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STRENGTH AND SLICE RANK OF FORMS ARE GENERICALLY EQUAL

EDOARDO BALLICO, ARTHUR BIK, ALESSANDRO ONETO, AND EMANUELE VENTURA

Abstract. We prove that strength and slice rank of homogeneous polynomials of degree d ≥ 5 over an
algebraically closed field of characteristic zero coincide generically. To show this, we establish a conjecture
of Catalisano, Geramita, Gimigliano, Harbourne, Migliore, Nagel and Shin concerning dimensions of secant
varieties of the varieties of reducible homogeneous polynomials. These statements were already known in
degrees 2 ≤ d ≤ 7 and d = 9.

1. Introduction

Ananyan and Hochster [AH20a] introduced the notion of strength of a polynomial to solve a famous conjecture
by Stillman on the existence of a uniform bound, independent on the number of variables, for the projective
dimension of a homogeneous ideal of a polynomial ring. Recently, polynomial strength and related questions
have been intensively investigated [AH20b, BB+21, BV20, BDE19, DES17, ESS20, KZ18].

Let k be an algebraically closed field of characteristic zero, let n ≥ 1 be an integer and let

S =
⊕

d≥0Sd := k[x0, . . . , xn]

be the standard graded polynomial ring in n + 1 variables over k. So the elements of Sd are homogeneous
polynomials, also called forms, of degree d. Fix an integer d ≥ 2 and let f ∈ Sd be a degree-d form.

Definition 1.1. The strength of f is the minimal integer r ≥ 0 for which there exists a decomposition

f = g1 · h1 + . . .+ gr · hr

where g1, h1, . . . , gr, hr are forms of positive degree. We denote it by str(f).

Computing the strength of a given polynomial is a very difficult task. Hence, a natural problem is to
determine the strength of a general homogeneous polynomial. In [BO20], A.B. and A.O. noticed that a
conjectural answer to this problem was implicitly given in [CG+19, Remark 7.7] where the authors study
dimensions of secant varieties of the varieties of reducible forms. In particular, it was conjectured that the
strength of a general form coincides with its slice rank; see [BO20, Conjecture 1.1]. Recall that the value of
the slice rank of a general form is classically known; see Remark 1.5.

Definition 1.2. The slice rank of f is the minimal integer r ≥ 0 for which there exists a decomposition

f = ℓ1 · h1 + . . .+ ℓr · hr

where ℓ1, . . . , ℓr are linear forms and h1, . . . , hr are forms of degree d− 1. We denote it by sl. rk(f).

Conjecture 1.3 ([BO20, Conjecture 1.1]). The strength and the slice rank of a general form in Sd are equal.

So far, this conjecture has been established in the following cases: when the degree d is larger than 3
2n+ 1

2
[Sza96], when twice the general slice rank is at most n+ 2 [CCG08] and for d ≤ 7 and d = 9 [BO20].

The aim of this paper is to establish Conjecture 1.3, thereby determining the strength of a general form, by
proving the stronger conjecture from [CG+19, Remark 7.7] which we also state below.
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Geometric formulation of the problem. For an integer 1 ≤ j ≤ d/2, we consider the variety of forms

with a degree-j factor Xj := {[g · h] | g ∈ PSj , h ∈ PSd−j} ⊆ PSd. The union of these varieties is the

variety of reducible forms Xred :=
⋃⌊d/2⌋

j=1 Xj . For an integer r ≥ 1, the rth secant variety of Xred is the
Zariski-closure

σr(Xred) := {[f ] ∈ PSd | f = f1 + . . .+ fr, [f1], . . . , [fr] ∈ Xred}

of the union of all linear spaces spanned by r points on Xred. Since Xred is reducible, we can describe its rth
secant variety as

σr(Xred) =
⋃

1≤a1,...,ar≤⌊d/2⌋

Ja1,...,ar

where

Ja1,...,ar
:= J(Xa1

, . . . , Xar
) = {[f ] ∈ PSd | f = f1 + . . .+ fr, [f1] ∈ Xa1

, . . . , [fr] ∈ Xar
}

is the join of the varieties Xa1
, . . . , Xar

. Now, the general slice rank and strength are

sl. rk◦d,n := min{r ∈ Z≥0 | σr(X1) = PSd} and str◦d,n := min{r ∈ Z≥0 | σr(Xred) = PSd}.

So Conjecture 1.3 is implied by the following stronger conjecture.

Conjecture 1.4 ([CG+19, Remark 7.7]). For each integer r ≥ 1, we have dimσr(Xred) = dim σr(X1).

Remark 1.5. Recall that the value of the general slice rank is classically known as it equals the minimal
codimension of a linear space contained in a general hypersurface. If d ≥ 3, then we have

sl. rk◦d,n := min

{

r ∈ Z≥0

∣

∣

∣

∣

r(n + 1− r) ≥

(

n− r + d

d

)}

and

codimPSd
σr(X1) =

(

n− r + d

d

)

− r(n + 1− r)

for all integers 1 ≤ r < sl. rk◦d,n by [Har92, Theorem 12.8]. Note that sl. rk◦d,n ≤ n. So we can (and often

will) relax the assumption r < sl. rk◦d,n to r < n. ♣

The classical approach to computing dimensions of secant and join varieties is via Terracini’s Lemma [Ter11]
which asserts that, if Y1, . . . , Yr ⊆ PN are projective varieties, q1 ∈ Y1, . . . , qr ∈ Yr are general points and
p ∈ 〈q1, . . . , qr〉 is general, then

TpσrJ(Y1, . . . , Yr) = 〈Tq1Y1, . . . , TqrYr〉;

see e.g. [BC+18, Lemma 1] for a recent presentation. By direct computation, it is easy to observe that the
tangent space to Xa at a general point [g ·h], with deg(g) = a and deg(h) = d− a, is given by P(g, h)d where
(g, h)d := (g, h) ∩ Sd is the degree-d homogeneous part of the ideal generated by g and h. Therefore

(1) dim Ja1,...,ar
= dim(g1, h1, . . . , gr, hr)d − 1,

where gi, hi are general forms with deg(gi) = ai and deg(hi) = d−ai. The codimensions of the homogeneous
parts of a homogeneous ideal are encoded in its Hilbert function, whose generating power series is called the
Hilbert series. These are among the most studied algebraic invariants of a homogeneous ideal. The Hilbert
series of an ideal generated by general forms is prescribed by Fröberg’s famous conjecture; see [Frö85]. In
[CCG08, Theorem 5.1], the authors used the known cases of Fröberg’s conjecture to deduce the integers
d, n, r, a1, . . . , ar with 2r ≤ n+2 for which Ja1,...,ar

= PSd. Similarly, in [CG+19, Theorem 7.4], the authors
showed that Conjecture 1.4 holds if 2r ≤ n+1. The strength of the general form corresponds to the minimal
codimension of a complete intersection inside a general hypersurface. This is the perspective of [Sza96,
Corollary A], where the author shows that Conjecture 1.3 holds if d ≥ 3

2n+ 1
2 .

In [BO20], A.B. and A.O. proved the following results.

Theorem 1.6. Let d ∈ {3, 4, 5, 6, 7, 9} and n, r ≥ 1 be integers such that r < sl. rk◦d,n. Then Conjecture 1.4

holds. Furthermore, unless (d, n, r) = (4, 3, 2), the subvariety σr(X1) is the unique component of σr(Xred) of
maximal dimension. If (d, n, r) = (4, 3, 2), the codimensions of σr(X1), J(X1, X2) and σr(X2) each equal 1.

Corollary 1.7. When d ≤ 7 and d = 9, the general form of Sd has strength equal to its slice rank.
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The main results of this paper are the following complementing theorem and corollary.

Theorem 1.8. Let d ≥ 5 and n, r ≥ 1 be integers such that r < sl. rk◦d,n. Then Conjecture 1.4 holds.

Furthermore, the subvariety σr(X1) is the unique component of σr(Xred) of maximal dimension.

Corollary 1.9. The general form of Sd has strength equal to its slice rank.

Structure of the paper. In Section 2, we find a numerical upper bound for the dimension of Ja1,...,ar
,

which is an equality for a1 = . . . = ar = 1 and r < sl. rk◦d,n. In Section 3, we study this upper bound as
a1, . . . , ar vary and prove the main result.

Acknowledgements. E.B. is partially supported by MIUR and GNSAGA of INdAM (Italy). E.V. is
supported by Vici Grant 639.033.514 of Jan Draisma from the Netherlands Organisation for Scientific Re-
search.

2. An upper bound on the dimensions

Let d, n ≥ 2, r < n and a1, . . . , ar ≤ d/2 be positive integers. We consider the subset

J◦
a1,...,ar

:=

{

f ∈ PSd

∣

∣

∣

∣

∣

f =

r
∑

i=1

gi · hi, gi ∈ Sai
, hi ∈ Sd−ai

, (g1, . . . , gr) is a complete intersection

}

of Ja1,...,ar
. Let CIn(a1, . . . , ar) be the set of complete intersections in Pn of codimension r defined by the

intersection of hypersurfaces of degrees a1, . . . , ar.

In order to give an upper bound on the dimension of Ja1,...,ar
, we first observe that the subset J◦

a1,...,ar
is dense

and then we bound the dimension of this subset by parametrizing it via the space of complete intersections
CIn(a1, . . . , an) whose dimension can be computed explicitely.

Lemma 2.1. The subset J◦
a1,...,ar

is dense in Ja1,...,ar
.

Proof. Let [f ] ∈ PSd be a form which admits a strength decomposition f =
∑r

i=1 gihi with deg(gi) = ai. It

is enough to show that f ∈ J◦
a1,...,ar

. Consider general forms (u1, . . . , ur) ∈ Sa1
× · · · × Sar

. By generality,
since r ≤ n, the ui’s form a regular sequence. Since being a regular sequence is an open condition in the
Zariski topology, there exists an ε > 0 such that

(su1 + g1, . . . , sur + gr) ∈ Sa1
× · · · × Sar

is a regular sequence for all s ∈ (0, ε] ∩Q.

For s ∈ (0, ε]∩Q, define fs :=
∑r

i=1(gi + sui)hi ∈ J◦
a1,...,ar

. Then lims→0 fs = f and hence f ∈ J◦
a1,...,ar

. �

Lemma 2.2. We have dim Ja1,...,ar
≤ dimCIn(a1, . . . , ar) +

(

n+d
d

)

− coeffd

(∏
r
i=1

(1−tai )

(1−t)n+1

)

− 1.

Proof. If I = (g1, . . . , gr) ⊆ S is an ideal defined by a regular sequence of degrees a1, . . . , ar, then

dim (S/I)d = coeffd

(∏r
i=1(1− tai)

(1 − t)n+1

)

.

Hence

dim (g1, . . . , gr)d =

(

n+ d

d

)

− coeffd

(∏r
i=1(1− tai)

(1 − t)n+1

)

=: N + 1.

From Lemma 2.1, we derive that dim J◦
a1,...,ar

= dim Ja1,...,ar
. Now, let E be the projective bundle on

CIn(a1, . . . , ar) whose fiber at a point Y ∈ CIn(a1, . . . , ar) is the projective space P(IY )d ∼= PN . Then

dimE = dimCIn(a1, . . . , ar) +N.

We consider the morphism E −→ J◦
a1,...,ar

given by (Y, f) 7→ f . This map is surjective by definition of E
and J◦

a1,...,ar
. Thus

dim Ja1,...,ar
= dim J◦

a1,...,ar
≤ dimE = dimCIn(a1, . . . , ar) +N,

which gives the desired upper bound. �
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Now, we compute the dimension of CIn(a1, . . . , ar).

Remark 2.3. The Hilbert polynomial Pa1,...,ar
(t) of a complete intersection is uniquely determined by the

degrees defining it since it is computed from the Koszul complex. In [Ser06, Section 4.6.1], it is shown
that CIn(a1, . . . , ar) is parametrized by a Zariski-open subset of HilbPa1,...,ar (t)

(Pn). The latter is smooth at

[Y ] ∈ CIn(a1, . . . , ar) and [Ser06, Theorem 4.3.5] yields

T[Y ]HilbPa1,...,ar (t)
(Pn) = H0(NY/Pn).

So dimCIn(a1, . . . , ar) = h0(NY/Pn), i.e., the dimension of the space of global sections of the normal bundle
of Y . ♣

Proposition 2.4. We have

dimCIn(a1, . . . , ar) =
r
∑

i=1

coeffai

(∏r
i=1(1 − tai)

(1− t)n+1

)

.

Proof. Let Y ∈ CIn(a1, . . . , ar) be a general point. By Remark 2.3, dimCIn(a1, . . . , ar) = h0(NY/Pn). Since

Y is a complete intersection, its normal bundle is NY/Pn =
⊕r

i=1 OY (ai). Hence, the statement follows from
the following equality:

h0(OY (ai)) = coeffai

(∏r
i=1(1− tai)

(1− t)n+1

)

.

To see that this equality holds, first notice that Y is projectively normal [Har77, Exercise II.8.4], because
it is a smooth complete intersection, by the generality assumption. So, for all k ≥ 0, the restriction map
H0(OPn(k)) → H0(OY (k)) is surjective. From the long exact sequence in cohomology of the short exact
sequence

0 → IY (k) → OPn(k) → OY (k) → 0,

one has h1(IY (k)) = 0 for all k ≥ 0. Since HFS/IY (d) = coeffd

(∏r
i=1

(1−tai )

(1−t)n+1

)

, where IY is the homogeneous

ideal of Y , the claimed equality follows. �

Lemma 2.5. For integers e ≥ 0 and b1, . . . , bs ≥ 1, we have the following identity:

coeffe

(∏s
i=1(1− tbi)

(1 − t)n+1

)

=
∑

I⊆{1,...,s}

(−1)#I

(

n+ e−
∑

i∈I bi
n

)

.

Here
(

a
b

)

= 0 whenever a < b.

Proof. Left to the reader. �

Theorem 2.6. Let r < n and a1, . . . , ar ≤ d/2 be positive integers and take ℓd/2 := #{i | ai = d/2}. Then

dim Ja1,...,ar
≤

(

n+ d

d

)

− coeffd

(∏r
i=1(1− tai)(1− td−ai)

(1− t)n+1

)

+

(

ℓd/2
2

)

− 1.

When d ≥ 3, a1 = . . . = ar = 1 and r < sl. rk◦d,n, equality holds.

Proof. First, we consider the case where d ≥ 3, a1 = . . . = ar = 1. In this case, by (1), it is enough to
compute the codimension of (ℓ1, . . . , ℓr, g1, . . . , gr)d which corresponds to

dimSd/(ℓ1, . . . , ℓr, g1, . . . , gr)d = dimS ′
d/(g1, . . . , gr)d

where S ′ ∼= S/(ℓ1, . . . , ℓr) is a polynomial ring in n+ 1− r variables and gi is the class of gi in S ′. Since the
gi are general of degree d− 1, the latter dimension is obtained by [HL87, Theorem 1] which states that

codimPSd
Ja1,...,ar

= coeffd

(

(1− td−1)r

(1− t)n+1−r

)

.
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For the first statement, by Lemma 2.2 and Proposition 2.4, it is enough to prove that
r
∑

j=1

coeffaj

(∏r
i=1(1− tai)

(1− t)n+1

)

+

(

n+ d

d

)

− coeffd

(∏r
i=1(1− tai)

(1− t)n+1

)

− 1 =

(

n+ d

d

)

− coeffd

(∏r
i=1(1− tai)(1 − td−ai)

(1 − t)n+1

)

+

(

ℓd/2
2

)

− 1

or, equivalently, to prove that

(2) coeffd

(∏r
i=1(1− tai)(1 − td−ai)

(1 − t)n+1

)

= coeffd

(∏r
i=1(1− tai)

(1− t)n+1

)

−
r
∑

j=1

coeffaj

(∏r
i=1(1− tai)

(1− t)n+1

)

+

(

ℓd/2
2

)

.

We analyze both sides of this equality. For the left hand side, we use Lemma 2.5 with e = d, s = 2r and
(bi, br+i) = (ai, d − ai) for i = 1, . . . , r. Since ai ≤ d/2 for all i, the summand corresponding to subset
I ⊆ {1, . . . , 2r} is zero whenever the intersection I ∩ {r + 1, . . . , 2r} has more than two elements. The
remaining summands correspond to subsets I such that I ⊆ {1, . . . , r}, I = I ′ ∪ {r + j} for I ′ ⊆ {1, . . . , r}
and j ∈ {1, . . . , r} or I = I ′ ∪ {r+ j, r+ k} for I ′ ⊆ {1, . . . , r} and distinct j, k ∈ {1, . . . , r}. In the last case,
the summand is zero unless aj = ak = d/2 and I ′ = ∅. So we get

∑

I⊆{1,...,r}

(−1)#I

(

n+ d−
∑

i∈I ai
n

)

+

r
∑

j=1

∑

I′⊆{1,...,r}

(−1)#I′+1

(

n+ aj −
∑

i∈I′ ai
n

)

+

(

ℓd/2
2

)

.

For the right hand side of (2), we use Lemma 2.5 with s = r and bi = ai for i = 1, . . . , r and varying e. We
get

∑

I⊆{1,...,r}

(−1)#I

(

n+ d−
∑

i∈I ai
n

)

−
r
∑

j=1

∑

I⊆{1,...,r}

(−1)#I

(

n+ aj −
∑

i∈I ai
n

)

+

(

ℓd/2
2

)

.

Hence (2) holds. �

3. Numerical computations

Fix an integer d ≥ 5. Let n, r ≥ 1 and 1 ≤ a1, . . . , ar ≤ d/2 be integers such that r < sl. rk◦d,n. Our goal is
to prove that

dim Ja1,...,ar
≤ dimσr(X1)

holds, and that we have equality if and only if a1 = . . . = ar = 1. Write ℓj := #{i ∈ {1, . . . , r} | ai = j} for
all j ∈ R. By Theorem 2.6, it suffices to prove that, for fixed n, r, the value of

F (a1, . . . , ar) := coeffd

(∏r
i=1(1− tai)(1− td−ai)

(1− t)n+1

)

−

(

ℓd/2
2

)

= coeffd

(

∏r
i=1(1− tai)

(1− t)n+1

(

1−
r
∑

i=1

td−ai

))

is minimal exactly when a1 = . . . = ar = 1. We first prove that F (a1, . . . , ar) goes down when replacing all
ai > 2 by 2. Afterwards, we deal with the cases where a1, . . . , ar ∈ {1, 2}. Take ϑ := max{a1, . . . , ar} ≤ d/2.

3.1. The case ϑ > 2. Write Pk := 1 + t+ . . .+ tk for k ≥ 0 and P∞ := 1/(1− t).

Lemma 3.1. Let s, ℓ, k1, . . . , ks ≥ 0 be integers. Then the coefficients of the power series

P ℓ+1
∞ Pk1

· · ·Pks

form a weakly increasing series.

Proof. We have

P ℓ+1
∞ =

∞
∑

k=0

(

ℓ+ k

k

)

tk

and so the lemma holds when s = 0. When f is a series whose coefficients increase weakly and k ≥ 0 is an
integer, then the same holds for the series fPk. Hence the lemma holds for all s using induction. �

We will often apply the next lemma with g = Pa and h = Pb, where a ≥ b ≥ 0 are integers.

Lemma 3.2. Let f, g, h be series whose coefficients are all nonnegative and suppose that coeffk(g) ≥ coeffk(h)
for all k ≥ 0. Then coeffk(fg) ≥ coeffk(fh) for all k ≥ 0.
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Theorem 3.3. Assume that ar = ϑ > 2. Then F (a1, . . . , ar) > F (a1, . . . , ar−1, ar − 1).

Proof. Take

f :=

∏r−1
i=1 (1− tai)

(1− t)n
.

Then we have

F (a1, . . . , ar) = coeffd

(

∏r
i=1(1− tai)

(1− t)n+1

(

1−
r
∑

i=1

td−ai

))

= coeffd

(

fPϑ−1

(

1−
r
∑

i=1

td−ai

))

and similarly

F (a1, . . . , ar−1, ar − 1) = coeffd

(

fPϑ−2

((

1−
r
∑

i=1

td−ai

)

+ td−ϑ(1− t)

))

.

We need to show that the difference

coeffd

(

fPϑ−1

(

1−
r
∑

i=1

td−ai

))

− coeffd

(

fPϑ−2

((

1−
r
∑

i=1

td−ai

)

+ td−ϑ(1− t)

))

is positive. This difference equals

coeffd

(

f

(

tϑ−1

(

1−
r
∑

i=1

td−ai

)

− td−ϑ + td−1

))

= coeffd−ϑ+1(f)− ℓϑ−1 − (ℓϑ − 1) coeff1(f)− coeffϑ(f)

= coeffd−ϑ+1(f(1− td−2ϑ+1))− ℓϑ−1 − (ℓϑ − 1)(n− ℓ1).

Take

g := Pn−r
∞ Pd−2ϑ

r−1
∏

i=1

Pai−1 =

∏r−1
i=1 (1 − tai)

(1− t)n
(1 − td−2ϑ+1) = f(1− td−2ϑ+1).

By Lemma 3.1, the coefficients of g are weakly increasing. So

coeffd−ϑ+1(g) ≥ coeffϑ+1(g).

Write m = n− ℓ1. As ℓ1 + . . .+ ℓϑ = r < sl. rk◦d,n ≤ n, we have m > ℓ2 + . . .+ ℓϑ. Note that

coeffϑ+1(g) ≥ coeffϑ+1

(

Pn−r
∞ Pd−2ϑP

r−ℓ1−ℓϑ
1 P ℓϑ−1

ϑ−1

)

≥ coeffϑ+1

(

P∞Pm−ℓϑ−1
1 P ℓϑ−1

ϑ−1

)

= coeffϑ+1

(

P ℓϑ
∞ Pm−ℓϑ−1

1 (1− tϑ)ℓϑ−1
)

= coeffϑ+1

(

P ℓϑ
∞ Pm−ℓϑ−1

1

)

− (ℓϑ − 1)(m− 1)

≥ coeff4

(

P ℓϑ
∞ Pm−ℓϑ−1

1

)

− (ℓϑ − 1)(m− 1)

So it suffices to prove that

(3) coeff4

(

P ℓϑ
∞ Pm−ℓϑ−1

1

)

> ℓϑ−1 + (ℓϑ − 1)(2m− 1)

for all ℓϑ−1 ≥ 0, ℓϑ ≥ 1 and m > ℓϑ−1 + ℓϑ. Note that

ℓϑ−1 + (ℓϑ − 1)(2m− 1) ≤ (m− ℓϑ − 1) + (ℓϑ − 1)(2m− 1) = 2ℓϑ(m− 1)−m.

We have

coeff4

(

P ℓϑ
∞ Pm−ℓϑ−1

1

)

≥ coeff4

(

P∞Pm−2
1

)

=

4
∑

k=0

(

m− 2

k

)

which is strictly greater than 2(m− 1)(m− 1)−m≥ 2ℓϑ(m− 1)−m for m ≥ 10. This leaves the case m ≤ 9,
where we verified that (3) holds by computer. This finishes the proof. �

By Theorem 3.3, it suffices to focus on the cases where a1, . . . , ar ∈ {1, 2}. In these cases, we will regard
F (a1, . . . , ar) as a function Aℓ1,ℓ2 (defined below) depending only on ℓ1 and ℓ2.
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3.2. The case ϑ = 2. Recall that d ≥ 5. We define

Aℓ1,ℓ2 := coeffd

(

(1 − t)ℓ1(1 − t2)ℓ2

(1− t)n+1

(

1− ℓ1t
d−1 − ℓ2t

d−2
)

)

for ℓ1, ℓ2 ≥ 0,

Bℓ1,ℓ2 := Aℓ1−1,ℓ2+1 −Aℓ1,ℓ2 for ℓ1 ≥ 1 and ℓ2 ≥ 0,

Cℓ1,ℓ2 := Bℓ1−1,ℓ2+1 −Bℓ1,ℓ2 for ℓ1 ≥ 2 and ℓ2 ≥ 0,

Dℓ1,ℓ2 := Cℓ1−1,ℓ2+1 − Cℓ1,ℓ2 for ℓ1 ≥ 3 and ℓ2 ≥ 0 and

Eℓ1,ℓ2 := Dℓ1−1,ℓ2+1 −Dℓ1,ℓ2 for ℓ1 ≥ 4 and ℓ2 ≥ 0.

The goal of this subsection is to prove the following theorem.

Theorem 3.4. We have Aℓ1,ℓ2 > Aℓ1+ℓ2,0 for all integers ℓ1 ≥ 0 and ℓ2 ≥ 1 such that ℓ1 + ℓ2 < sl. rk◦d,n.

We write m = n− ℓ1 and we assume that ℓ1 + ℓ2 < n. So ℓ2 < m. In particular, we have m ≥ 1.

Lemma 3.5. Let ℓ1, ℓ2 ≥ 0 be integers such that ℓ1 + ℓ2 < n.

(a) We have

Aℓ1,ℓ2 = coeffd(P
m+1−ℓ2
∞ P ℓ2

1 )− ℓ2

(

m+ 2

2

)

− ℓ1(m+ 1) + ℓ22.

(b) When ℓ1 ≥ 1, we have

Bℓ1,ℓ2 = coeffd−1(P
m+1−ℓ2
∞ P ℓ2

1 )−

(

m+ 2

2

)

− ℓ2m− ℓ1 + 1.

(c) When ℓ1 ≥ 2, we have

Cℓ1,ℓ2 = coeffd−2(P
m+1−ℓ2
∞ P ℓ2

1 )− 2(m+ 1)− ℓ2.

(d) When ℓ1 ≥ 3, we have

Dℓ1,ℓ2 = coeffd−3(P
m+1−ℓ2
∞ P ℓ2

1 )− 3.

(e) When ℓ1 ≥ 4, we have

Eℓ1,ℓ2 = coeffd−4(P
m+1−ℓ2
∞ P ℓ2

1 ).

Proof. These calculations are straightforward. �

Lemma 3.6. Let ℓ1 ≥ 1 and ℓ2 ≥ 0 be integers such that ℓ1 + ℓ2 < n.

(a) When ℓ1 < sl. rk◦d,n, we have Bℓ1,0 > 0.

(b) When ℓ1 ≥ 2, we have Cℓ1,ℓ2 ≥ 0.

(c) When ℓ1 ≥ 3, we have Dℓ1,ℓ2 ≥ 0.

(d) When ℓ1 ≥ 4, we have Eℓ1,ℓ2 ≥ 2.

Proof. We prove the parts of the lemma in reverse order.

(d). We have Eℓ1,ℓ2 = coeffd−4(P
m+1−ℓ2
∞ P ℓ2

1 ) ≥ coeff1(P
m+1
1 ) = m+ 1 ≥ 2.

(c). By (d), we have Dℓ1,ℓ2 ≥ Dℓ1+ℓ2,0. So we may assume that ℓ2 = 0. Now, we have

Dℓ1,0 = coeffd−3(P
m+1
∞ )− 3 =

(

m+ d− 3

d− 3

)

− 3 ≥

(

1 + d− 3

d− 3

)

− 3 = (d− 2)− 3 ≥ 0.

(b). By (c), we have Cℓ1,ℓ2 ≥ Cℓ1+ℓ2,0. So we may assume that ℓ2 = 0. Now, we have

(m+ 1) ≥ 2 and
(m+ d− 2) · · · (m+ 2)

(d− 2)!
− 2 ≥

(1 + d− 2) · · · (1 + 2)

(d− 2)!
− 2 =

d− 1

2
− 2 ≥ 0

and so
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Cℓ1,0 = coeffd−2(P
m+1
∞ )−2(m+1) =

(

m+ d− 2

d− 2

)

−2(m+1) = (m+1)

(

(m+ d− 2) · · · (m+ 2)

(d− 2)!
− 2

)

≥ 0.

(a). By (b), Bℓ1,ℓ2 ≥ Bℓ1+ℓ2,0. So we may assume ℓ2 = 0. Since ℓ1 < sl. rk◦d,n, we have ℓ1(m + 1) <
(

m+d
d

)

.
So d!ℓ1 < (m+ d) · · · (m+ 2). We get

d!Bℓ1,0 = d!

(

coeffd−1(P
m+1
∞ )−

(

m+ 2

2

)

− ℓ1 + 1

)

= d!

((

m+ d− 1

d− 1

)

−
m(m+ 3)

2

)

− d!ℓ1

> d!

((

m+ d− 1

d− 1

)

−
m(m+ 3)

2

)

− (m+ d) · · · (m+ 2)

= d(m+ d− 1) · · · (m+ 1)−
d!

2
m(m+ 3)− (m+ d) · · · (m+ 2)

= (m+ d− 1) · · · (m+ 2) (d(m+ 1)− (m+ d))−
d!

2
m(m+ 3)

= (m+ d− 1) · · · (m+ 2)(d− 1)m−
d!

2
m(m+ 3)

= m

(

(m+ d− 1) · · · (m+ 2)(d− 1)−
d!

2
(m+ 3)

)

.

So it suffices to prove that

c0 + c1m+ . . .+ cd−2m
d−2 := (m+ d− 1) · · · (m+ 2)(d− 1)−

d!

2
(m+ 3) ≥ 0

We have

c1 = (d− 1) coeff1 ((m+ d− 1) · · · (m+ 2))−
d!

2

= (d− 1)

d−1
∑

i=2

(d− 1)!

i
−

d!

2

= (d− 1)!

(

d−1
∑

i=2

d− 1

i
−

d

2

)

≥ (d− 1)!

(

d− 1

2
+

d− 1

d− 1
−

d

2

)

> 0

and ci > 0 for i = 2, . . . , d− 3. Hence

c0 + c1m+ . . .+ cd−2m
d−2 ≥ c0 + c1 + . . .+ cd−2

= (1 + d− 1) · · · (1 + 2)(d− 1)−
d!

2
(1 + 3)

=
d!

2
(d− 1)−

d!

2
· 4 =

d!

2
(d− 5) ≥ 0.

This finishes the proof. �

Theorem 3.4 now follows easily.

Proof of Theorem 3.4. By parts (a) and (b) of Lemma 3.6, we have

Aℓ1,ℓ2 −Aℓ1+1,ℓ2−1 = Bℓ1+1,ℓ2−1 ≥ Bℓ1+ℓ2,0 > 0.

Repeating this, we find that

Aℓ1,ℓ2 > Aℓ1+1,ℓ2−1 > · · · > Aℓ1+ℓ2,0

as desired. �
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3.3. The conclusion of the proof.

Proof of Theorem 1.8. Let d ≥ 5, n, r ≥ 1 and 1 ≤ a1, . . . , ar ≤ d/2 be integers such that r < sl. rk◦d,n. We
need to show that

dim Ja1,...,ar
≤ dimσr(X1)

holds, and that we have equality only for a1 = . . . = ar = 1. By Theorem 2.6, it suffices to prove that

F (a1, . . . , ar)

is minimal exactly when a1 = . . . = ar = 1. By Theorem 3.3, it suffices to do this in the case where
a1, . . . , ar ∈ {1, 2}. Here, we have F (a1, . . . , ar) = Aℓ1,ℓ2 and so the statement holds by Theorem 3.4. �
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