

Trichoderma spp. are important biological control agents, with specie
such as T. hamatum, T. harzianum, and T. virens showing high potential
for biocontrol (Harman et al., 2004). This is due to their high
competitiveness in the soil as they can survive under various stressful
conditions using a variety of enzymes and volatile compounds (Qi and
Zhao, 2013; Jalali et al., 2017; Racic et al., 2017). Trichoderma spp.
tolerate different climates from cool temperate to tropical (Danielson
and Davey, 1973a; Papavizas, 1985; Kubicek et al., 2008; Kredics et
al., 2014). They can be found in various agricultural soil types as well
as in forests, and sandy desert soils (Domsch et al., 1980; Hagn et al.,
2003; Roiger et al., 1991). This is due to their versatility in growing and
degrading very diverse carbon sources such as sucrose, D-mannose, D-
xylose, D-galactose, and D-fructose (Danielson and Davey, 1973b;
Domsch et al., 1980; Klein and Eveleigh, 1998; Papavizas, 1985).
Species of the genus Trichoderma are able to increase plant growth by
changing the structure of roots or releasing substances such as
siderophores (to chelate iron) and organic acids. These compounds
stimulate the production of auxins and increase the concentration of
essential elements such as Ca, P, K, and Mg in the soil. These elements
can directly influence shoot height, root proliferation and plant
productivity (Lopez-Bucio et al., 2015; Pascale et al., 2017; Porras et
al., 2007; Contreras-Cornejo et al., 2009). Trichoderma spp. can also
prduce different antibiotics such as pyrones (Claydon et al., 1987) and
other secondary metabolites (Sivasithamparam and Ghisalberti, 1998).
These matbolites helped confer to Trichoderma spp. their biocontrol
activity by antibiosis, mycoparasitism, or simply by competition for
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space and nutrients. These activities against many fungal pathogens
have rendered them a suitable substitute for chemical compounds for
disease control (Benitez et al., 2004). Mycoparasitism is the direct
attack of one fungus on another and is referred to, usually, as direct
antagonism (Dix and Webster, 1995) with B-glucanase, chitinase and
proteinases being the main lytic enzymes involved in the degradation
of the host cell wall (Chet and Baker, 1981; Harman et al., 2004).
Trichoderma spp. can also inhibit the growth of other
microorganisms/pathogens by antibiosis, which is the release of toxic
substances such as pyrones, terpenoids, steroids, polyketides, and non-
ribosomal peptides (peptaibols) (Sivasithamparam and Ghisalberti,
1998; Howell, 1998).

The fast-growing nature of Trichoderma spp. along with all the above-
mentioned characteristics grant these fungi the ability to outcompete
less aggressive colonisers for space and nutrients (Dix and Webster,
1995; Papavizas, 1985), and makes them very prolific in the biocontrol
of soilborne-pathogens. However, the short lifespan of non-native fungi
of these species is a major drawback in the soil as well as in storage.
Hence, formulations have been developed to solve these issues, and
many substrates and carriers have been tested with different
Trichoderma spp. to facilitate their soil incorporation, support their
survival in the soil and prolong the shelf-life of their mycelia biomass,
and conidia (John et al., 2011; Jin and Custis, 2011; Kumar et al., 2014;
Cumagun, 2014).

Trichoderma atroviride SC1 is an isolate that was isolated from
hazelnut wood in northern Italy (Pertot et al., 2008). It tolerates a wide
range of temperature (5°C — 30°C) and pH (4-7) and was demonstrated
to possess good biocontrol potential (Pertot et al., 2016).

Aims of the Ph.D. thesis

The aims of this thesis were to develop an easy way to introduce conidia
of Trichoderma spp. into the soil by testing lignocellulosic materials in
general, and wood pellets in particular, to be used as carriers of
Trichoderma spp. for soil application, and to test the effect of such a
carrier on the microorganisms of the soil.



Chapterl: Introduction

Thesis format (outline)

The thesis is composed of six chapters. A general introduction, one
submitted review article, two submitted original papers, a conclusion /
future perspectives, and finally the references (organised by chapter, in
their order of appearance in the text).

The review paper is composed of four different parts discussing the
current situation of the survival of Trichoderma spp. in the soil with and
without formulations, the biocontrol effectiveness of these fungi, and
their impact on non-target microorganisms. The third and fourth
chapters both comprise an abstract, an introduction, a materials and
methods section, a results section, a discussion section, and a
conclusion.
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Abstract

Trichoderma spp. are saprophytic fungi that have gained increasing
attention as biocontrol agents against soil borne plant pathogens.
However, the decline of the population of Trichoderma spp. in the soil
often renders field treatments inefficient. This decline depends on the
applied strain of Trichoderma spp., the soil abiotic factors, namely
temperature, moisture, and pH, and the complex interactions with the
microbial biomass of a soil and the plants. Since increasing the initial
inoculum concentration of Trichoderma spp. does not prevent the
decline of the population, formulations were often proposed to
overcome this obstacle. Formulations can enhance the proliferation of
the fungus and increase the consistency of soil treatments but can be
ineffective when the plant pathogen is present at high levels in the soil.
In addition, they must avoid any excess of nutrients that can advantage
soil borne plant pathogens. Understanding the behaviour of
Trichoderma spp. and soil microbiota after the inoculation is crucial to
enhancing the efficiency of the treatments. Applications of
Trichoderma spp. can shift the microbial community of the soil,
however with a transient effect. Although culture-independent analysis
partially clarified the impact of introducing Trichoderma spp. on soil
microbiota, several aspects of the complex interactions among the
plants, and soil microorganisms including plant pathogens during time
are still unknown. Moreover, the effect of agricultural practices on the
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survival of introduced isolates of Trichoderma spp. needs to be
explored to improve biocontrol in practice.

Keywords: Trichoderma spp., soil treatment, population dynamics,
survival, interaction, microorganisms.

Introduction

The application of microbial biocontrol agents (BCAs) is considered a
promising alternative to the use of chemical soil fumigants (Graham
and Strauss, 2021). However, many challenges still affect the practical
application of BCAs against soil borne diseases on crops. The most
important one is the difficulty to replicate the conditions of naturally
suppressive soils, which are based on a precise combination of the
physicochemical conditions of the soil and the composition of the
microbial population (Weller et al., 2002). Since the discovery of the
antagonistic properties of Trichoderma lignorum (Weindling, 1932)
many studies have shown that Trichoderma spp. can be effective in the
biocontrol of soil borne plant pathogens and several isolates of the
genus Trichoderma have been implemented for such use (Benitez et al.,
2004).

The importance of Trichoderma spp. in biocontrol emanates from their
diverse mechanisms of action in antagonising soil borne plant
pathogens. They are highly competitive in colonising a wide range of
substrates, which contributes to the displacement of less competitive
microorganisms (Papavizas, 1985). This phenomenon is often referred
to as “‘competition for space and nutrients” and is regarded as an indirect
way of antagonism, however, it is highly dependent on the ability of the
fungus to proliferate and establish in the soil. Luckily, Trichoderma
spp. possess other weapons in their arsenal. They are able to induce
plant resistance when applied to the root system, by releasing elicitors
that can be peptides, proteins, and/or low-molecular-weight compounds
that stimulate plant defence responses (Harman et al, 2004). The
release of these chemicals elicits the production of ethylene or terpenoid
phytoalexins, which are linked to plant resistance to plant pathogens
(Howell et al., 2000). Moreover, Trichoderma spp. can act by antibiosis
through the production of certain secondary metabolites belonging to
the class of diketopiperazines, isocyano derivatives, peptaibols,
polyketides, pyrones, and terpenoids (Sivasithamparam, and
Ghisalberti, 1998). These metabolites have antifungal and antibacterial
properties and inhibit the growth of other microorganisms (Benitez et
al., 2004). Finally, Trichoderma spp. can attack other fungi directly
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using a variety of cell-wall-degrading enzymes such as chitinases,
glucanases, and proteases (Benitez et al., 2004). The process of this
mechanism of action is quite complex and involves four different steps
(Chet et al., 1998). The first step consists of the recognition of the plant
pathogen by the BCA through the secretion of chemicals by the former
that stimulate the latter. After the recognition, Trichoderma attaches to
the plant pathogen lectins with cell-wall carbohydrates, coils around the
plant pathogen, forms appressoria, then starts to produce cell-wall-
degrading enzymes and peptaibols, which assist in killing the targeted
plant pathogen (Benitez ef al., 2004).

However, when it comes to a practical large-scale application, the main
challenge is to keep their concentration in the soil equal to or higher
than the effective threshold for a sufficient time in order to exert their
antagonistic properties against the plant pathogen(s) (Adams, 1990).
Moreover, most of the studies focused on the efficacy of Trichoderma
spp. in antagonising a specific pathogen in vitro or under controlled
conditions (Kay and Stewart, 1994; Schoeman et al., 1996; Gracia-
Garza et al.,, 1997; Lewis and Lumsden, 2001), while subsequent
application under field conditions often yields inconsistent results. This
is due to the complex interaction of the factors that affect the
effectiveness of soil treatments. Soil temperature, moisture, pH, organic
matter and nutrients content, as well as microbial biomass and
composition can influence the rate of soil colonisation by Trichoderma
spp. (Carreiro and Koske, 1992; Klein and Eveleigh, 1998). Therefore,
good understanding of the ecology and dynamics of Trichoderma spp.
populations in the field is crucial to enhancing the biocontrol efficiency
(Chet, 1990; Paulitz, 2000; Gerhardson, 2002).

Several studies addressed the role of the above-mentioned factors
on Trichoderma spp. survival in the soil, but, unfortunately, due
to the different experimental setups and lack of monitoring of the
population over time, generalizing conclusions is difficult. This
chapter aims to collect and elaborate on available information on
the fate of exogenous Trichoderma spp. isolates when applied in
the soil and the role of formulations or substrates on their survival.
Moreover, it provides an- overview of recent findings regarding
the factors that can affect the efficiency of soil treatments with
Trichoderma spp., and the side effects of Trichoderma spp. on the
microbial communities of soils.
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The decline of non-formulated Trichoderma spp. after their
application in the soil

Soil temperature, moisture, pH, organic matter, nutrient content, and
plant types are key factors that influence the proliferation of
Trichoderma spp. in the soil, whereas soil texture is less relevant to
influence their soil colonization (Danielson and Davey, 1973a,b;
Widden and Abitbol, 1980; Papavizas, 1985; Eastburn and Butler,
1991). Although Trichoderma spp. tolerate a wide range of
temperatures, soil temperature has a relevant impact on their enzymatic
activity and volatile compound production (Tronsmo and Dennis,
1978). Temperature also affects the water availability in the soil, which
in turn controls the germination of conidia and the hyphal growth of
Trichoderma spp. (Eastburn and Butler, 1991; Dix and Webster, 1995;
Clarkson et al., 2004). Generally, Trichoderma spp. prefer humid acidic
soils, with optimal growth and conidia germination in a pH ranging
between 3.5 and 5.6 (Danielson and Davey, 1973c; Domsch et al.,
1980).

The proliferation of Trichoderma spp. can also be affected by biological
factors that include the competition between different Trichoderma spp.
isolates present in the soil (Widden and Hsu, 1987) and the inhibition
by bacterial species such as Pseudomonas spp. (Hubbard et al., 1983;
de Boer et al., 2003). Unfortunately, early studies focused only on the
effect of the soil microbial communities against the antagonistic activity
of Trichoderma spp., without providing information on the interaction
with resident bacterial or fungal species (Naar and Kecskes, 1998;
Kredics et al., 2003). Moreover, little is known about the effect of
agronomic practices on the dynamics of Trichoderma spp. in soil,
except for the effect of a crop rotation with soybean, maize, and, potato
on the increase of indigenous populations of Trichoderma as compared
to potato monoculture (Larkin, 2003).

Since different Trichoderma spp. isolates can be found in different soil
habitats and their biocontrol efficacy depends on the isolate that is used
in relation to the targeted soil borne plant pathogen (Bell et al., 1980),
the goal of several studies was to transfer effective indigenous isolates
from suppressive soils to soils where they do not belong naturally
(Wells et al., 1972; Papavizas and Lewis 1981; Lewis and Papavizas,
1991).
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The level of indigenous Trichoderma spp. in soils, which varies
between 10! and 10° colony forming units (CFU)/g of soil, depends on
the combination of physicochemical and biological factors (Papavizas,
1981; Roiger et al., 1991; Larkin, 2003; Sariah et al., 2005; Longa and
Pertot, 2009). When an exogenous Trichoderma spp. isolate is
introduced into a soil, its fate depends not only on the genetic
characteristics of the isolate, but also on the environmental factors that
affect the dynamics of the indigenous species. For example, conidial
suspensions of 7. harzianum isolates added to a non-sterile sandy loam
soil, at the rate of 10* CFU/g of soil, declined over time, reaching a
concentration lower than 10* CFU/g of soil after four months, which is
the natural level for that soil (Papavizas, 1981). A non-native
Trichoderma spp. isolate can be considered established in a new soil
habitat when it maintains a stable population level for a long time after
the inoculation (Lewis, and Papavizas, 1984). Several studies showed
that this commonly occurs at concentrations similar to those of the
indigenous Trichoderma spp. (Leandro et al., 2007; Longa et al., 2008;
Savazzini et al., 2008; Oskiera et al., 2017). However, the rate of the
decline, defined as the decrease in CFU counts of Trichoderma spp.
population in time, varies for the same isolate and depends on the
abiotic and biotic conditions of the soil where it is introduced. For
instance, 7. atroviride SC1 incorporated in three soils (10° CFU/g of
soil) with different physicochemical characteristics (e.g. two sandy
loam and one clay loamy) survived at high rates (between 10® and 107
CFU/g of soil) 45 days after the inoculation (Longa et al, 2008;
Savazzini et al., 2008). In contrast, the decline of 7. atroviride 1-1237
(inoculated at 10° CFU/g of soil) occurred just after 21 days in a neutral
clay loamy soil, but after three months in an acidic sandy loam soil
(Cordier and Alabouvette, 2009).

Increasing the concentration of the Trichoderma spp. inoculum
commonly does not prevent the decline and/or influence the final
concentration of the established population. For example, when a high
concentration of T. atroviride SC1 conidia was incorporated into the
first layer of two types of soils (1.2 x 108 CFU/g of dry soil), it decreased
within 12 months to levels close to the concentration of the indigenous
Trichoderma spp. of those soils to levels ranging from 1 x 10! to 3.9 x
10> CFU/g of dry soil (Longa and Pertot, 2009).

Although assessing the interaction of the effect of every single factor of
soils and the genetic traits of each specific isolate may explain the
reasons for the decline of any introduced exogenous Trichoderma spp.
isolate in soils, this approach would be extremely expensive and time-
consuming. For this reason, research commonly focuses on the
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behaviour of specific Trichoderma spp. isolates over time under the
specific conditions of the target use (Table 1).

In summary, the soil physicochemical factors influence the fluctuations
of indigenous Trichoderma spp. populations and determine the fate of
any introduced exogenous Trichoderma spp. isolate that needs to adapt
to a new habitat. The population of the introduced Trichoderma spp.
isolates usually ends up declining in time even if high inoculum levels
are added to the soil. Therefore, more research is needed to understand
the impact of the interaction among soil abiotic and biotic factors and
the role of agronomic practices to enhance the proliferation of
Trichoderma spp. in soils. We deem the information provided in Table
1 necessary to create a robust database of studies that report the decline
rate of Trichoderma spp. and we encourage future studies to follow the
same protocol by reporting the initial inoculum, the period of the
experiment, the soil conditions, and the final recuperated concentration
at the end of the experiment. Moreover, using a unified index for the
dynamics of Trichoderma spp. such as “fold/week” or “order of
magnitude/week” decrease/increase of the population allows
comparing the population dynamics of the same Trichoderma spp.
isolates over time in different soil conditions, which in terms can
facilitate evaluating the effects of each soil parameter on the fungus. In
addition, following this protocol, comparing between decline rates of
two different isolates will become easier even when reported in two
separate studies that share similar soil habitats.

Effect of Trichoderma spp. formulations and/or nutritional
supplements on the fate of the fungal population

To prevent the decline of Trichoderma spp., various formulations have
been proposed (Gasi¢ and Tanovi¢, 2013). Formulations are the
blending of biomass of active ingredients, such as conidia or
chlamydospores of Trichoderma with inert carriers, to improve the
physical characteristics (Kumar, 2013). The biomass of Trichoderma
spp. is normally produced by submerged fermentation, semi-solid
fermentation, or on solid substrates (Lewis and Papvizas, 1991). The
most common substrates used to grow Trichoderma spp. are
agricultural by-products such as wheat bran, sawdust, bagasse, straws,
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and other liquid substances such as molasses and jaggery solutions
added to inert solids (Papavizas and Lewis, 1981; Lewis and Papavizas,
1991). The final product can be formulated as wettable powders, dusts,
gels, emulsions, prill, pellets and granules (Lewis and Papavizas, 1991;
Fravel et al., 1998). The formulation aims to stabilise the BCA during
the production and distribution, increase its shelf life during the storage
at room or controlled temperature, protect conidia from the adverse
conditions of the soil and/or provide the fungal propagules with
nutrients that support the growth and enhance their activity (Burges and
Jones, 1998).

Within a formulation, the carrier is the component that facilitates the
distribution of the active ingredient in the substrate, and it can be inert
such as, Pyrax or talc, a food base, such as powdered wheat bran or soy
fibre, or a combination of both (Lewis and Papavizas, 1991). A good
carrier should be non-toxic to the BCAs and plants, cheap and available
in sufficient quantities, and easy to sterilize to avoid contaminants
(Leggett et al., 2011). For the soil application inert carriers, such as,
peat, talc, vermiculite, charcoal and alginate pellets, are most
commonly used (Lewis and Papavizas, 1991). Trichoderma spp. are
sensitive to soil fungistasis (Steiner and Lockwood, 1969; Lubeck et
al., 2004) and formulated products display enhanced longevity in time
as compared to the non-formulated conidia (Table 1). For example,
while non-formulated population of 7. harzianum declined from 10° to
10* CFU/g of soil eight weeks after inoculation, bentonite-vermiculite
formulated conidia of the same isolate did not (Martinez-Medina et al.,
2009).

If formulations may help delay the decline of fungal populations of
Trichoderma spp. over time and therefore, extend the biocontrol effect
of the introduced BCA, their effect varies among isolates. For instance,
T. virens G1-21 and T. harzianum T-22, when applied as granular
formulations, were still present after 15 weeks in bulk soil at a
concentration of 1 - 1.2 x 10* CFU/g of soil in contrast to unformulated
conidia, but only 7. virens G1-21 was still detectable after one year
(Larkin, 2016).

An efficient formulation may delay the decline of the population of
Trichoderma spp., but the final outcome always depends on the
soil/rhizosphere competence of the specific isolate (Harman, 2000; Sibi
et al., 2008). Rhizosphere competence is associated to the plant and its
resident microflora, which adds an additional layer of complexity to the
system, suggesting that the formulation of a Trichoderma spp. isolate
may need to be adjusted not only to the soil and the isolate, but also to

10
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the crop. In fact, some species of Trichoderma spp. isolates showed
rhizosphere preferences, as 7. harzianum and T. hamatum that were
more often associated with the rhizoplane of cucumber or tomato,
respectively, which is probably related to the differences in plant
exudates among these crops (Kurakov and Kostina, 2001).

In general, without the addition of a carbon source to the soil,
Trichoderma spp. isolates tend to decline fast until stabilising at a
concentration, which varies according the specific soil conditions,
regardless of the initial inoculated population level (Longa et al., 2008).
The competitiveness of an introduced Trichoderma spp. isolate may
increase with the addition to the soil of a carbon source that can support
its growth. Several compounds have been tested, as components of the
formulation, on various isolates and fungal stages providing different
outcomes (Table 1). Many carriers combined with nutrients increased
the populations of Trichoderma spp. in the soil (Renganathan et al.,
1995; Smolinska et al., 2014; Medeiros et al., 2020). However, the
positive effect on the fungal growth of increasing dosages of the
nutritional substrate usually reaches a plateau (Lewis and Papavizas,
1984). On the contrary, increasing the Trichoderma spp. inoculum
levels in the nutritional substrate does not increase the final
concentration in the soil over time. For instance, the application of two
rates of 7. harzianum (10 and 20 g of a talc-based formulation per kg
of farmyard manure) to a sandy loam soil resulted in the same
proliferation pattern almost eight weeks (60 days) after the inoculation
(Prasad et al., 2002) and the population of 7. harzianum increased to
108 CFU/g of soil from an initial concentration of 10* CFU/g of soil with
both doses. Cho and Lee (1999) also observed a similar behaviour with
T. viride ATCC 52440 in a sandy loam soil (pH=4.6; organic matter
=19.3%) by entrapping three wet biomass weights (0.4, 0.8, and 1.4 mg)
of the fungus in gluten granules. The number of CFU of 7. viride ATCC
52440 reached the level of 4.5-6.7 x 107 CFU/g of soil nearly 50 days
after incorporation into the soil for all tested biomass of the fungus.

The type of propagules of the introduced Trichoderma spp. isolate, may
have an effect on its fate in soil, with mycelial propagules being more
active than conidia, which need to find favourable conditions to
germinate. For example, wheat bran added at 1% weight/weight (w/w)
did not prevent the decline of the populations of T. harzianum and T.
viride, unless fresh mycelium is used instead of conidia, with an effect
on the survival that varied according to the isolate. In fact, when wheat
bran was added, T. harzianum and T. viride increased from an initial
concentration of 10* to 5 x 107 and 10® CFU/g of soil, respectively,

11



Hamza CHAMMEM — Lignocellulosic materials coated with Trichoderma atroviride
SC1 increase its persistency in the soil and impact soil microorganisms

before stabilizing at 10* and 10° CFU/g of soil after 36 weeks,
respectively (Lewis and Papavizas, 1984). However, conidia and
chlamydospores are preferred over fresh mycelia in the formulation
process due to the sensitivity of mycelial propagules to the dry
conditions in storage at room temperature (Papavizas and Lewis, 1989;
Lewis et al., 1990).

Concentrations of nutritive substances in the substrates are important.
For example, high concentrations of carbon sources in a formulation do
not necessarily guarantee better Trichoderma spp. proliferation,
because the carbon increase can nourish plant pathogens instead of the
introduced inoculum (Kelley, 1976; Cook and Baker, 1983; Cummings
et al., 2009). Implementing formulations that can support the growth of
Trichoderma spp. for long time is the key to guarantee a better
proliferation of the fungus, and the optimization of the formulation
and/or its nutritional components for a wide range of soils is the
challenge for a wide use of Trichoderma spp. isolate for soil treatments.

To improve the development of formulations, it is important to enhance
our understanding of the ecology of Trichoderma spp. their interactions
with the microbiota of the soil, and the effect of agricultural practices
on their proliferation. In addition, a good knowledge of the plant-
pathogen system can improve the choice of carriers, substrates, and
additives that must be suited for the mode of action and the delivery of
Trichoderma spp. to obtain better biocontrol.

12
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Table.1 Fate of formulated and non-formulated Trichoderma spp. isolates applied in the soil at a specific
concentration.

Strain Initial Final Duration of | Soil type and | Food support | Reference
concentrat | Concentration | the proprieties/greenhouse | /Formulation | and year
ion (cfug?) | (cfug?h) experiment | conditions

(week)

T. harzianum

T-1

T-5

T-14 104 <10? 18 Sandy loam (pH=6) No Papavizas,

H-54 1981

WT-6

WT-6-1 (Uv-

induced biotype)

T. viride T-1-R4 104 @ 10% 36 Loamy sand (pH=6.4; | Bran 1% of | Lewis and

T.harzianumW'T- 10% 10% 0.4% organic matter) soil t(w/w) Papavizas,

6-24 1984
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T.hamatum T382 |2 x 10° 103 34 Potting mix (75-85% | Compost Leandro et
Canadian sphagnum | added al., 2007
peat moss, 15-20% | regularly
perlite, 5-10%
vermiculite)

T. atroviride SC1 1.2 x 108 1.15 x 107 18 Sandy clay soil Longa and
(pH=7.78) Pertot,

Sterilized 2009
5.1 x10¢ Sandy loam soil | boiled rice
(pH=7.64)

T.atroviride SC1 106 10°-107 6 Two sandy loam and one | Sterilized Longa et
clay loamy soil boiled rice al., 2008

T.atroviride 1-1237 | 10° 1.7 x 10* 3 Neutral clay loam No Cordier and

Alabouvett
e, 2009
2.2 x10* 13 Acidic sandy loam
T. harzianum 108 10* 8 Peat No Martinez-
Medina et
al., 2009
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10° 108 Bentonite-
vermiculite
T. virens G1-21 6.5-7x10% | 1-1.2 x 10* 15 Bulk soil Granular Larkin,
T. harzianum T-22 formulation 2016
T. harzianum 10% 1080 8 Sandy loam (pH=6.2) | Talc/molasses | Prasad et
-based al., 2002
formulation
104 108 Sandy loam (pH= 6.2)
T.harzianum th-10 | 10* 1013 8 the rhizosphere Dried banana | Thangavelu
soil of banana leaves et al., 2004
immersed in
Jaggery
solutions

*Proliferation of fresh three-day-old mycelia
®Both applied doses of 10g and 20g of formulation per kg of manure yielded the same cfu counts at 8§ weeks
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Factors influencing the effectiveness of soil treatments with
Trichoderma spp.

The difference between general and specific suppression is that the first
is related to the biological conditions of a soil (total biomass of
microorganisms in a soil acting synergistically to keep plant pathogens
under control) and the latter relies on specific agents (a single
microorganism that is effective against a specific pathogen, commonly
known as fungal antagonism) (Weller et al., 2002). The specific
suppression is transferable, i.e. transferring an effective isolate of
Trichoderma spp. from a suppressive soil to a conducive soil can stop
the occurrence of a certain disease, even if the two soils do not share
the same microbiota composition. However, as the specific suppression
is an induced suppression, its effect is transient because it does not
combine both general and specific suppression characteristics, and as
the population of the BCA starts to decline, repetitive treatments are
needed to control a given plant pathogen by reaching its suppression
(Simon and Sivasithamparam, 1989).

Although a Trichoderma spp. isolate can have sufficient efficacy
(capacity to produce the desired effect under optimal conditions) and
effectiveness (consistency of that efficacy under real conditions)
against plant pathogens, the efficiency (ability to produce the same
result with minimum use of input and waste and at minimal cost) may
depend on several factors, such as the abiotic and biotic characteristic
of the soil, the suitability of the formulation for large scale application,
and the interaction with soil microorganisms other than the targeted
plant pathogen (Fig. 1). For example, Adams (1990) considered
Trichoderma spp. inefficient BCAs because 10° CFU/g of soil are
required to suppress a pathogen-density inoculum of 2 x 10? CFU/g of
soil.

The proportion between the applied biomass of the BCA and the plant
pathogen’s population density in the soil is considered the most
important factor affecting the effectiveness of the soil treatment. The
concept that higher concentrations of the BCA result in higher
biocontrol efficacy has been commonly accepted (Elad, 1980; Lewis
and Papavizas, 1987; Papavizas and Lewis, 1989). However, this
concept cannot be generalised. For instance, increasing concentrations
of T. harzianum and T. viride (10*, 10° and 108 CFU/g of soil) increased
the control of Meloidogyne javanica, until it reached a plateau (at 10®
CFU/g of soil) and further increase of the BCAs (10'° CFU/g of soil)
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did not result in better biocontrol (Al-Hazmi and TarigJaveed, 2016). If
applied under unfavourable conditions, even high inoculum levels may
not yield sufficient biocontrol activity. For instance, 7. harzianum Th-
10 applied in the soil at the rate of 4 x 10*! CFU/g of dried banana leaf
treated with jaggery solution, resulted in a similar plant disease
reduction as a talc-based formulation of the same isolate applied with
lower concentrations, with 49.9% of disease incidence reduction as
compared to 40.1% (Thangavelu et al., 2004). Although not discussed
in the study of Thangavelu et al. (2004), investigating the long-term
impacts of inundating the soil with high concentrations of a BCA on the
dynamic equilibrium of the soil could be very informative.

When high levels of plant pathogen propagules are present in the soil
increasing the concentration of the Trichoderma spp. BCA can be
insufficient to suppress the plant disease (Chet and Baker, 1980). For
example, in soil applications of 7. harzianum to control Fusarium udum
(the causal agent of the pigeon pea wilt) an increase dosage of the BCA
(from 10 to 20 g/kg of farmyard manure) resulted in an increase of
disease control (from 42. to 61.5%) at low plant pathogen inoculum
(0.48 CFU/g of soil). In contrast, when the same dosages of T.
harzianum were used with higher concentrations of the plant pathogen
(0.69 and 0.72 CFU/g of soil) the increased dosage of the BCA did not
result in an increased efficacy, which dropped to 32.3 and 35.3% and to
22 and 30.9%, with the two dosages, respectively (Prasad et al., 2002).

The above-mentioned results suggest that the control of plant disease
may depend on many other factors that need to coexist for an efficient
biocontrol. These factors may be: 1) the choice of a suitable
Trichoderma spp. isolate against an adequate susceptible plant
pathogen that is present in the soil at concentrations that can be
managed by the BCA (Cummings et al., 2009; Leggett ef al., 2011); ii)
the use of an efficient formulation that sustains the proliferation of the
BCAs in the specific soil conditions without causing increase and/or
emergence of other diseases (Papavizas, 1985; Lewis and Papavizas,
1991; Leggett et al, 2011); iii) the outcome of the interaction of
introduced Trichoderma spp. with the indigenous microbial population
of'the soil, which can inhibit its biocontrol activity (Hadar, 1984). These
requirements explain the low consistency of biocontrol of soil borne
plant pathogens by Trichoderma spp. (Lewis and Papavizas, 1991;
Weller et al, 2002; Cummings et al., 2009) and call for a better
understanding of the mechanisms of action involved in the biocontrol
of each targeted plant pathogen, and of the interaction between plants,
plant pathogens and Trichoderma spp.
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When it comes to specific plant pathogens’ biocontrol, the efficiency of
treatments seems to be more related to the type and combination of the
mechanisms of action of the Trichoderma spp. isolate than to the
concentration of its population in the soil (Bae and Knudsen, 2005). In
addition, the antibiotics released by Trichoderma spp., which vary
according to the isolate of the fungus, may display different efficacy
levels in relation to the isolate of the plant pathogen used for the
elicitation (Dennis and Webster, 1971; Vinale et al., 2009). This might
explain the reduced effectiveness in controlling a plant pathogen
through the simple increase of populations of Trichoderma spp. (Chet
and Baker, 1980; Sivan and Chet, 1989). The choice of the appropriate
Trichoderma spp. isolate that shows high efficacy in controlling a
specific plant pathogen is very important to ensure a good disease
control, and a deep knowledge of the mechanism(s) of action involved
in the biocontrol plays a crucial role in this selection: if biocontrol
activity relies strictly on the competition for space and nutrients or
modification of the rhizosphere, higher inoculum levels of the BCA
might not be effective in controlling high plant pathogen population
levels (Sivan and Chet, 1989; Prasad et al., 2002). This is probably due
to a lack of nutrients that were already colonized by the plant pathogen,
which inhibits the proliferation of Trichoderma spp., and/or the ability
of high inoculums of the plant pathogen to cause a plant disease even
with reduced propagules (Sivan and Chet, 1989). On the other hand,
when the biocontrol activity relies on the production of antibiotics, lytic
enzymes and/or volatiles (direct mycoparasitism) further research is
needed to quantify the effect of increased population levels of
Trichoderma spp. on the disease suppressiveness. In fact, in the case of
direct mycoparasitism using lytic enzymes, higher population levels
may provide better control (Ojha and Chatterjee, 2011; Wijesinghe et
al., 2011; Elamathi et al., 2018).

In some cases, the higher the concentration of the plant pathogen in the
soil, the longer it takes Trichoderma spp. to suppress the pathogen’s
inoculum. For instance, T. asperellum, acting by direct mycoparasitism,
decreased three plant pathogen inoculum levels of Thielaviopsis
paradoxa, (10° 10* and 10° CFU/g of soil) to concentrations lower than
10> CFU/g of soil (the lowest disease causing concentration level),
within six, seven and nine weeks from inoculation, respectively
(Wijesinghe et al., 2011). Another important aspect to be considered
and that requires more studies is the possibility of conidia to migrate
and thus colonize wider volumes of soils compared to the treated area.
For example, T. atroviride SC1 migrates up to 4 m horizontally and 0.3-

19



Hamza CHAMMEM — Lignocellulosic materials coated with Trichoderma atroviride
SC1 increase its persistency in the soil and impact soil microorganisms

0.4 m vertically, passively transported by the water movement in the
soil (Longa and Pertot, 2009).

In conclusion, the factors to consider while testing the efficiency of
biocontrol with a new Trichoderma formulation are the right choice of
the BCA regarding mechanism of action, the identification of the
minimum concentration of the propagule of Trichoderma spp. to
inoculate, the selection of the concentration/quantity of additives and
carriers and the application rate of the formulation to the soil and the
time needed to exert the biocontrol activity for a given plant pathogen
inoculum. However, further research is needed to understand the
complex interactions between soil microorganisms and the applied
Trichoderma spp. isolate in order to understand the functioning of a
combined effect of general and specific disease suppressiveness on the
effectiveness of disease control.

< Conidium and mycalium of Trichoderma \“ ? \ 7
.
. Soilborna plant pathogans. A

") Carrier £ nutrients + Trichoderma spp.
isolate

Effective biocontrol?

Competitive

Rhizosphere

Quick decline over time Longer time of survival

Soil pH/Temperature/moisture/organic matter/nutrients

=
Non-Formulated | «=— Trichoderma spp. isolate == Formulated ‘
Figure 1. Factors affecting the effectiveness of soil treatments with
Trichoderma spp. and the role of formulations in prolonging the
survival of the biocontrol agent and enhancing its antagonistic
activity.
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Effect of Trichoderma spp. inoculum concentration and formulations
on non-target soil microorganisms

The concentration of Trichoderma spp. and the formulation may
influence the plant and the microflora in the soil and therefore the
outcome of the soil treatment. For example, high concentrations of
Trichoderma spp. can reduce the plant growth due to the production of
volatiles that can have phytotoxic effects (Lumsden et al., 1990), or can
result in shifting the microbial community and in the increase of
diseases that were previously under the control of the indigenous
Trichoderma spp. or other microorganisms (Papavizas, 1985). For
instance, applying 7. harzianum T22 at high rates or repeatedly,
displaced 7. virens and other fungi, which could be a disadvantage for
simultaneous applications of different BCAs into the soil (Harman
2000).

Soil borne plant disease occurrence is often linked with an unbalance in
the soil microbial community structure. In fact, analyses of infected
soils from different studies reported reduced biodiversity in soil plots in
which the plant diseaseoccurs as compared to the control (Mao and
Jiang, 2020). Moreover, soil microbial communities often act
synergistically to control soil borne plant pathogens and altering this
equilibrium may lead to the emergence of other diseases that were
previously under control. For instance, a combination of fluorescent
pseudomonads and non-pathogenic F. oxysporum collaborate in soil
suppressiveness by competing with plant pathogenic F. oxysporum
isolates for iron and carbon, respectively (Weller et al, 2002).
Displacement of one or the other may lead to the development of
diseases caused by plant pathogenic F. oxysporum that were previously
under control. Therefore, studying the effects of repetitive treatments
with Trichoderma spp. and their formulations on the microbiota of the
soil is crucial. Unfortunately, only interactions between Pseudomonas
spp. and Trichoderma spp. have been studied extensively, whereas little
is known on the interactions between Trichoderma spp. and non-
pathogenic Fusarium spp.. Except for some specific conditions, the
competition between Pseudomonas spp. and Trichoderma spp.
increased in the case of lack of iron in the soil, resulting in a slower
growth of the latter (Hubbard, 1983; Hadar, 1984). In contrast,
Pseudomonas spp. do not affect the biocontrol activity of Trichoderma
BCAs when sufficient iron is available in the soil (Bin, 1991;
Dandurand and Knudsen, 1993).
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Repeated treatments can modify the soil microbial population. For
example, the relative abundances of species of Fusarium and
Gibberella decrease and Trichoderma and Chaetomium increase, after
three years of repetitive application of 7. hamatum MHT11134. This
also led to an increase in Actinobacteria and an improvement in the
microbial community structure of the soil that positively affected the
soil quality (Mao and Jiang 2020).

The knowledge on the effect of the introduction of Trichoderma spp.
isolates in soil increased dramatically in the last two decades in parallel
with the advancements in molecular techniques that have facilitated the
study of soil non-culturable microbial population. Initially, the
combination of the culture-based technique with pioneering genetic
fingerprinting techniques (e.g. ARDRA, DGGE, RAPD, RISA, TGGE
and T-RFLP) provided information on the comparative analyses of
microbial population dynamics. Using these techniques, the effect of
the introduction of T. atroviride 11237, T. atroviride SC1 and T.
harzianum T37, could be studied indicating an induced temporary
increase in the bacterial community and a transient effect on the fungal
community, which lasted only three months (Cordier and Alabouvette,
2009; Savazzini et al., 2009; Huang et al, 2016), before the re-
establishment of the previous equilibrium. These studies were
conducted in bulk soils and did not account for the impact of plant
rhizosphere that can in turn alter the microbial communities. For
instance, the addition of several isolates of Trichoderma spp. in
Pythium infected soils resulted in the abundance of bacterial and fungal
populations not because of the introduction of Trichoderma spp.
themselves, but due to the nutrients leaking from the damaged roots
(Naseby et al, 2000). In fact, the selective competition between
microorganisms, as well as, the concentration of antibiotics increases
whenever the concentration of organic substances increases in the soil
(Dennis and Webster, 1971). This should be carefully considered when
developing Trichoderma spp. formulations.

Plants can affect the growth of Trichoderma spp. and can be affected
themselves by Trichoderma spp. application in the soil as they are plant
growth promoters. For instance, 7. asperellum co-inoculated with
Bacillus sp. provide better banana seedlings by promoting plant growth
by increasing phosphate solubilisation and by favouring auxins and
hydrolytic enzymes synthesis (Moreira et al., 2021). Trichoderma
asperellum M45a and biochar used as a carrier increased the tomato
yields, enriched the fungal and bacterial populations by increasing the
nutrients availability and soil fertility and increased the resistance of
watermelon to Fusarium wilt (Sani ef al., 2020). The Trichoderma sp.
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isolate RW309 inoculated with organic matter altered the fungal
community in the rhizosphere, and, in parallel, stimulated nitrogen
mineralization and increased soil phosphatase activity (Ye ef al., 2020;
Asghar and Kataoka 2021).

Formulations can directly and indirectly affect microbial populations of
soils, either by promoting the BCA, or stimulating the growth of plant
pathogens and other competitors (Amir and Alabouvette, 1992;
Smolinska et al, 2016; Barua et al., 2018). However, since most
carriers used are inert materials, with low carbon and nitrogen content,
studies reported an inhibition of biocontrol activities of formulated
Trichoderma spp. due to competition, only when nutrients were added
to the carrier (Kelley, 1976). Generally, when the abiotic and biotic
factors of the soil are favourable for the proliferation of Trichoderma
spp., there is an increase in the total bacterial density, and particularly
Pseudomonas spp. and actinomycetes (Bae and Knudsen, 2005).
Trichoderma spp. applied with organic fertilizers also corroborate this
result, showing higher abundance of fungi, bacteria and actinomycetes
in the treated soil (Ye et al., 2020).

Although initial culture independent techniques gave a better insight in
the microbial populations, metagenomics had the most disruptive
impact on the analysis of the effects of the introduction of Trichoderma
spp. on the population dynamics of microorganisms of the soil (Xu,
2006; Friedl and Druzhinina, 2012). The application of Trichoderma
spp. results in a selective abundance of different functional groups of
agronomic importance that promote the plant growth or the
development of bacterial and fungal genera with biocontrol activities
(Umadevi et al., 2018; Illescas et al., 2020). For instance, Chammem et
al., (2021) found that wood pellets used as carriers of 7. atroviride SC1
and incorporated into an agricultural soil increased the richness of the
bacterial population and only temporarily decreased its diversity. On
the other hand, the carrier decreased both the richness and diversity of
the fungal population by increasing fungal genera that were the most
adapted to growing on woody substrates such as Mortierella,
Cladorrhinum, and Stachybotrys. In another example, T. harzianum T-
22, applied with chitosan and tea tree oil promoted the growth of the
antagonistic fungi Albifimbria spp., Clonostachys spp., Penicillium
spp., Talaromyces spp. and Trichoderma spp. in the carrot rhizosphere,
which in turn increased the antagonistic activity towards Alternaria
dauci, A. radicina, Rhizoctonia solani and Sclerotinia sclerotiorum
(Patkowska et al., 2020).
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Treatment with 7. asperellum significantly increased the relative
abundance of Ceratobasidium sp. besides T. asperellum itself and
inhibited plant pathogenic fungi such as, Neonectria and Fusarium (Fu
et al., 2021). Inoculation with T. asperellum M45a also reduced the
fungal diversity of the soil whereas, it increased the bacterial diversity
and the relative abundance of plant growth-promoting rhizobacteria
belonging to genera such as Actinomadura, Pseudomonas,
Rhodanobacter and Sphingomonas (Zhang et al., 2020). In another
context, Trichoderma spp. treatment also increased the selective
abundance of beneficial bacterial genera such as, Nitrospira,
Sphingomonas, and Stenotrophomonas (Fu et al., 2019).

These studies shed the light on the selective effects of Trichoderma spp.
and their formulations on the dynamic equilibrium at genus level.
Nonetheless, further research is required to assess the functional effects
of bacterial communities and their interactions with different isolates of
Trichoderma spp.. This can lead to combined applications of various
BCAs that could act synergistically to mimic conditions of naturally
suppressive soils.

Conclusion:

The fate of any Trichoderma spp. isolate in any new habitat (transfer of
a species from one soil type to another for instance) is difficult to predict
as it depends on genetic factors of the Trichoderma spp. isolate, abiotic
and biotic conditions of a soil, and the composition of the formulation
used to sustain the growth of the fungus. The nutritional components of
formulations must also be selected carefully considering the side effect
on the plant and microbial population in the soil and their combination.
A deep knowledge of the Trichoderma spp. isolate, the targeted plant
pathogen, the crop and the soil factors are therefore crucial for an
efficient biocontrol with minimal impact on non-target
microorganisms. Nonetheless, further research is needed to decipher the
complex interactions between the introduced Trichoderma spp., plants,
soil borne plant pathogens and all the other soil microorganisms during
time especially by investigating the different modes of actions.
Moreover, the effect of agricultural practices on the proliferation of
Trichoderma spp. must be investigated and the co-application of
isolates belonging to this genus with other microbial biocontrol needs
to be explored for a better biocontrol in practice.
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Abstract:

The use of biocontrol agents to control soilborne diseases is a promising
alternative to chemical pesticides, however, obtaining a homogeneous
distribution and incorporation of conidia of fungal biocontrol agents
into the soil is often difficult. Several carriers/formulations have been
proposed over time, unfortunately without offering an ultimate solution.
We propose the use of wood pellets as a carrier of conidia of a
saprophytic fungus that has good biodegradation and biocontrol
properties (Trichoderma atroviride SC1). The coating process is based
on the direct spraying of wood pellets with a conidial suspension at
different rates. Beech, fir, and chestnut wood pellets were compared in
terms of relevant physicochemical traits and efficacy in supporting the
growth of the fungus. Beech wood pellets displayed the best
characteristics in terms of water holding capacity, swelling properties,
and disintegration time. Trichoderma atroviride SC1 grows best on
beech and fir wood pellets and reaches a plateau after nine days of
incubation, regardless of the initial coating concentrations. The addition
of small quantities of a nitrogen source as tryptone or soy flour, soy
proteins, and a mixture of animal proteins used as pet food to the
conidial suspension can increase the growth by ten-folds on all types of
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wood pellets. Our results demonstrate that beech and fir wood pellets
could be suitable carriers to deliver and sustain the growth of T.
atroviride SC1.

Keywords: Trichoderma; coating; carrier; lignocellulosic materials;
nitrogen.

1. Introduction
In recent years several microorganisms have been isolated and
developed as biocontrol agents of soilborne pathogens (Idong and
Sharma, 2021; Parulekar-Berde et al., 2021). Unfortunately, when an
exogenous microorganism is introduced into the soil, its concentration
declines rapidly, thus its biocontrol efficacy is reduced over time
(Papavizas, 1981; Savazzini et al., 2008; Khare and Arora, 2015). In
addition, homogeneous incorporation of small quantities of microbial
propagules in a large volume of soil is very difficult to obtain, calling
for the development of novel and effective formulations and/or
application methodologies (Spadaro and Gullino, 2005; Glare et al.,
2012). Microorganisms have a key role in the bioconversion of
lignocellulosic waste and the recycling of plant biomass in nature.
Wood is composed mainly of cellulose (40-50 %), hemicellulose (25-
35 %), and lignin (18-35 %), with minor amounts of organic and
inorganic extractives (Anderson, 1958; Pettersen and Rowell, 1984;
Tarasov et al., 2018). The degradation of these molecules naturally
occurs in the soil and involves a complex of enzymes produced by
several microorganisms that act synergistically, with a rate of
bioconversion that depends on the plant species and the structure of the
microbial population of the soil (Dashtban et al., 2009). Lignin is a
heterogeneous polymer with a complex structure, which makes it the
hardest part of wood to decompose (Kirk and Farrell, 1987; Lopez et
al., 2006). Fungi are generally more efficient than bacteria in degrading
the lignin, with Ascomycota having, in general, a lower lignin
degradation efficiency as compared to Basidiomycota (Dashtban et al.,
2010; Janusz et al., 2017). So far, most studies have focused on white-
rot fungi (Basidiomycota) such as Phanerochaete chrysosporium and
Coriolus versicolor, which are the most efficient species in the
complete degradation of lignin (Blanchette, 1991; Lopez et al., 2006;
Dashtban et al., 2009; Janusz et al., 2017). Ascomycota belonging to
the genus Trichoderma (Lopez et al., 2007), for example, T. reesei and

26



Chapter 3: Wood pellets as carriers of conidia of Trichoderma atroviride
SC1 for soil application

T. atroviride, are also known for their lignocellulolytic activity,
characterized by the production of enzymes such as -glucosidases and
B-xylosidases that degrade, into their simple monomers, cellulose and
hemicellulose, respectively (Perez et al., 2002). Although Trichoderma
spp. are not the most efficient species to degrade lignin, several strains
of this genus have been extensively studied because they are efficient
antagonists of soilborne pathogens (Harman, 2006; Kovacs et al.,
2009).

The combination of mycoparasitic and saprophytic activity of
Trichoderma spp. has stimulated the idea of using wood bark as a
substrate to apply them to the soil as biocontrol agents (Nelson et al.,
1983; Kwok et al., 1987) or as mulching to prevent soilborne pathogens
(Pellegrini et al., 2014). The use of wood to deliver Trichoderma spp.
into the soil has several advantages as compared to other carriers (i.e.
clay minerals, siliceous materials, etc.; Yusoff et al, 2016) , which lays
mostly in the selective preference of these species for this substrate. In
fact, Trichoderma spp. are more efficient than their microbial rivals,
that do not produce cellulases, in growing on wood, which elicits their
fast colonization of the soil with subsequently increased competition for
space and nutrients and antibiosis activity against other
microorganisms, including phytopathogens (Papavzias, 1985). In
addition, woody materials are a cheap and environmentally friendly
substrate that can sustain high population levels of Trichoderma spp. in
the soil over time (Chung et al.,, 1990; Krause et al., 2001).
Unfortunately, there are also several limiting factors in the use of barks
or wood chips as carriers for Trichoderma spp., such as the difficulty to
obtain a specific and homogeneous concentration of conidia on wood
chips or barks and the slow degradation of these materials in the soil,
which prevented so far their practical application in the field.

Wood pellets, made from compacted sawdust and related industrial
wastes from the milling of lumber and commonly used as biofuel
(Proskurina et al., 2019), could represent an alternative substrate to
barks or other woody materials because they are cheap, easy to handle,
highly homogeneous in size and weight, and can rapidly absorb
humidity, which facilitates their fast disintegration (Acda and Devera,
2014; Artemio et al., 2018; Deng et al., 2019; Lee et al., 2020). With a
view to using wood pellets as carriers of Trichoderma spp., the strain
T. atroviride SC1 (Ascomycota, Hypocreales), which was originally
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isolated from decaying hazelnut wood, could be a valuable candidate
because it is well adapted to woody substrates (Pertot et al., 2008). In
addition, wood barks have been already demonstrated to be a good
growth substrate for this strain (Pellegrini et al., 2014). In addition, this
strain tolerates a wide range of pH and grows in a wide range of
temperatures (between 10°C and 30°C) with optimal growth at 25°C,
which is a common temperature of many soils in temperate climates
during the growing season (Longa et al., 2008). It can use mannose and
galactose as carbon sources, which are the main components of the
hemicellulose of softwood. Furthermore, it has good lignocellulolytic
capacities and it was well studied as a biocontrol agent (Kovacs et al.,
2009; Pellegrini et al., 2014; Pertot et al., 2016). The growth of T.
atroviride SC1 is improved when nitrogen sources, as peptone,
tryptone, and nitrate, are added at the rate of 2 g/L. to Czapek Dox
Liquid media (Oxoid) amended with glucose (10 g/L) or glycine (1 g/L)
(Longa et al. 2008).

This research aims to validate a method for coating wood pellets with a
conidial suspension of a fungal biocontrol agent. We used 7. atroviride
SC1 as a case study to optimize the method, in terms of selection of the
right type of wood pellet and addition of nutrients that could be adapted
to other Trichoderma spp. strains.

2. Materials and methods

2.1. Physicochemical characteristics of wood pellets

Three types of wood pellets representing the most frequent ones on the
European market were used and specifically wood pellets of fir (Baltic
Granulas, Latvia), beech (Italwood S.r.l., Italy), and white chestnut
(Ledoga S.r.l. GruppoSilvateam S.p.A., Italy). These wood pellets
consist of cylinders of 6 mm in diameter that vary in length from 6 to
12 mm. To assess the physicochemical characteristics of the tested
wood pellets four experiments were performed to determine the water
holding capacity, the swelling of the wood pellets, the disintegration
time of the wood pellets, and the carbon, nitrogen, and ash content of
wood pellets. All experiments were carried out twice, at room
temperature.
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2.1.1. Water holding capacity of pellets

The water holding capacity of pellets (WHCp) is defined as the quantity
of water that pellets can hold per unit of weight. Two tests were
performed to assess the maximal and minimal WHCp. The maximal
WHCp is defined as the water that can be retained by pellets under
normal atmospheric pressure. It was calculated by placing 1 g of dry
pellets (1-3 pellet pieces as a replicate) on a filter paper that was put on
the top of a glass beaker (250 mL). Water (50 mL) was poured gradually
on pellets and let to freely percolate through the filter paper without
applying any pressure to drain it. When the water stopped dripping
below the filter (approximately 30 min) the maximal WHCp was
calculated by weighing the wet wood with an analytical balance
(Ohaus® Scout® Pro balance SP6000, Switzerland) and expressed in
mL of water/g of wood pellets. The minimal WHCp is defined as the
water that can be retained by pellets under an additional pressure (other
than gravity) that in the field can be the result, for example of the impact
of machinery on the soil. It was tested following the method of Lips et
al. (2009) with modifications. Briefly, 1 g of pellets (1-3 pellet pieces
as a replicate) was placed onto a vacuum filter (Stericup®-
Merckmillipore, Italy). The device is composed of a sample funnel on
top (250 mL) connected to a vacuum chamber at the bottom via a filter
chamber. The vacuum chamber was attached to a vacuum pump (Knf
LABOPORT® UN 816.1.2-Elettrofor, Italy) to drain the water from the
sample funnel through the filter chamber. The wood pellets were kept
fully immersed in 50 mL of water for 20 min before applying pressure
(-0.1 bar) for 5 min to drain the water. This allows the hydrated wood
sample to remain on top of the filter membrane, which was then
weighed as mentioned above. The results are presented as mL of
water/g of wood pellets. Five replicates per type of wood pellet were
used in each of the two tests.

2.1.2. The swelling of wood pellets

The swelling of pellets in aqueous solutions (SWp) is defined as the
maximum increase of the volume of a pellet when it absorbs water
(maximum WHCp). The SWp is a proxy for the capacity of the pellet
to break down in small pieces (sawdust) in the soil and, consequently
also for the available substrate surface for the colonization by the
biocontrol agent.
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To assess the maximum SWp, the pellets were cut into cylinders having
a height of 10 mm, while the radius is 3 mm, placed in a rectangular
plastic container and a quantity of water equal to the maximal WHCp
of each type of pellet was added gradually. The measure of the height
(h) and the radius (r) was assessed before adding water (initial; r; and
h;) and when the pellet stops swelling after adding it (final; rr and hy).
The SWp was evaluated with the following formula:

SWp = 7'l31‘f2 hf— 7t1‘12 hi
Five replicates per type of wood pellet were used.

2.1.3. The disintegration time of wood pellets

The disintegration time (DTp) is the time required for a full
disintegration of hydrated wood pellets, defined as the loss of the
typical cylindrical shape of pellets and their break down into sawdust.
The shorter is the DTp the faster and the better can be their
incorporation into the soil, for example by harrowing. Five pellets
prepared as described above were placed onto a Petri dish (90 mm) and
a volume of water corresponding to their maximum WHCp was added
(replicate). The Petri dishes were gently placed on a shaking rotator (Ika
Werke KS 250, Germany) and the disintegration time was assessed at
three different speeds of rotations (300, 400, and 500 rpm). The time of
the full disintegration of each pellet type was noted when the pellets lost
their shape into sawdust. The treatment was prolonged for 12 h for
chestnut pellets, which did not get disintegrated also after that time.
Five replicates per type of wood pellet were used for each rotation
speed.

2.1.4. Carbon and nitrogen content of wood pellets

Carbon and nitrogen content of the wood pellets was measured at the
Chemical Unit of the Fondazione Edmund Mach, San Michele
all’Adige, Italy, according to standard protocols (ISO 16948) with the
combustion method using a CN analyser for elemental analysis
(Elementar, Germany) on a sample of 100 mg. The ash content was
performed by the gravimetric method after ignition, using a muffle (FM
76, FORNO MAB, Italy) and an analytical balance (AE 100-Mettler
Toledo, Italy), following the protocol EN 14775 (Solid biofuels -
Determination of ash content).
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2.2. Coating the wood pellets with Trichoderma atroviride SC1
conidia

2.2.1. Preparation of the pellets and the conidial suspensions of
Trichoderma atroviride SC1

For each type of wood pellets (beech, fir, and chestnut), the average
moisture content was calculated by weighing 100 g of pellets before
and after drying them in an oven at 100 °C for 24 h (Dietsch et al.,
2014). The moisture content serves to determine the maximum quantity
of water to spray during the coating process to avoid their
disintegration. Conidial suspensions of 7. atroviride SC1 conidia
produced according to Longa et al. (2008) and stored until use at 4°C
were prepared in sterile distilled water (SDW) and three concentrations
were adjusted to 10° (C1), 10° (C2), and 107 cfu/mL (C3) using a
hemocytometer. The coating was repeated twice for each concentration.

2.2.2. The coating process

Each type of wood pellet was coated by continuously mixing in a mixer
(MUMA44R1-Bosch, Italy) at a speed of 25 rpm and contemporaneously
spraying 0.1 mL/1 g of the conidial suspension at the three
concentrations, with a spray bottle (volume of 50 mL). The volume of
water suspension applied derived from the previously calculated
moisture content of pellets (10%) and the spray lasted 1 min. In this
way, while the water was absorbed by the pellets, the conidia stuck to
their external surface, reaching the theoretical concentrations of 104,
10°, and 10° cfu/g of wood pellets. The coated pellets were let to
stabilise at room temperature for 4-5 min and then gently sieved (mesh
< 2 mm) to clean the coated pellets from some little wood debris (< 0.2
% in weight) that originated during the process. The cfu counts
recuperated after coating is the result of counting colony-forming units
(ctu) of T. atroviride SC1 immediately after coating wood pellets. The
coating accuracy of wood pellets (CAP) was calculated as follows:

cfu counts recuperated after coating

CAP = _ _ - x 100
theoretical concentration applied
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2.2.3. Assessment of the growth of Trichoderma atroviride SC1 on
wood pellets

To compare the growth of 7. atroviride SC1 on the three types of wood
pellets, subsamples of 5 g of coated pellets (replicate) per type of wood
pellet and conidia concentration were transferred onto a Petri dish (90
mm) and 15 mL of SDW was added to disintegrate pellets. The wood
pellets were let to swallow and then gently disintegrated using a sterile
spatula. The control consisted of the corresponding conidial SDW
suspensions (15 mL) of 7. atroviride SC1 mixed as described above for
the wood pellets in sterile perlite (5 g) to reach the theoretical
concentrations of 104, 10°, and 10° cfu/g of perlite. Each replicate was
sampled immediately DO (0 days) and D3 (3 days), D6 (6 days), and D9
(9 days) after coating. The assessment of 7. atroviride SC1 on wood
pellets was carried out by counting the cfu and reported as cfu/g of
wood pellets. Counting was performed by collecting 4 g from the mix
of 20 g of coated wood pellets and SDW or 4 g of perlite mixed with
conidia of T. atroviride SC1 (described above) in a 50 mL falcon tube,
adding 20 mL of SDW, vortexing the mixture for 1 min, performing
serial dilutions, and plating 100 puL from an appropriate dilution on a
Trichoderma semi-selective medium that contained potato dextrose
agar (PDA; Oxoid-UK, 39 g/L), rose bengal (Sigma Aldrich- India, 0.1
g/L), chloramphenicol (Sigma Aldrich-China, 0.1 g/L) and
streptomycin sulfate (Fluka Biochemika-Italy, 0.05 g/L). After the
sampling at DO, all Petri dishes were placed in an incubator (AquaLytic,
Germany) at 25 °C in the dark. Three replicates were prepared for each
concentration of conidia and type of wood pellet/perlite, for each
sampling time.

2.2.4. Effect of the addition of nitrogen sources to wood pellets on the
growth of Trichoderma atroviride SC1

2.2.4.1 Effect of the addition of tryptone to beech, fir, and chestnut
pellets

To assess the effect of nitrogen on the growth of 7. atroviride SC1 on
wood pellets, the above-described experiment was repeated, adding two
rates of tryptone (Oxoid, UK) to the suspensions of conidia: 1 and 2 g/L
(3 and 6 mg of tryptone/g of wood pellets), which are half and the full
quantity recommended by Longa et al., (2008), respectively. Each
treatment consisted of 5 g of pellets (replicate) sampled after coating
with conidial suspensions of 7. atroviride SC1 at the two conidia
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concentrations and rate of application of tryptone. Sterile distilled water
(15 mL) was added to all treatments and to the control which consisted
of 5 g of perlite mixed with conidia of 7. atroviride SC1. The sampling
of coated wood pellets (with and without adding tryptone) and of perlite
to assess the growth of T. atroviride SC1 was performed as described
above at D0, D3, D6, and D9. After the sampling at DO, all Petri dishes
were placed in the incubator (AquaLytic, Germany) at 25 °C in the dark.
Three replicates of each wood type for each conidial concentration and
tryptone application rate were considered.

2.2.4.2 Comparing the effect of the addition of cheap nitrogen sources
to beech pellets

To identify cheap, but effective nitrogen sources, to be added to the
pellets, beech pellets were chosen for further testing based on the fact
that beech was the best type of pellet in terms of physicochemical
characteristics and growth of T. atroviride SC1. Beech pellets were
coated with a conidial suspension of T. atroviride SC1 (5 x 10* cfu/mL)
to reach a final concentration of 5 x 10* cfu/g of wood pellets. Each
treatment consisted of 5 g of coated beech pellets that were
disintegrated in Petri-dishes (90 mm) by adding 15 mL of an SDW
suspension of 1 g/L of soy flour (SF) (EcorNaturaSi Spa, Italy), soy
protein isolates (SPI) (EcorNaturaSi Spa, Italy), and a mixture of animal
proteins used as pet food (MAP) (Purina, Italy). As MAP is
commercialized as solid granules, it was powdered using a coffee
grinder before suspending it in water. The control consisted of coated
beech pellets disintegrated with 15 mL of SDW. The first sampling was
performed immediately after coating (DO0), then all Petri-dishes were
placed in an incubator (AquaLytic, Germany) at 25°C. The following
samplings were performed after 6 (D6), 9 (D9), and 16 days of
incubation (D16). The growth of 7. atroviride SC1 population was
assessed by counting cfu as described above. Three replicates for each
protein source were carried out.

2.3. Statistical analysis

Statistical analysis was performed using Costat 6.451 (CoHort
Software®) and R studio version 3.3.0. In all cases, significance was
established at p < 0.05. The Bartlett and Shapiro-Wilk tests were
applied to check the homogeneity of variances and the normality of
data, respectively. All data of cfu counts of T. atroviride SC1 were
log10 transformed before the analysis. The results of each repeated
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experiment were pooled, as there was no significant difference between
the experiments based on Student’s T-test. ANOVA was used with
Tukey’s honestly significant difference HSD post hoc test (a = 0.05)
for the data that met the requirements of a normal distribution
(comparing the growth of T. atroviride SC1 on wood pellets without
tryptone/nitrogen source and the disintegration time of wood pellets),
and the non-parametric Kruskal Wallis and Dunn’s post-hoc
(Benjamini-Hochberg p-adjustment method) tests (o= 0.05) otherwise.
Chestnut pellets were excluded from the analysis (ANOVA) that was
performed to compare the disintegration time of beech pellets and fir
pellets because they did not disintegrate.

3. Results

3.1. Physicochemical characteristics of wood pellets

3.1.1. Water holding capacity of pellets

Beech wood pellets are the best at holding water under pressure
(minimal WHCp) as they can retain 1.68 + 0.14 mL/g of wood pellets,
followed by fir pellets (1.14 + 0.20 mL/g) and chestnut pellets (0.75 +
0.09 mL/g) (H= 25.31, df = 2, p < 0.001). For the maximal WHCp,
significant differences between wood types were observed (H= 19.86,
df = 2, p < 0.001). Chestnut pellets exhibited the lowest value, while
there was no significant difference between beech (4.70 + 0.29 mL/g)
and fir (4.53 + 0.27 mL/g) with p = 0.23 (Table 1).

Table 1

The mean values (+ the standard deviation) of the minimal and maximal
WHCp of fir, beech, and chestnut pellets.

Wood type Minimal WHCp Maximal WHCp
(mL/g) (mL/g)

Fir 1.14°+0.20 4.532+£0.27

Beech 1.68*+0.14 4.70*+0.29

Chestnut 0.75°+0.09 1.25°+£0.30

In each column, mean values followed by different letters are
significantly different (p < 0.05) according to Dunn’s post hoc
(Benjamini-Hochberg p-adjustment method) test
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3.1.2.  The maximum swelling of wood pellets

The SWp of the three types of wood pellets differs significantly
according to Kruskal-Wallis’s test (H= 26.80, df = 2, p < 0.001).
Chestnut pellets did not swell at all (Supplementary figure A). No
significant difference in the height was observed between fir and beech
(p = 0.16); however, there is an increase in the radius of beech pellets
compared to fir (p = 0.004) and chestnut pellets (p <0.001). The volume
of' beech and fir pellets increased 60.39+ 12.52 and 31.09 £ 12.52 times
compared to their initial volumes, respectively (Table 2).

Table 2

The mean values (+ the standard deviation) of the final volume (Vy), the
swelling (SWp), and the increase of the radius (rr) and the height (h¢) of
fir, beech, and chestnut pellets.

Wood type V¢ (cm?®) SWp (cm®)  rr(cm) hr(cm)

Fir 878 ® + 850 * + 063 ° + 175 * +
2.22 2.20 0.08 0.23

Beech 17.06 * £ 16.78 * £ 092 * +£ 159 ?* &+
3.54 3.54 0.09 0.08

Chestnut 028 ¢ + 028 ¢ + 030 °© + 100 ° =+
0.00 0.00 0.00 0.00

In each column, mean values followed by different letters are
significantly different (p < 0.05) according to Dunn’s post hoc
(Benjamini-Hochberg p-adjustment method) test.

3.1.3. The disintegration time of wood pellets
Chestnut pellets did not disintegrate at any of the tested rotation speeds
(Fig. 1), even if the treatment was prolonged for 12 h. The DTp of fir
and beech pellets significantly differed at each of the three tested
rotation speeds and beech was always faster than fir to fully disintegrate
(p <0.001).
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Fig. 1. The disintegration time of wood pellets tested by placing 1 g
of wood pellets supplemented with water at their maximal water
holding capacity on a shaking rotator. Three speeds were tested: 500
(high), 400 (medium), and 300 rpm (low). Chestnut pellets did not
disintegrate even after 12 h at the highest speed of rotation (picture
top left). Data from the repeated experiments were pooled. Mean
values followed by different letters are significantly different (p <
0.05) according to Tukey’s HSD test.

3.1.4. Carbon and nitrogen content of wood pellets
Nitrogen is two times higher in beech wood (0.23 %) than in chestnut
wood pellet (0.11 %) and more than four times higher than the nitrogen
present in fir wood pellets (< 0.05 %). The carbon content presented
comparable results between fir and beech pellets, with 46.00 % and
46.70 %, respectively, while the chestnut results were slightly lower
(43.80 %). Fir presented the lowest ash content of the gravimetric
analysis by 0.36 %, followed by chestnut (0.46 %) than beech (0.65 %).

3.2. Coating the wood pellets with Trichoderma atroviride SC1
conidia

3.2.1. The growth of Trichoderma atroviride SC1 on wood pellets

The wood pellets were coated with conidia of Trichoderma atroviride
SC1 at three coating concentrations C1 (10° cfu/mL of conidial
suspension), C2 (10° cfu/mL of conidial suspension) and, C3 (10’
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cfu/mL of conidial suspension) in order to reach the theoretical
concentrations of 10, 10°, and 10° cfu/g of wood pellets.

The sampling of the three wood pellets at DO confirmed cfu
concentrations close to the theoretical concentrations of 10%, 10°, and
10° cfu/g of wood pellets (Supplementary table Al). For the
concentrations C1 and C2, no significant difference was observed
between the coated pellets and the control according to Tukey’s HSD
test (a0 = 0.05) (Fig. 2 A, B, and C). For C3 the control reached levels
higher than the theoretical concentration on perlite, namely 1.51 x 10°
cfu/g and was significantly different from all the treatments (Fig. 2 C).
Generally, the CAP ranged between 22 and 68 % with fir presenting the
highest values in average for all concentrations (59.36 % + 9.54 %) and
chestnut the lowest (38.10% =+ 16.33%) while the average CAP of beech
wood pellets was (48.56 % + 12.20 %). At D3, the growth of the
population of 7. atroviride SC1 showed a fast increase in the cfu counts
in the first three days then slowed down in the last three days (D6-D9)
to reach a plateau. This behaviour was observed for all wood pellets and
at all tested concentrations. The final sampling revealed no significant
difference between the cfu counts of 7. atroviride SC1 of beech and fir
(Fig. 2 A, B, and C). The highest colony counts reached 6.26 x 107 cfu/g
of beech wood pellets and 4.50 x 107 cfu/g of fir wood pellets and were
registered at C2 (Supplementary table A2). In contrast, 7. atroviride
SC1 did not reach the same levels, when growing on chestnut pellets,
and the cfu counts were significantly lower than those recorded with
beech and fir pellets with a maximum of 3.95 x 10° cfu/g of chestnut
wood pellets (Supplementary table A2). The results also showed that,
for the same type of wood pellets, the increased initial concentrations
of coating did not affect the final cfu counts of 7. atroviride SC1 at D9,
except for chestnut wood pellets (p = 0.003). Pairwise comparisons
between the cfu counts of 7. atroviride SC1 growing on beech and fir
at D9 for the three coating concentrations showed no significant
difference between treatments with p-values equal to 0.15, 0.21, and
0.18, respectively.
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Fig. 2. The growth of Trichoderma atroviride SC1 over time on
different types of wood pellets coated with a conidial suspension at
various initial coating concentrations. Beech, fir, and chestnut pellets
were sprayed with conidial suspensions of 7. atroviride SC1. The
three initial concentrations were 10* (A), 10° (B), and 10° cfu/g (C).
The population of 7. atroviride SC1 grows better on beech and fir
wood pellets than on chestnut pellets. Data from the repeated
experiments were pooled. Mean values followed by different letters
are significantly different (p < 0.05) according to Tukey’s HSD test.

3.3. Effect of the addition of nitrogen sources to wood pellets on the
growth of Trichoderma atroviride SC1

3.3.1. Effect of the addition of tryptone to beech, fir, and chestnut
pellets

The two applied rates of tryptone (1 and 2 g/L.) enhanced the growth of
T. atroviride SC1 on all wood pellets (beech, fir, and chestnut), at both
coating concentrations (10° and 10’ cfu/mL), as compared to the
untreated controls (perlite and wood pellets). At the end of the
experiment (D9), the cfu counts of T. atroviride SC1 did not differ
between the two concentrations of tryptone for the same type of wood
pellets and for both coating concentrations (Fig. 3 A and B). The cfu
counts on coated fir wood pellets were significantly higher than those
recorded on beech and chestnut wood pellets when tryptone was added
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at the highest tryptone concentration (2 g/L). The highest recorded cfu
counts in the experiment were registered with fir at the lowest coating
concentration (10° cfu/mL) and consisted of 1.16 x 10° cfu/g of fir wood
pellets and 6.24 x 10% cfu/g of fir wood pellets for the applied
concentrations of 1 g/ and 2 g/L of tryptone, respectively. The highest
colony counts of 7. atroviride SC1 on beech wood pellets reached 2.36
x 108 cfu/g of beech and 4.39 x 108 cfu/g of beech wood pellets for the
same applied tryptone concentrations. Tryptone enhanced the growth of
T. atroviride SC1 also on chestnut pellets, however, in all cases, the cfu
counts remained significantly lower than the cfu counts that were
registered on beech and fir wood pellets at D9.
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Fig. 3. The growth of Trichoderma atroviride SC1 over time on different types of wood pellets coated with a conidial suspension
at two concentrations, 10* (A) and 10° cfu/g (B), with tryptone added at the rates of 1 g/L (N1) and 2 g/L (N2) of conidial suspension.
Data from the repeated experiments were pooled. At each time point, mean values followed by different letters are significantly
different (p < 0.05) according to Dunn’s post hoc test (Benjamini-Hochberg p-adjustment method).
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3.3.2. Comparing the effect of the addition of cheap nitrogen sources
to beech pellets

The results of cfu counts on beech wood pellets show no significant
differences between treatments (H=0.589, df =3, p=0.898) at DO. The
differences between treatments started to be significant from D6 (Fig.
4) and the best results in terms of 7. atroviride SC1 growth were
obtained with SPI which remained statistically different than the control
until the end of the experiment (p = 0.001). At D3, the population of T.
atroviride SC1 reached population counts of 1.18 x 10° cfu/g of pellets
when grown with SPI, followed by MAP and, then SF with 3.05 x 10®
cfu/g of pellets and 2.16 x 10® cfu/g of wood pellets, respectively. The
cfu counts on the control did not grow more than 1.08 x 10® cfu/g of
pellets.
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Fig. 4. The growth of Trichoderma atroviride SC1 over time on
coated beech wood pellets (5 x 10° cfu/g of wood pellets)
supplemented with (1 g/L) soy flour (SF), soy protein isolates (SPI),
and a mixture of animal proteins used as pet food (MAP). The control
received the same amount of water suspension. Data from the
repeated experiments were pooled. At each time point, mean values
followed by different letters are significantly different (p < 0.05)
according to Dunn’s post hoc test (Benjamini-Hochberg p-
adjustment method).
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4. Discussion

Homogeneous distribution of Trichoderma spp. in the soil is often hard
to achieve as mixing very small quantities of conidia in large volumes
of soil is difficult. This is often the reason for the limited commercial
use of these biocontrol agents against soil-borne diseases (Vannacci and
Gullino, 2000). Substrates such as rice are effective, but highly
expensive (Longa et al., 2008; Longa et al., 2009; Longa and Pertot,
2009), and straw or wood barks, persist for a long time as non-
decomposed large fragments in the soil, negatively interfering with
agronomic practices as sowing or transplanting. In addition,
Trichoderma spp. strains are usually grown on these carriers before
application, and therefore they consist mainly of actively growing
mycelium (Pellegrini et al., 2014; Smolinska et al., 2016). For this
reason, the exact dosage of active ingredient per unit of soil is difficult
to standardize and stabilize and the resulting product has commonly a
limited shelf-life. The use of wood pellets as carriers of Trichoderma
spp. strains can overcome most of these difficulties. In fact, they can
help in obtaining a more homogenous distribution of conidia in the field
in a simple way: a fertilizer spreader could be used to distribute the
pellet on the soil, the wood pellet quickly absorbs the soil/air moisture
and disintegrate rapidly, then it can be truly incorporated by harrowing
the soil.

Wood pellets presented different physicochemical behaviours and
characteristics, which can make them more or less suited for this
application. In our experiments, the beech pellets had the highest values
of minimal and maximal WHCp, the highest SWp, and the shortest
DTp, which makes them the most suited for the use as Trichoderma
spp. carriers as they can easily absorb water and break down into pieces
very rapidly. The same type of experiments can be carried out not only
to select the best wood type but also as a quality control test to assess
different batches within the same type of wood pellet. High values of
minimal WHCp are important in the field to avoid the loss of water by
pressure applied by animals, heavy machinery, or simply gravity and
therefore to keep optimal water availability for the growth of the fungus
(Lips et al., 2009), and high values of maximal WHCp are an advantage
when wood is used in fields with scarce water resources, or in sandy
soils with low water-holding capacities. The results obtained with beech
pellets are in concordance with literature as beech wood is reported to
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be very efficient in the uptake of water in the soil (Brischke and
Wegener, 2019). Differences between different wood types in the
swelling of wood have been well documented (Rowell et al., 2005).
Mantanis et al. (1994) reported higher swelling properties for hardwood
as compared to softwood, and a negative effect of lignin and extractives
on the swelling behaviour, which can explain the minimal swelling of
chestnut pellets that we observed.

Wood pellets can absorb relevant volumes of water if the environmental
humidity is high and they may break down easily once exposed to high
humidity. Different types of pellets have different sensitivities to
humidity, which is in general considered a negative trait for wood
pellets used as biofuels (Deng et al., 2019). The coating process we
propose involves the use of small quantities of conidial water
suspension that is sprayed on completely dehydrated pellets, thus
restoring a minimal level of humidity that does not interfere with its
stability. Our process of coating does not hydrate the pellets enough to
promote germination of conidia so they can stay vital as dry conidia
(data not shown). In fact, the final moisture level of our coated pellets
is about 10 %, which can be compared to formulations previously
reported in the literature, such as the talc-based formulation of T.
harzianum that had a final moisture level of 11 % after drying (Prasad
et al., 2002). In general, Trichoderma spp. were described as organisms
with low osmotolerance, which means that their conidia do not grow
under conditions of low humidity (Kredics et al, 2004; Begoude et al.,
2007; Longa et al., 2008).

Our coating method has several technical advantages: for example,
allows to choose the most suited wood type in terms of WHCp. The
high values of CAP and low variability among replicates, from a
maximum of 59.00% + 9.54 % on fir wood pellet to the minimum of
38.44 % £ 16.33 % on chestnut wood pellet, demonstrate high
reproducibility and high efficiency in the coating with conidia. These
CAP values could be further increased in the scale-up, for example by
adapting machines for seed coating or by adding antiflocculants,
wetting agents, or binders to the spray suspension. To reach an optimal
coating of wood, both the type of liquid and the wood species are
important (Vick, 1999). In particular, the wettability of wood depends
on the presence of hydrophilic components, such as hemicellulose on
the wood surface, or extractives that reduce the wettability and block
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the penetration of water below the surface (Mantanis and Young, 1997).
When it comes to wood pellets, the pores of woody surfaces increase
the penetration of water, which is crucial for the water adsorption by
the amorphous regions of cellulose (Karimi and Taherzadeh, 2016). In
agreement with previous findings (Pellegrini et al., 2014), fir and beech
wood pellets supported a similar growth, always higher than perlite,
with beech being faster in reaching the plateau, while the growth on
chestnut did not reach similar values. In addition, the growth of T.
atroviride SC1 on beech and fir pellets is four orders of magnitude
greater than those described in the literature as necessary for an
effective biocontrol (Adams, 1990). The lower growth of T. atroviride
SC1 on chestnut pellets might be due to the presence of chestnut
components that have antimicrobial activities (Zivcovic et al., 2010;
Hao et al., 2012). Generally, the growth of Trichoderma spp. on wood
relies not only on their ability to produce cellulases, but also on the
accessibility of these enzymes to the holocellulose of wood (Lopez et
al., 2006; Dashtban et al., 2009). The heterogeneity of the chemical
composition of wood and the differences between species in terms of
lignin, cellulose, and hemicellulose contents may affect the growth of
T. atroviride SC1 (Anderson, 1958; Pettersen and Rowell, 1984;
Tarasov et al., 2018). Trichoderma atroviride SC1 grew slightly better
on hardwood (beech wood pellets) than on softwood (fir pellets). This
is in concordance with Janusz et al. (2017) who reported lower
recalcitrance of hardwood to biodegradation as compared to softwood
because the latter is more abundant in lignin and possesses a smaller
size of pores. The higher nitrogen content in hardwood as compared to
softwood can also stimulate 7richoderma spp. to produce lignases,
which can explain the faster growth of 7. atroviride SC1 on beech
pellets (Lopez et al., 2006). However, this hypothesis needs to be
confirmed by further in-depth analyses, for example of the secretome
of the strain 7. atroviride SCI1.

The fast growth of T. atroviride SC1 on wood pellets and the plateau
observed after nine days of incubation is in line with other studies in the
literature that focused on the use of Trichoderma using composted
hardwood bark (Kwok et al., 1987; Chung and Hoitink 1990; Krause et
al., 2001,). For example, T. harzianum (#738) required only 14 days
after the inoculation to grow on fresh hardwood bark (Nelson et al.,
1983). Low initial coating concentrations of 7. atroviride SC1 have
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resulted in the same population levels as those of high coating
concentrations, which are in concordance with the results obtained by
Prasad et al. (2002) who observed the same behaviour in the soil.
Although further studies are needed to implement the application
method in the field and define the optimal quantities, these results
suggest that the use of pellets as carriers may reduce the use of conidia
per unit of soil, thus reducing the cost of soil treatments with
Trichoderma spp.

The slower growth of the population of 7. atroviride SC1 when it
reaches high concentration levels might be due to the lack of nitrogen.
This was confirmed by the results obtained with the addition of
tryptone: this easily accessible source of nitrogen has boosted the
growth of the fungal population. Our results are in concordance with
the literature that reported a better growth of fungi in the presence of
organic nitrogen sources (Martin et al., 1987; Hawkins et al., 2000;
Rajput et al., 2014; Rajput and Shahzad, 2015) and that the scarcity of
nitrogen is a limiting factor to the growth of microorganisms in the soil
(Geissler et al., 2010; Kennedy, 2010). Switching from expensive
tryptone to a cheap source of nitrogen, as soy protein isolates (3 mg of
SPl/g of beech pellets) to beech wood pellets is promising as the
population of T. atroviride SC1 reached levels higher than 10° cfu/g of
beech wood pellets.

In conclusion, using wood pellets as carriers for Trichoderma spp.
conidia can offer many advantages: as they are cheap and available
worldwide, they can be easily handled and stored, and once applied in
the field may sustain the growth of the fungus. The process is easy to
scale-up with existing technologies and the incorporation of wood
material can improve the soil quality, by increasing the organic matter
content. The characteristics of good water retention and water
absorption of wood pellets that lead to easier swelling and
disintegration of pellets can facilitate their application in the field.
However, further research is required to assess the feasibility of the use
of wood pellets as a formulation for the delivery of Trichoderma spp.
into the soil and the methods to distribute the coated pellets in the soil.
Good distribution could be obtained, for example, with a common
spreader of pellet fertilizer. That way, the water of irrigation can be used
to humidify the pellets, let them swallow and disintegrate, and then
disintegrated pellets can be mixed with the bulk soil with a disc harrow
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or any other suitable tool. Another way to apply pellets can be by using
a potato seeding machinery that allows laying pellets next to the seed,
as beech wood was reported to be efficient in absorbing humidity not
only on the surface but also when incorporated into the soil (Brischke
and Wegener, 2019). Another point that can be improved is the
accuracy of coating which can be enhanced by adjusting a seed coating
machine, which can offer more control over the functioning of nozzles,
the time required to spray a specific quantity of pellets, and the use of
additives such as biodegradable binders that might improve the
adherence of conidia to the surface of wood pellets.

5. Conclusions

The method of coating wood pellets by spraying a conidial suspension
of T. atroviride SCI1 is promising because it may overcome one of the
most relevant difficulties of applying conidia of biocontrol agents in
bulk soils in general, and obtain an even distribution of conidia in
particular. An industrial advantage of this coating is that the technology
of wood pellet production is already set up, we can add any ingredient
in the wood to enrich the composition with nutritional factors and adapt
it therefore to the needs of various strains, and, possibly also to other
fungal species.

The choice of the right type of wood is relevant to obtain an optimal
application, as different wood species possess different physical
characteristics (water holding capacity, swelling, disintegration, etc.),
but also in sustaining the growth of the biocontrol microorganism
because of their different chemical compositions (lignin, hemicellulose,
and cellulose contents). The wood pellet can serve as a nutritional
substrate that can be further improved with the addition of nutritional
components as nitrogen sources, for example during the extrusion
process. Other wood types or mixtures of other cellulose/lignin sources
can be further explored. Wood pellets can also contribute to maintaining
organic matter high in the soil, but this needs further investigation along
with its effect on plants.

Last, but not least, the use of wood, which is an optimal food base
support, to support the fast growth of 7. atroviride SC1, may increase
its competitiveness in soil and reduce the growth of other
microorganisms including soil-borne pathogens, but it may also
increase the pathogen. Therefore, further studies assessing the impact
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on the biocontrol efficacy and exploring the side effect of coated wood
pellet on microbial population in the treated bulk soil are needed.
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Abstract: Wood pellets can sustain the growth of Trichoderma spp. in
soil; however, little is known about their side effects on the microbiota.
The aims of this study were to evaluate the effect of wood pellets on the
growth of Trichoderma spp. in bulk soil and on the soil microbial
population’s composition and diversity. Trichoderma atroviride SC1
coated wood pellets and non-coated pellets were applied at the level of
10 g'kg™! of soil and at the final concentration of 5 x 10° conidia-g™' of
soil and compared to a conidial suspension applied at the same
concentration without the wood carrier. Untreated bulk soil served as a
control. The non-coated wood pellets increased the total Trichoderma
spp. population throughout the experiment (estimated as colony-
forming unit ¢! of soil), while wood pellets coated with T. atroviride
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SC1 did not. The wood carrier increased the richness, and temporarily
decreased the diversity, of the bacterial population, with Massilia being
the most abundant bacterial genus, while it decreased both the richness
and diversity of the fungal community. Wood pellets selectively
increased fungal species having biocontrol potential, such as
Mortierella, Cladorrhinum, and Stachybotrys, which confirms the
suitability of such carriers of 7richoderma spp. for soil application.

Keywords: Trichoderma; substrate; soil; metabarcoding; diversity;
community composition; wood pellets

1. Introduction

Biological control of soil-borne diseases is a valuable alternative to
synthetic chemical fungicides (Rahman et al, 2018) and, within the
genus Trichoderma (Kubicek et al, 2001), several strains have
demonstrated good efficacy against soil-borne pathogens such as
Rhizoctonia solani, Fusarium spp., Pythium spp., and nematodes of the
genus Meloidogyne (Ferreira and Musumeci, 2021). However, the
success of treatments with Trichoderma spp. depends highly on the
physicochemical and biological traits of the soil, as well as the
rhizosphere competence of the strains used. After the soil treatment, the
population of Trichoderma spp. normally tends to decrease over time
(Papavizas, 1982). This problem is usually addressed by applying high
quantities of the biocontrol agent and/or by formulating the biocontrol
agent (i.e., as a wettable powder, emulsion, pellets, granules, etc.) or
adding nutrients to the formulation that can extend its longevity in the
soil (Elad et al, 1980; Lewis and Papavizas, 1987; Papavizas and Lewis,
1989; Kumar et al, 2017). Particular formulations of biocontrol agents
comprise aids that can preserve them, favor their delivery to targets, and
improve their activity (Burges and Jones, 1998). Another limiting factor
that prevents the widespread use of Trichoderma spp. in soil treatments
is the difficulty in homogenously applying small quantities of conidia
in large volumes of soil (Chammem et al, 2021). Although several
authors have addressed the effectiveness of formulations and the
addition of nutrients (Papavizas et al, 1984; Jin et al, 1992; Whipps,
1997; Shaban and El-Komy, 2001; Thangavelu et al, 2004; Kolombet
etal, 2008; Al-Taweil et al, 2010; Sriram et al, 2010; Sriram et al, 2011;
John et al, 2011), limited information is available on the effect of such
components on the soil microbiome (Cumagun, 2014). More
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particularly, the effect of the use of lignocellulosic substrates inoculated
with Trichoderma spp. on soil fungal and bacterial populations is
unknown.

The use of wood pellets coated with conidia of Trichoderma spp. might
represent an interesting approach for soil treatments (Chammem et al,
2021). For example, Trichoderma atroviride SCI1 can easily grow on
beech wood pellets and reach high population levels (e.g., 10° cfu-g™
of wood pellet), especially if complemented with nitrogen sources, such
as soy protein isolates. The advantage of using wood pellets is double:
they can be easily spread and incorporated in soil by using standard
equipment (e.g., using a fertilizer spreader, followed by harrowing) and
support the growth of the fungus, which colonize wood before other
microbes and then outcompete them. For example, early or
simultaneous inoculation of 7. viride or T. harzianum with
basidiomycetes that can attack coconut fibers, such as Trametes
versicolor and Stereum rugosum, can protect coconuts from white rot
decay, mainly by nutrient competition, but also by toxins that can
inhibit the growth of the pathogens (Antheunisse and Burema, 1983).
On the other hand, carriers can also modify the soil microbial
communities’ composition. Since soil microbial communities often act
synergistically to control soil-borne pathogens, a change in the soil
microbial community structure, and/or a reduction in biodiversity, may
affect the occurrence of soil-borne diseases (Mao and Jiang, 2021).

Many factors can contribute to shifting the microbial populations in the
soil, such as the soil type and pH, structure, salinity, and moisture, but
most importantly, soil organic matter and plant exudates (Fontaine et
al, 2003; Compant et al, 2019). Generally, adding organic matter to the
soil enhances the microbial activity (Chirinda et al., 2008; Hou et al.,
2017; Vermeire et al., 2018), while the use of mineral fertilizers can
reduce fungal diversity (Béarlocher et al., 2016, Cai et al., 2019). The
inoculation of Trichoderma spp. without organic matter has a transient
effect on the microbial population of the soil (Cordier and Alabouvette,
2009; Liu et al., 2008), and combining the application of Trichoderma
spp. with organic composts and bio-organic fertilizers has been
proposed as an alternative to mineral fertilizers; in fact, adding these
species to the substrate can increase soil fertility and microbial
biodiversity (Ye et al., 2020; Asghar and Kataoka, 2021).
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The aim of this study was to test the effectiveness of a carrier of T.
atroviride SC1 made from wood pellets in prolonging the survival of
the fungus in the soil and to evaluate its possible impact on the soil
microbiota by metabarcoding analysis of the microbial communities.
Although this case study is based on the use of a specific carrier (beech
wood pellet) and a specific strain (7. atroviride SC1) in a single soil,
the protocol could be replicated for other similar combinations, for
future comparison.

2. Materials and Methods

2.1. Coating the Wood Pellets with Trichoderma atroviride SC1, Soil
Treatments and Experimental Design

Beech wood pellets (Italwood S.r.l., Piovene Rocchette , Italy) were
used as carriers to deliver 7. atroviride SC1 to the soil. Wood pellets
were coated with conidia, according to Chammem et al. (2021). Briefly,
beech pellets (100 g) were dried in an oven at 120 °C for 12 h, sprayed
with soy protein isolates (30 mg:mL ! corresponding to a final rate of 3
mg-g ! of pellets) and coated with 0.1 mL of T. atroviride SC1 conidia
sterile water suspension (SDW) with a spray bottle, while continuously
mixing in a mixer (MUM44R1- BSH Elettrodomestici S.p.A., Milan,
Italy) at a speed of 25 rpm. Conidia were prepared according to Longa
etal. (2009) and adjusted with a hemocytometer at 5 x 10° conidia-mL ™"
to reach a final concentration of 5 x 103 conidia-g ! of pellets. The wood
pellets were used immediately after coating.

The experiment was carried out under controlled greenhouse
conditions, at a temperature of 25 + 1°C and relative humidity 70 +
10%, in 2020. The coated wood pellets were applied to a bulk of sandy
loam soil (69.7% sand: 26.3% lime: 4% clay, pH 8) collected in San
Michele all’Adige, Italy (N 46.182315, E 11.118804), representing a
typical agricultural soil of this region (apple orchards). The soil was
mixed thoroughly, sieved, and then distributed into 20 plastic pots
(Mongardi, Ferriera di Buttigliera Alta , Italy; 2L) at 1 kg of soil-pot .
A randomized block design was used, with four treatments and five
replicates (pots) each: bulk soil (untreated control; Ctr), soil mixed with
non-coated wood pellet (Trtl), soil mixed with a conidial SDW
suspension T. atroviride SC1 (Trt2), and soil mixed with of T.
atroviride SC1 coated pellets prepared as described above (Trt3). The

55



Hamza CHAMMEM — Lignocellulosic materials coated with Trichoderma atroviride
SC1 increase its persistency in the soil and impact soil microorganisms

final estimated concentration of 7. atroviride SC1 conidia in Trt2 and
Trt3 was 5 x 10° conidia-g™! of soil. The wood pellets in Trtl and Trt3
were applied by laying them on the soil surface (10 g-pot™), spraying
50 mL of SDW pot ™!, letting them swell and disintegrate (20 min), and
gently mixing the broken-down pieces in the soil. The Ctr and Tr2 were
sprayed with 50 mL of SDW per pot™!. After calculation of the water
holding capacity of the soil using the percolation method, the soil was
kept at 60 + 10% humidity, by weighing the pots every two days and
adding the quantity of water that was lost by evaporation. The
experiment (E1) was repeated after one week (E2).

To ensure the absence of T. atroviride SC1 in the soil, real-time PCR
primers and probes, designed for the detection and quantification of 7.
atroviride SC1 (Savazzini et al., 2009), were used to check the bulk soil
before the experiments.

2.2. Soil Sampling

The growth of 7. atroviride SC1 was monitored by sampling the soil
immediately after completing the treatments (12 h, D0), every 15 days
in the first two months (D15, D30, D45, D60), and the final sampling
was carried out after ninety days (D90). Samples of soil (5 g) were
collected from each pot (replicate) by taking 1 g from the center of the
pot and 1 g from each of its four corners. The samples were put in 50
mL sterile Falcon tubes (Merk Life Science S.r.l., Milan, Italy) and
thoroughly mixed. Colony forming unit (cfu) counting was performed
by suspending 1 g from each falcon tube in 10 mL of SDW, vortexing
for 1 min, and plating 100-200 pL from the SDW suspension on a
Trichoderma semi-selective medium that contained potato dextrose
agar (Oxoid, Basingstoke, UK, 39 g-L "), rose bengal (Sigma Aldrich,
Anekal Taluk, India, 0.1 g-L™"), chloramphenicol (Sigma Aldrich,
Beijing, China, 0.1 g-L™"), and streptomycin sulfate (Fluka Biochemika,
Milan, Italy, 0.05 g-L"). The results are reported as cfu-g ™! of soil + the
standard deviation.

For metabarcoding analysis, only four replicates from each treatment
were considered and were chosen randomly. Samples (1 g) were
collected at DO, D15, and D90, lyophilized in a freeze-dryer
(HetoLyoLab 3000-Analitica De Mori, Milan, Italy) for 12 h, and stored
at —80 °C until use.

56



Chapter 4: Effect of a wood-based carrier of Trichoderma atroviride
SC1 on the microorganisms of the soil

2.3. DNA Extraction, Amplification and Sequencing

Total genomic DNA was extracted from 500 mg of lyophilized soil
samples (96 soil samples) using a FastDNA™ Spin kit (MP
Biomedicals, Irvine, CA, USA), following the manufacturer’s
instructions and was quantified using a NanoDrop™ 8000
spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA).

The library construction and sequencing were performed on the
sequencing platform of the Edmund Mach Foundation. Total genomic
DNA was amplified using primers specific to either the bacterial and
archacal 16S rRNA gene or the fungal ITS1 region. The specific
bacterial primer set 515F (5'-GTGYCAGCMGCCGCGGTAA-3') and
the 806R (5-GGACTACNVGGGTWTCTAAT-3") was used
(Caporaso et al., 2011), with degenerate bases suggested by Apprill et
al. (Apprill et al., 2015) and by Parada et al. (2016). Although no
approach based on PCR amplification is free from bias, this primer pair
has been shown to guarantee good coverage of known bacterial and
archaecal taxa (Walters et al., 2016). For the identification of fungi, the
internal transcribed spacer 1 (ITS1) was amplified using the primers
ITS1F (5'-CTTGGTCATTTAGAGGAAGTAA-3") (Gardes and Bruns,
1993) and ITS2 (5'-GCTGCGTTCTTCATCGATGC-3") (White et al.,
1990). All the primers included specific overhang Illumina adapters for
the amplicon library construction.

For the 16S V4 region, each sample was amplified by PCR using a 25-
uL reaction with one uM of each primer. In more detail, 12.5 pL. of 2%
KAPA HiFi HotStart ReadyMix and 10 pL forward and reverse primers
were used in combination with 2.5 pL of template DNA (5-20 ng-uL ™).
PCR reactions were executed using a GeneAmp PCR System 9700
(Thermo Fisher Scientific) and the following cycling conditions: initial
denaturation step at 95 °C for 5min (1 cycle); 28 cycles at 95 °C for
30s, 55 °C for 30 s, and 72 °C for 30 s; a final extension step at 72 °C
for 5 min (1 cycle).

For the ITS1 region, each sample was amplified by PCR using 25-uL
reaction with 10 uM of each primer. In more detail, 22 pL. of premix
FastStart High Fidelity PCR System (Roche) and 2 pL. forward and
reverse primers were used in combination with 1 uLL of template DNA
(5-20 ng-ul™). PCR reactions were executed using a GeneAmp PCR
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System 9700 (Thermo Fisher Scientific) and the following cycling
conditions: initial denaturation step at 95 °C for 3min (1 cycle);
30 cycles at 95 °C for 20s, 50 °C for 45, and 72 °C for 90s; final
extension step at 72 °C for 10 min (1 cycle).

The amplification products were checked on 1.5% agarose gel and
purified using a CleanNGS kit (CleanNA, Waddinxveen, The
Netherlands), following the manufacturer’s instructions. Afterward, a
second PCR was used to apply dual indices and Illumina sequencing
adapters Nextera XT Index Primer (Illumina, Berlin, Germany), using
sevencycles of PCR (16S Metagenomic Sequencing Library
Preparation, Illumina, Berlin, Germany). The amplicon libraries were
purified using a CleanNGS kit (CleanNA, Waddinxveen, The
Netherlands), and quality control was performed on a Typestation 2200
platform (Agilent Technologies, Santa Clara, CA, USA). Finally, all
barcoded libraries were pooled in an equimolar manner and sequenced
on an Illumina® MiSeq (PE300) platform (MiSeq Control Software
2.5.0.5 and Real-Time Analysis software 1.18.54.0).

2.4. Bioinformatics and Statistical Analysis

[llumina reads were filtered with Bowtie2 v2.3.4.3 (Langmead and
Salzberg, 2012) to avoid the presence of Illumina phiX contamination,
and quality was preliminarily checked with FastQC v0.11.8 (Andrews,
2010). Primers were stripped using Cutadapt v1.18 (Martin, 2011).
Sequences were quality filtered, trimmed, denoised, and amplicon
sequence variants (ASVs) were generated with DADA2 v1.14
(Callahan et al., 2016). Denoised forward and reverse ASV sequences
were merged and chimeras were removed. Filtered ASVs were checked
using Metaxa2 v2.2.1 (Bengtsson-Palme et al., 2016) and ITSx v1.1.2
(Bengtsson-Palme et al., 2013) for targeting the presence of the V4 16S
rRNA and ITS1 regions, in archaeal and bacterial sequences and fungal
sequences, respectively. Taxonomic assignment of 16S rRNA gene
ASVs and ITS based ASVs was performed using a RDP classifier,
reimplemented in DADA?2 against the SILVA v138 database (Quast et
al., 2013) and UNITE 8.2 database (Nilsson et al., 2019), respectively.
BIOM objects with bacterial and fungal counts, respectively, were built
and imported into the R-4.0.3 statistical environment for further
analyses (R Core Team, 2021).
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The data of the growth assessment of 7. atroviride SC1 cfu counts
(Figure 1) were log10 transformed to simplify the data analysis, as is
commonly the case for colony counts to avoid data skewness. Bartlett’s
test of homogeneity of variances and Shapiro—Wilk’s normality test
were used to check the normal distribution of the data. ANOVA and
Tukey’s HSD tests were performed on logl0 transformed data with a
normal distribution (test of the evolution of treatments in time), and the
non-parametric Kruskal-Wallis and Dunn post-hoc (Benjamini—
Hochberg p-adjustment method a = 0.05) tests were used otherwise
(comparing the cfu counts between treatments at each sampling point).

Bacterial and fungal count tables were filtered using the RAM R
package, and rare ASVs (relative abundance < 0.1%) were discarded.
Relative abundance of taxa at different taxonomic ranks was calculated
with the RAM R package (Chen et al., 2020).

Alpha-diversity values were calculated adopting a multiple rarefaction
method, implemented in the rtk R package (Saary and Hildebrand,
2020). In detail, richness (observed ASVs) and diversity values
(Simpson’s index) were generated by averaging the results inferred
after 999 rarefactions, starting from a minimum number of 38,256 and
13,418 reads, for 16S rRNA gene and ITS data, respectively. A
regression analysis based on linear models was carried out on the
richness and diversity values, for each dataset, after inspection with the
fitdistrplus R package (Delignette-Muller et al., 2021). In more detail,
a machine learning approach based on 9999 bootstrap resampling was
adopted to evaluate models in which factors (i.e., experiment, time, and
treatment) were considered only for their main effects or also with an
interaction. The performance of the models was assessed by means of
RMSE (root mean squared error) and R-squared, which measure the
prediction error and the proportion of variation explained by each
model, respectively (Kuhn, 2008). An analysis of variance (ANOVA)
followed, to evaluate the linear model fit. A post-hoc analysis was
carried out with pairwise comparisons, based on the estimated marginal
means (EMMs) as implemented in the emmeans R package (Lenth et
al., 2020). Richness and diversity values were graphically represented
as boxplots, using the ggplot2 R package (Figures 2 and 3) (Wickham
et al., 2021). A confirmatory analysis based on recursive partitioning
(Hothorn et al., 2020) was carried out by considering richness and
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diversity variables together in the same model; with experiment, time,
and treatment as factors (Figure S1).

Beta diversity calculations were conducted after normalization with the
median of ratios method implemented in the DESeq2 R Bioconductor
package (Love et al., 2021). Exploratory non-metric multidimensional
scaling (NMDS) ordinations were applied to Bray—Curtis
dissimilarities. NMDS ordinations were plotted using the ggvegan and
ggplot2 R packages (Figure 4) (Simpson, 2021). A multivariate analysis
based on PERMANOVA was performed on Bray—Curtis dissimilarities
applied to normalized bacterial and fungal count tables, respectively
(adonis function, vegan R package) (Oksanen et al., 2019). To confirm
the PERMANOVA results, a multivariate generalized model (mGLM)
was calculated, including all available factors and based on a negative
binomial distribution (confirmed by graphical inspection). The model
was assessed by analysis of deviance with a likelihood-ratio-test
(manyglm function, mvabund R package) (Wang et al., 2020). ASVs
that had abundances significantly different (p < 0.05) in at least one
factor were extracted from the mGLM results and were used to calculate
univariate non-parametric tests for each factor (multtest.gp function,
RVAideMemoire R package) (Hervé, 2020). The results of each rank
test were corrected by false discovery rate (FDR), and post-hoc pairwise
comparisons were performed between the levels in each factor, with a
Dunn test followed by Benjamini—Hochberg adjustment (dunntest
function, FSA R package) (Ogle et al., 2021). Bacterial and fungal
indicator ASVs, respectively, were collapsed at genus level and relative
abundances were plotted with the RAM R package (Figure 5).

3. Results

3.1. Impact of the Trichoderma atroviride SC1 Coated Beech Wood
Carrier on the Growth of Trichoderma spp. in Soil

Trichoderma atroviride SC1 DNA was not detected in the original bulk
soil. Since the cfu counting does not allow for distinguishing the
species/strains of Trichoderma, T. atroviride SC1 and the indigenous
population of Trichoderma, are mentioned as Trichoderma spp.
population throughout the paper.

The Trichoderma spp. cfu counts increased rapidly in the first 30 days,
until D45 in Ctr and Trtl. For Ctr, the cfu counts were not significantly
different at D15 and D30 compared to DO, according to Dunn’s post-
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hoc test (p = 0.380; p = 0.080). Then at D45, the counts reached levels
significantly different from the ones registered at DO and D15 (p =
0.001; p = 0.002). No significant difference was observed between the
cfu counts of the Trichoderma spp. population at D60 compared to D30
(p = 0.074) and D45 (p = 0.370), respectively, while it remained
significant for DO (p = 0.002) and D15 (p = 0.004). At the end of the
experiment (D90), a slight decrease in the population was observed
(2.69 x 10* + 102.87 cfu-g ! of soil) and a significant difference was
recorded only with DO (p = 0.021). For Trtl, the colonies started to
grow faster than Ctr, and a significant difference was detected starting
from D30 as compared to DO (p = 0.010). The population of
Trichoderma spp. continued to grow and became significantly different
from the levels observed at D30 a month later at D60 (p = 0.009). The
levels registered at D90 (1.00 x 10° + 712.57 cfu-g™! of soil) remained
significantly different from the cfu counts at D30, but not different from
those of D45 (p = 0.275) and D60 (p = 0.338). The treatments Trt2 and
Trt3, where T. atroviride SCI was inoculated at the rate of 5 x 103
conidia-g™! of soil, maintained the same level of cfu count in the first 30
days compared to DO, with p = 0.065 and p = 0.206 for Trt2 and Trt3,
respectively. Then at D45, the population of Trichoderma spp. started
to decline in Trt2 (2.54 x 103 + 689.00 cfu-g! of soil) and Trt3 (1.40 x
10% +681.09 cfu-g ! of soil), reaching levels significantly different from
the ones registered at D15 (p = 0.003; 0.001), and the same was
observed between D60 and D30 (p = 0.012; p = 0.001). The population
at D90 was significantly lower than all the other sampling points for
Trt2, except for D60 (p = 0.103), while no significant difference was
observed between D45, D60, and D90 for Trt3 (p = 0.057; p = 0.218).

Between treatments, at D0, there was a significant difference in the cfu
counts between Ctr/Trt1 and Trt2/Trt3 (H=31.538, df =3, p <0.001),
which persisted until D45. At D45, no significant difference was
observed between the counts of Ctr and Trtl (p = 0.052), Trtl and Trt3
(p = 0.054), or Trt2 and Trt3 (p = 0.050). Trt2 and Trt3 were both
significantly different from Ctr (H = 29.067, df = 3, p < 0.001). Trt2
registered the highest cfu count among the treatments (2.54 x 10° +
689.82 cfu-g! of soil).

At D60 the cfu counts of Trt1 continued to rise and became significantly
different from the control (p = 0.003). The cfu counts in Trt3 continued
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to decrease and became significantly different from the cfu counts in
Trt2 (p =0.011).

At D90, the population of Trichoderma spp. showed no statistical
difference (p = 0.250; p = 0.140; p = 0.040) between Trt1 (1.03 x 103 +
712.71 cfu-g! of soil), Trt2 (1.07 x 10° £ 417.05 cfu-g™! of soil), and
Trt3 (6.76 x 10> + 232.81 cfu-g! of soil), with cfu counts that were
significantly higher than the control (H = 23.766, df = 3, p < 0.001)
(Figure 1).
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Figure 1. The effect of beech wood pellets coated and uncoated with
Trichoderma atroviride SC1 on the Trichoderma spp. population in
the soil at different sampling times post inoculation (DO: after 12h,
D15: after 15 days, D30: after 30 days, D45: after 45 days, D60: after
60 days, and D90: after 90 days). Ctr: bulk soil; Trtl: soil with 10 g
of beech wood pellets; Trt2: soil with 7. atroviride SC1 conidial
suspension (5 x 10* conidia-g™! of soil); Trt3: soil with 10 g of T
atroviride SC1 coated beech pellets (5 x 10° conidia-g™ of beech
wood pellets). At each sampling point, different letters indicate
significant statistical differences between treatments according to
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Dunn’s test (0=0.05). Colony counts of the two experiment were
pooled.

3.2. Impact of the Trichoderma atroviride SC1 coated beech wood
carrier on the microorganisms of the soil

A total of 103,970.6 bacterial/archaeal reads and 86,077.48 fungal reads
were obtained. The most dominant bacterial phyla, in terms of relative
abundance, were Proteobacteria (34%), Crenarchaeota (10%),
Actinobacteriota (10%), Bacteroidota (10%), and Acidobacteriota
(10%). At genus level, Massilia was the most abundant, with 12%,
followed by Pontibacter, Sphingomonas, and Gaiella, with (2%) and
finally Microvirga (1%). The fungal taxa were dominated by
Ascomycota (82%), then Basidiomycota (6%), and Mortierellomycota
(6%), followed by Chytridiomycota (3%) and Aphelidiomycota (3%).
Mortierella (6%) was the most dominant fungal genus, followed by
Fusarium (4%) and Cladorrhinum (4%), and finally Gibberella (3%),
then Stachybotrys (2%).

3.2.1. Bacterial and fungal richness and diversity

The bacterial alpha diversity showed statistical differences in richness
(observed ASVs) between the different sampling time points for each
treatment (F = 514.48, p <0.001) and between treatments (/' = 45.94,
p <0.001). The increase in the bacterial richness occurred faster for all
treatments (15 days after the inoculation) compared to the control,
which showed a significant increase after 90 days (Figure 2). This
shows that the introduction of the carrier components, the incorporation
of T. atroviride SC1 into the soil, and their combined application
enhanced the bacterial richness. At D90, the highest effect was
observed with Trt3, which presented the highest ASVs (680) among all
treatments, while no significant difference was observed between Trtl
and Trt2.

In contrast, the bacterial diversity (Simpson’s index) showed
differences between treatments at DO only (' =245.07, p <0.001). The
treatments where a carrier was applied with or without 7. atroviride
SC1 (Trtl and Trt3) affected the bacterial population community and
decreased its diversity, as is shown by the low Simpson’s values (0.88
and 0.87) for Trtl and Trt3, respectively. The addition of the carrier,

63



Hamza CHAMMEM — Lignocellulosic materials coated with Trichoderma atroviride
SC1 increase its persistency in the soil and impact soil microorganisms

which contains carbon and nitrogen sources, clearly favored certain
genera that are more adapted to those components and decreased the
less competent ones (Figure 2). Generally, the introduction of T.
atroviride SCI1 did not affect the bacterial population and the most
important factor that governed the bacterial dynamics was the addition
of the carrier (F=61.40, p <0.001).

The fungal alpha diversity showed significant differences in richness
between the different sampling time points for each treatment (F =
303.58, p <0.001), but not between treatments (F = 0.31, p =0.81). The
richness decreased in time for both control and treatments, with no
exceptions (Figure 3).

Simpson’s diversity index was significantly different for Trt1 compared
to the other treatments, including the control (F = 5.17, p < 0.001)
(Figure 3). This shows the effect of combining the addition of wood to
the soil with the application of 7. atroviride SC1. The fungal diversity
in the treatments where 7. atroviride SC1 was applied with and without
wood pellets were not significantly different from the control (Figure
3). In contrast, the fungal diversity in Trtl, which was supplemented
only with wood, was significantly different. This shows that adding T.
atroviride SC1 can counterbalance the effects of the wood on the fungal
diversity. The addition of wood was the main cause for the differences
observed between treatments. The recursive partitioning analysis of the
bacterial and fungal richness and diversity confirmed the above-
mentioned results (Figure S1).
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Figure 2. Boxplots of the bacterial richness (observed ASVs) and
bacterial diversity (Simpson’s diversity) at different sampling times
(DO: after 12 h; D15: after 15 days; D90: after 90 days). Ctr: Bulk
soil; Trtl: soil with 10 g of beech wood pellets; Trt2: soil with
Trichoderma atroviride SC1 conidial suspension at the rate of 5 x
10° conidia-g™! of soil; Trt3: soil with 10 g of T atroviride SC1 coated
beech pellets (5 x 10° conidia-g” of beech wood pellets). Letters
indicate significant differences according to emmeans package
(0=0.05) between treatments at each sampling point (lower case
letters) or for the same treatment over time (upper case letters). Data
of the two experiments E1 and E2 were pooled.
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Figure 3. Boxplots of the fungal richness (observed ASVs) and
fungal diversity (Simpson’s diversity) at different sampling times
(DO: after 12 h; D15: after 15 days; D90: after 90 days). Ctr: Bulk
soil; Trtl: soil with 10 g of beech wood pellets; Trt2: soil with
Trichoderma atroviride SC1 conidial suspension at the rate of 5 x
10° conidia-g™! of soil; Trt3: soil with 10 g of T atroviride SC1 coated
beech pellets (5 x 10° conidia-g” of beech wood pellets). Letters
indicate significant differences according to emmeans package
(0=0.05) between treatments at each sampling point (lower case
letters) or for the same treatment over time (upper case letters). Data
of the two experiments E1 and E2 were pooled.

Unsupervised non-metric  multidimensional scaling (NMDS)
ordinations applied on Bray—Curtis dissimilarities showed that the
dissimilarities observed among the bacterial samples were grouped
(Figure 4) according to the factors, time and treatment, while it pooled
the fungal communities only according to the factor, time (Figure 4). In
fact, the permutational multivariate analyses of variance
(PERMANOVA) on Bray-Curtis dissimilarities revealed that time was
responsible for the biggest portion of the variation in microbiome beta-
diversity. The bacterial community differed very significantly
according to the factor time (F = 144.95, R? = 0.56, p < 0.001) and
treatment (F = 20.38, R2=0.11, p < 0.001), as well as their interaction
(F=11.37,R*=0.13, p <0.001), and less significantly with the factor
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experiment (F = 3.47, R> = 0.006, p = 0.015). The same was observed
for the fungal communities, which varied according to time (/' =21.99,
R?=0.23, p < 0.001), treatment (F = 8.59, R? = 0.14, p < 0.001), the
interaction between the two factors (¥ = 3.35, R = 0.10, p = 0.001),
and finally the factor experiment (F = 2.64, R? = 0.014, p = 0.006).
These results indicate a high consistency of the effects of the treatments
over time (7. atroviride SC1 coated and uncoated wood pellets and 7.
atroviride SC1) on soil microbial communities.
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Figure 4. Ordination plots of non-metric multidimensional scale
analysis (NMDS) using the Bray-Curtis dissimilarities of bacterial
(A) and fungal (B) communities. Pink, green, and blue colours
indicate different sampling times (DO: after 12 h; D15: after 15 days;
D90: after 90 days) and shows how both fungal and bacterial
communities are grouped by time. The colours of the filling grey and
black represent the two experiments (E1 and E2 respectively), and
different shapes represent the treatments that grouped mainly the
bacterial community Ctr: bulk soil; Trt1: soil with 10 g of beech wood
pellets; Trt2: Trichoderma atroviride SC1 applied to the soil as a
conidial suspension at the rate of 5 x 10° conidia g-1 of soil; Trt3:
soil with 10 g of T. atroviride SC1 coated beech wood pellets at 5 x
10° conidia g

Bacterial and fungal indicator ASVs that have significantly different
abundances (p < 0.05) in the factor time and treatment were extracted
from the mGLM results. The results of the Simpson’s bacterial diversity
index correspond with an increase in the population of the genus
Massilia, which was significantly different between the two groups
Ctr/Trt2 and Trt1/Trt3 (Figure 5). The results also revealed a significant
increase in terms of the relative abundances of the genera Pontibacter,
Sphingomonas, Gaiella, Pedobacter, and Microvirga (Figure 5).

For the fungal community, at DO, Trichoderma spp. were higher in Trt2
and Trt3 than in Ctr and Trtl, as expected. Contrarily to the cfu counts,
however, this did not change until the end of the experiment, according
to Dunn’s post-hoc test. The carrier (Trtl/Trt3) selectively and
significantly increased the total ASV’s of Cystobasidium, Ascobolus,
Stachybotrys, Cladorrhinum, Preussia, and Stachylidium (Figure 5).
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Figure 5. Relative abundance of the most important bacterial (A) and
fungal (B) genera. Eland E2: two experiments with four treatments
at different sampling times (DO: after 12 h; D15: after 15 days; D90:
after 90 days); Ctr: Bulk soil; Trtl: soil with 10 g of beech wood
pellets; Trt2: soil with Trichoderma atroviride SC1 conidial
suspension at the rate of 5 x 10° conidia-g™! of soil; Trt3: soil with 10
g of T. atroviride SC1 coated beech pellets (5 x 10° conidia-g™! of
beech wood pellets). Data of each replicate are presented in the
histograms.
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4. Discussion

Trichoderma spp. formulations are important, as they can delay the
decline of the population of the fungus, protecting conidia from soil
fungistasis [Martinez-Medina et al., 2009; Larkin, 2016], by providing
nutrients to selectively stimulate their growth, or by combining both
mentioned benefits (Prasad et al., 2002). In our experiment, we tested
the effect of a carrier based on lignocellulosic materials (beech wood
pellet supplemented with soy protein isolates) on the growth of T.
atroviride SCI in a sandy loam, and assessed the effect of such a carrier
on the microbiota of the soil. Since it was hard to distinguish colonies
of our strain from the indigenous population in the soil, we reported the
results as the population of the total Trichoderma spp., instead of T.
atroviride SC1.

The Trichoderma population showed a steady growth in the Ctr and
Trtl for the first 30 to 45 days, then it stabilized. This growth can be
explained by the addition of SDW, which stimulated the indigenous
population to germinate and exploit the soil organic matter. This is in
concordance with studies that show that water affects the microbial
growth in the soil [Griffin, 1963; Griffin, 1969; Kaisermann et al.,
2015]. Trt2, where T. atroviride SC1 was applied as an SDW conidial
suspension, showed the typical population decline that is reported in
literature when Trichoderma spp. are applied as conidia (Papavizas,
1982; Longa and Pertot, 2009]. The population remained stable for 30
days, then started to decline gradually until D90. This result is in
concordance with (Cordier and Alabouvette, 2009), who reported a
decrease in the population of Trichoderma atroviride 1-1237 after three
weeks in neutral clayey soils and after 13 weeks after its inoculation
into an acidic sandy loam. Their research showed that the decline of the
population of Trichoderma spp. can be governed by the
physicochemical characteristics of a soil. In fact, since the growth of T.
atroviride SC1 on wood has been demonstrated by previous studies
(Chammem et al., 2021; Pellegrini et al., 2014), we expected the fungus
to grow to higher levels in Trt3 compared to Trtl and Trt2; however,
surprisingly, the total Trichoderma population remained stable for 30
days and then declined to levels similar to the ones registered with Trt1
and Trt2, which suggests a soil fungistatic effect that inhibited the
growth of T atroviride SC1. The growth of T. atroviride SC1 in the soil
can be hindered by unfavorable soil conditions (pH 8 in our
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experiment), as it grows best in acidic conditions (Longa et al., 2008).
This has also been reported in other studies, which showed that the
growth of Trichoderma spp. can be affected by soil texture and pH
Brockett et al., 2012; Van Der Bom et al., 2018; Mayo-Prieto et al.,
2021).

The carrier increased the Trichoderma spp. population in Trtl steadily
in the first 45 days and then it stabilized to levels that were not
significantly different to those observed in the treatments where 7.
atroviride SC1 was added with and without coated beech pellets. Since
Trtl did not contain detectable levels of T. atroviride SC1 (since
initially we tested the soil for the presence of this fungal strain using
specific primers (Savazzini et al., 2009)) the presence of other
competitive strains of 7richoderma spp. that are more efficient than our
strain in degrading wood is highly plausible. Competition with other
Trichoderma spp. could have played an important role in slowing down
the growth of T. atroviride SC1 with the carrier in Trt3 as compared to
Trtl, where the population of Trichoderma flourished in the first 45
days. Generally, Trichoderma spp. compete with each other in the soil
for wood colonization with an effectiveness that depends on the species
(Widden and Hsu, 1987; Klein and Eveleigh, 1998). Several species
have been reported in the literature for their high cellulolytic activity,
such as T. reesei, T. viride, T. harzianum, T. virens, and T.
longibrachiatum (Mutschlechner et al., 2015; Bischof et al., 2016;
Marecik et al., 2018). The difference that was observed between the
results of the cfu counts of Trichoderma spp. and the results of the ITS
amplicon-based analysis is in concordance with previous studies, which
reported that such differences could be due to the fact that a dead
propagule that still contains DNA does not develop into a cfu (Savazzini
et al., 2008).

Since soil experiments can be influenced by a complex of
physicochemical factors of a soil, such as temperature, texture, water
availability, aeration, and light, as well as other biological factors,
consisting mainly of the distribution of microorganisms in the soil and
their interactions (Griffin, 1969), we repeated the experiment twice.
Our results show that the experimental design consistently detected the
differences occurring due to time and treatment. The incorporation of
T. atroviride SC1 did not affect the bacterial richness and diversity. This

71



Hamza CHAMMEM — Lignocellulosic materials coated with Trichoderma atroviride
SC1 increase its persistency in the soil and impact soil microorganisms

is in concordance with other studies that reported a transient effect of
Trichoderma spp. on the microbial population [Cordier and
Alabouvette, 2009; Savazzini et al., 2009; Huang et al., 2016; Umadevi
et al., 2018). The fungal richness, however, decreased in all treatments,
probably due to the growth of fungal genera that are more competitive
in growing in conditions either of low organic matter or on woody
substrates. Cordier and Alabouvette (2009) observed the same effect
with the introduction of 7. atroviride 1-1237 on the fungal community;
however, the change only lasted for three months, which was the full
length of our experiment. The fungal diversity also decreased in all
treatments; however, it decreased the most in Trtl, where pellets were
introduced in the absence of T. atroviride SC1. This suggests that the
main driver of the change observed between treatments was the
introduction of non-coated beech wood pellets and that 7. atroviride
SC1 contributed in balancing the fungal diversity, probably by
increasing the availability of nutrients to other fungi. This is in
concordance with Asghar and Kataoka (2021), who found that
introducing organic amendments into the soil had a negative effect on
the diversity of the fungal community. Longa et al. (2009) also reported
a correlation between the increase in the organic matter and the
abundance of microbial functional groups with agricultural importance,
such as nitrogen fixing bacteria when soil was supplied with green
manure.

In our study, the tested soil was rich in wood-degrading bacteria and
fungi in all treatments, as was demonstrated by the analysis of the top
ten genera of bacteria and fungi, in terms of relevant abundance. These
analyses revealed a dominance of the genus Massila for bacteria in all
treatments, including the control. Massilia, which are saprophytic and
opportunistic and were significantly more abundant in the presence of
the carrier at D0. This can be explained by the early growth of these
bacteria on wood pellets. In fact, Oxalobacteraceae in general, and
Massilia spp. in particular, are very active in the early stages of bacterial
succession in soils (Shrestha et al., 2007), and species of this genus can
produce cellulases (Hrynkiewicz et al., 2010; Ofek et al., 2012) which
can explain their initial growth on wood and soil amended with fresh
plant residues (Cheng et al., 1996; Bernard et al., 2007). However, this
effect is usually transient and only occurs when sufficient carbon and
energy sources are present, and before competition with other
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microorganisms becomes limiting (Ofek et al., 2012). Overall, the
carrier increased the bacterial richness and had a transient effect on its
diversity. This is in concordance with other studies that showed that
using inorganic nitrogen fertilizers in bulk soils affects their bacterial
composition (Illescas et al. 2020). Illescas et al. (2020) found that
inorganic fertilizers increased bacterial genera with antagonistic
activities, such as Sphingomonas and Pseudomonas, Kaistobacter, and
Streptomyces. We observed the same pattern with Sphingomonas and
Pseudomonas, but also Lysobacter, which was not reported in their
study. Lysobacter spp., named after their lytic effects on other
microorganisms and which are often good biocontrol agents, are Gram-
negative bacteria that are frequently found in soils. Their increase could
be a response to the increase of other microorganisms or to the
availability of a nutritional substrate related to the treatments
(Nakagawa et al., 2000).

The carrier also enriched the presence of bacteria involved in the soil
nitrogen cycle such as Microvirga and Pedobacter, which confirms the
results obtained by Longa et al. (2017) when soil was supplemented
with green manure. These results suggest a selective effect of a wood-
based carrier of 7. atroviride SC1. This selective effect was more
visible for fungi. In fact, non-coated beech wood pellets decreased both
the richness and diversity of the fungal population. This could be the
result of promoting fungi that are more adapted to the addition of wood,
particularly in bulk soils (Illescas et al. 2020), such as Mortierella,
which was the most abundant genus. These fungi are considered good
degraders of toxic pollutants, such as pesticides and heavy metals (De
Bruijn et al., 2015; Kataoka et al., 2010; Cui et al., 2017), and they have
potential for biocontrol (Lambe and Wills, 1983; Tagawa et al., 2010;
Melo et al., 2014). They are also important plant growth promoters and
can enhance soil conditions under salt stress (Zhang et al., 2011; Zhang
et al., 2020), but most importantly, they can degrade cellulose,
hemicellulose, and organic matter in periods that range from 30 to 430
days, depending on the substrate and the soil conditions (Tamayo-Vélez
et al., 2019; Ozimek and Hanaka, 2021). Tamayo-Vélez et al. (2019)
reported an optimal degradation rate of organic matter by Mortierella
90 days after inoculation. These results can be compared to what we
have observed, as 90 days were sufficient to rank Mortierella spp. as
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the most abundant fungi in the soil. This shows that wood pellets are a
suitable substrate for the growth of Mortierella spp. This might have
caused the competition that prevented Trichoderma spp. in general, and
T. atroviride SC1 in particular, from thriving in the pots supplemented
with coated wood pellets.

Another genus that might have played an important role in the
competition for wood degradation is Cladorrhinum. Cladorrhinum spp.
have been extensively reported in agricultural soils (Mouchacca and
Gams, 1993; Barrera et al., 2019). They were found in soil as
saprotrophs on dung or plant material (Lewis and Larkin, 1998; Madrid
et al., 2011), or in roots as endophytes (Gasoni and Stegman De
Gurfinkel, 1997). It is an ammonia fungus belonging to the early
successional phase of fungi involved in the saprotrophic litter
decomposition in soil (Sagara, 1975). Moreover, they are more efficient
than Trichoderma for the degradation of hardwood (Mao and Jiang
2021; Nilsson, 1973). This selective abundance of the carrier might be
beneficial, as Gasoni and Stegman de Gurfinkel (2009) reported a
potential antagonistic activity of Cladorrhinum spp. against
Rhizoctonia solani. In fact, this is not the only fungus found in our
research that can be effective against Rhizoctonia solani. Some species
of the genus Stachybotrys, which is also commonly found in soils and
on cellulose (Wang et al., 2015; Yasanthika et al., 2020), have a strong
antagonistic activity against R. solani through mycoparasitism, by the
means of chitinases and B-1,3-glucanases (Wang et al., 2015). One of
the species of this genus, namely, Stachybotrys chartarum was also
suspected to play a role in the development of human pulmonary
diseases; however, the results are not yet conclusive (Kuhn et al., 2003;
Hossain et al., 2004). Generally, drying pellets before coating, as
suggested in our protocol, would eliminate any potential development
of unwanted molds that could be harmful to animals or humans;
however, further research is needed in different soil types and with
different wood species. The results of the selective abundance of
beneficial microbes is in concordance with Sani et al. (2020), Fu et al.
(2021), and Zhang et al. (2020), who reported a decrease in the relative
abundance of genera hosting phytopathogens such as Neonectria and
Fusarium, improved soil fertility, and an increase in the relative
abundance of plant growth-promoting rhizobacteria, respectively, when
different Trichoderma isolates where inoculated into the soil. In our
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research, the results of the two experiments yielded more consistent
results with bacteria compared to fungi. This could be explained by the
high competition between fungi in colonizing the woody substrate. The
decreased prevalence of wood degrading fungi in some samples was
replaced by an increase in the relative abundance of the genera
Cordana, Cystobasidium,  Zopfiella,  Schizothecium, and
Ramophialophora, which might be due to the heterogeneous
distribution of microorganisms in the soil (Griffin, 1969).

5. Conclusions

The incorporation of T. atroviride SC1 coated wood pellets in the soil
enriched the bacterial community and had a selective effect on the
abundance of beneficial fungal species that have biocontrol potential.
Although a wider screening of a combination of different wood and soil
types is necessary to confirm this effect, these results are promising as
they reinforce the suitability of the use of wood pellets as carriers of
Trichoderma spp., because, in addition to being good growth substrates
for the fungus, they have a mild effect on the microbial community, as
they induce temporary side effects on the bacterial community, and
favor the growth of fungal species with biocontrol potential. In addition,
the carrier did not increase any potential human or plant pathogens.
Although wood pellets can be used as carriers of conidia of
Trichoderma spp., further studies are needed to assess their efficacy
against soil-borne pathogens and to optimize application conditions and
dosages in order to reach an efficient biocontrol effect. Possible side-
effects on the plant, e.g., phytotoxicity, must also be tested.

Supplementary Materials: The following are available online at
www.mdpi.com/xxx/s1, Figure S1: Recursive partitioning analysis of
bacterial richness and diversity.
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Chapter 5: Conclusions and future perspectives

The effectiveness of the biocontrol of soilborne pathogens depends on
one hand, on abiotic and biotic factors of a soil, and on the other hand,
on the efficacy of a strain in controlling a specific pathogen, and on the
abundance of the propagules of both the pathogen and the antagonist.
To improve soil treatments with Trichoderma spp., Dbetter
understanding of their ecology and interactions with other
microorganisms is crucial. The review article presented in this thesis
highlights the most important factors that can affect the survival of
Trichoderma spp. in different soils. Soil temperature, pH, moisture
level, and availability of nutrients as well as the presence of some
microorganisms that can compete with Trichoderma spp. in certain
conditions, such as Pseudomonas spp., are all limiting factors that call
for the use of formulations to enhance the proliferation of Trichoderma
spp. in the soil. Formulations can extend the longevity of Trichoderma
and affect, therefore, the effectiveness of soil treatments when the
conditions for the biocontrol activity of a Trichoderma spp. strain are
favourable. However, the choice of carriers and the addition of
nutrients to soils must be applied with care, since little is known on the
effect of formulated Trichoderma spp. and their repetitive applications
on soil microorganisms. Generally, the more specific the nutrient
supplied for the antagonist, the lower the chances of the emergence of
diseases that can use any excess of nutrients in the soil in their favour.
In the light of this, wood pellets were chosen to be applied as carriers
of T. atroviride SC1, which was isolated itself from hazelnut wood.
Beech, fir, and chestnut wood pellets were coated with a conidial
suspension of T. atroviride SC1, and our coating method was
successful, with a maximum accuracy of 69%, however, the coating
method can be improved by adding a biodegradable binder, and by
adapting a seed coating machine for example to enhance the final
results. Regardless, the coated pellets increased the population of
Trichoderma from 10* cfu/g of wood pellets to a maximum of 107 cfu/g
of wood pellets without the addition of a nitrogen source to moist
pellets, and to 10° cfu/g of wood pellets, when moist coated pellets were
supplied with nitrogen. Moreover, when applied in the soil, the carrier
enriched the bacterial population and increased its diversity, while the
fungal richness and diversity were affected in all treatments. Generally,
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the carrier had a selective effect on both bacterial and fungal
populations by increasing saprophytic microorganisms with cellulolytic
activity. Some of these microorganisms were reported to control some
soilborne diseases. These results suggest that beech wood pellets can be
used as carriers for Trichoderma atroviride SC1, however, the
development of a formulation requires testing it against several
pathogens in the soil as the choice of the pathogen is key to the success
of biocontrol. Moerover, the effectiveness of the formulation should be
tested in different rhizospheres to assess its possible effect on plants.
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Supplementary materials

The supplementary materials of each chapter are available at the
following address:

Chapter 3: Wood pellets as carriers of conidia of Trichoderma
atroviride SC1 for soil application

Beech,

Supplementary figure A. The swelling (SWp) and final increase in
the volume of beech (left position), chestnut (middle position), and
fir (right position) pellets after water absorption in a plastic container
with graduated rulers at the sides to measure the increase in the height
and the radius.
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Table Al: The mean cfu counts of Trichoderma atroviride SC1 per gram
of substrate grown on beech, fir, and chestnut pellets at DO as compared

to the control (Perlite).

Substrate

Perlite

Beech

Fir

Chestnut

Concentration of

C1?
(cfu/g)

1.34 x 10*
5.46 x 10°
6.10 x 10°

5.37 x 10°

C2?
(cfu/g)

9.95 x 10*
4.35 % 10*
491 x 10*

3.86 x 104

C3?
(cfu/g)

1.51 x 108
4.85 % 10°
6.80 x 103

2.20 x 10°

2 Coating concentrations C1 (105 cfu/mL of conidial suspension), C2
(10° cfu/mL of conidial suspension) and, C3 (107 cfu/mL of conidial

suspension)

Table A2: The mean cfu counts of Trichoderma atroviride SC1 per
gram of substrate grown on beech, fir, and chestnut pellets at D9 as

compared to the control (Perlite).

Substrate

Perlite

Beech

Fir

Chestnut

Concentration of

C1?
(cfu/g)

4.42 x 103
6.15 x 107
4.50 x 107

3.95 x 108

Cc2?
(cfu/g)

5.38 x 10°
6.26 x 107
4.50 x 107

3.27 x 108

C3®
(cfu/g)

8.56 x 10°
6.00 x 107
3.75 x 107

1.22 x 10°

2 Coating concentrations C1 (10° cfu/mL of conidial suspension), C2
(10° cfu/mL of conidial suspension) and, C3 (107 cfu/mL of conidial

suspension)
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Chapter 4: Effect of a wood-based carrier of Trichoderma atroviride SC1 on the microorganisms of the soil
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Fig. S1
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Recursive partitioning analysis of bacterial richness and diversity
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Figure S1: Recursive partitioning analysis of bacterial (a) and fungal (b) richness and diversity
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