We prove that strength and slice rank of homogeneous polynomials of degree d≥5 over an algebraically closed field of characteristic zero coincide generically. To show this, we establish a conjecture of Catalisano, Geramita, Gimigliano, Harbourne, Migliore, Nagel and Shin concerning dimensions of secant varieties of the varieties of reducible homogeneous polynomials. These statements were already known in degrees 2≤d≤7 and d=9.

Strength and slice rank of forms are generically equal / Ballico, Edoardo; Bik, Arthur; Oneto, Alessandro; Ventura, Emanuele. - In: ISRAEL JOURNAL OF MATHEMATICS. - ISSN 1565-8511. - 254:1(2023), pp. 275-291. [10.1007/s11856-022-2397-0]

Strength and slice rank of forms are generically equal

Ballico, Edoardo;Oneto, Alessandro;
2023-01-01

Abstract

We prove that strength and slice rank of homogeneous polynomials of degree d≥5 over an algebraically closed field of characteristic zero coincide generically. To show this, we establish a conjecture of Catalisano, Geramita, Gimigliano, Harbourne, Migliore, Nagel and Shin concerning dimensions of secant varieties of the varieties of reducible homogeneous polynomials. These statements were already known in degrees 2≤d≤7 and d=9.
2023
1
Ballico, Edoardo; Bik, Arthur; Oneto, Alessandro; Ventura, Emanuele
Strength and slice rank of forms are generically equal / Ballico, Edoardo; Bik, Arthur; Oneto, Alessandro; Ventura, Emanuele. - In: ISRAEL JOURNAL OF MATHEMATICS. - ISSN 1565-8511. - 254:1(2023), pp. 275-291. [10.1007/s11856-022-2397-0]
File in questo prodotto:
File Dimensione Formato  
2102.11549.pdf

accesso aperto

Tipologia: Pre-print non referato (Non-refereed preprint)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 177.96 kB
Formato Adobe PDF
177.96 kB Adobe PDF Visualizza/Apri
s11856-022-2397-0.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 193.66 kB
Formato Adobe PDF
193.66 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/335075
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact