We prove that strength and slice rank of homogeneous polynomials of degree d≥5 over an algebraically closed field of characteristic zero coincide generically. To show this, we establish a conjecture of Catalisano, Geramita, Gimigliano, Harbourne, Migliore, Nagel and Shin concerning dimensions of secant varieties of the varieties of reducible homogeneous polynomials. These statements were already known in degrees 2≤d≤7 and d=9.
Strength and slice rank of forms are generically equal / Ballico, Edoardo; Bik, Arthur; Oneto, Alessandro; Ventura, Emanuele. - In: ISRAEL JOURNAL OF MATHEMATICS. - ISSN 1565-8511. - 254:1(2023), pp. 275-291. [10.1007/s11856-022-2397-0]
Strength and slice rank of forms are generically equal
Ballico, Edoardo;Oneto, Alessandro;
2023-01-01
Abstract
We prove that strength and slice rank of homogeneous polynomials of degree d≥5 over an algebraically closed field of characteristic zero coincide generically. To show this, we establish a conjecture of Catalisano, Geramita, Gimigliano, Harbourne, Migliore, Nagel and Shin concerning dimensions of secant varieties of the varieties of reducible homogeneous polynomials. These statements were already known in degrees 2≤d≤7 and d=9.File | Dimensione | Formato | |
---|---|---|---|
2102.11549.pdf
accesso aperto
Tipologia:
Pre-print non referato (Non-refereed preprint)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
177.96 kB
Formato
Adobe PDF
|
177.96 kB | Adobe PDF | Visualizza/Apri |
s11856-022-2397-0.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
193.66 kB
Formato
Adobe PDF
|
193.66 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione