We give a complete characterization of all isoperimetric sets contained in a domain of the Euclidean plane, that is bounded by a Jordan curve and satisfies a no neck property. Further, we prove that the isoperimetric profile of such domain is convex above the volume of the largest ball contained in it, and that its square is globally convex.

The isoperimetric problem in 2d domains without necks / Leonardi, Gian Paolo; Saracco, Giorgio. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 1432-0835. - ELETTRONICO. - 2022/61:2(2022), pp. 5601-5623. [10.1007/s00526-021-02153-9]

The isoperimetric problem in 2d domains without necks

Leonardi, Gian Paolo;Saracco, Giorgio
2022-01-01

Abstract

We give a complete characterization of all isoperimetric sets contained in a domain of the Euclidean plane, that is bounded by a Jordan curve and satisfies a no neck property. Further, we prove that the isoperimetric profile of such domain is convex above the volume of the largest ball contained in it, and that its square is globally convex.
2022
2
Leonardi, Gian Paolo; Saracco, Giorgio
The isoperimetric problem in 2d domains without necks / Leonardi, Gian Paolo; Saracco, Giorgio. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 1432-0835. - ELETTRONICO. - 2022/61:2(2022), pp. 5601-5623. [10.1007/s00526-021-02153-9]
File in questo prodotto:
File Dimensione Formato  
2022 - The isoperimetric problem in 2d domains without necks - Leonardi, Saracco.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 608.18 kB
Formato Adobe PDF
608.18 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/330554
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact