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Abstract
We give a complete characterization of all isoperimetric sets contained in a domain of the
Euclidean plane, that is bounded by a Jordan curve and satisfies a no neck property. Further,
we prove that the isoperimetric profile of such domain is convex above the volume of the
largest ball contained in it, and that its square is globally convex.

Mathematics Subject Classification Primary: 49Q10. Secondary: 35J93 · 49Q20

1 Introduction

Given a bounded, open set � ⊂ R
n , n ≥ 2, we consider the isoperimetric problem among

Borel subsets of �, that is, the minimization of the perimeter P(E) of a Borel set E ⊂ �

subject to a volume constraint |E | = V , where by perimeter we mean the distributional one
in the sense of Caccioppoli–De Giorgi, and where |E | denotes the Lebesgue measure of E
and V ∈ [0, |�|]. Moreover, we are interested in the properties of the total isoperimetric
profile

J (V ) := inf { P(E) : |E | = V , E ⊂ � } , (1.1)

as a function defined on [0, |�|]. If R� denotes the inradius of� (i.e., the radius of the largest
ball contained in �) and if ωn represents the Lebesgue measure of the unit ball in R

n , then
the classical isoperimetric inequality in R

n implies that the unique minimizers for volumes
0 < V ≤ ωn Rn

� are balls, up to null sets. Thus, finding and characterizing minimizers, as
well as computing J (V ), is a trivial problem whenever V ≤ ωn Rn

�, while it becomes a
challenging problem for larger V .
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By well-known compactness and semicontinuity properties of the perimeter, proving the
existence of minimizers is a quite straightforward task. An alternative approach to solve (1.1)
is through the minimization of the unconstrained problem

Fκ [E] := P(E) − κ|E | , (1.2)

where κ > 0 is a fixed constant and E ⊂ �. The functional Fκ is usually referred to as
the prescribed mean curvature functional, since any nontrivial minimizer Eκ is such that
∂Eκ ∩� is analytic up to a closed singular set of Hausdorff dimension at most n−8, and has
constant mean curvature equal to (n − 1)−1κ . Whenever a set Eκ minimizes Fκ , it is as well
a minimizer of (1.1) for the prescribed volume V = |Eκ |. Constructing minimizers of (1.1)
via the unconstrained problem (1.2) is a viable strategy only when the constant κ is chosen
greater than or equal to the Cheeger constant of �

h� := inf

{
P(E)

|E | : E ⊂ �

}
. (1.3)

Indeed,when κ < h� the functional (1.2) has the empty set as the uniqueminimizer, therefore
we gain no useful information in this case. In fact, this program has been carried out in [2] in
the n-dimensional case for convex, C1,1 regular sets �, and in our recent paper [21] in the 2d
case for a special class of simply-connected domains that includes all (open, bounded) convex
sets. Any minimizer of (1.3) is referred to as a Cheeger set of �. In the settings of [2,21],
among all Cheeger sets of�, the ones with least and greatest volumes (the so-calledminimal
and maximal Cheeger sets) are unique, and we shall denote them, respectively, by Em

h�
and

EM
h�

(in the setting of [2] it is a consequence of [1], while we refer to [21, Theorem 2.3] for
the other setting). Then, it is shown in [2,21] that for all volumes V greater than or equal to
the volume of the minimal Cheeger set |Em

h�
|, one can find a curvature κ and a minimizer

Eκ of (1.2) such that |Eκ | = V , and thus P(Eκ ) = J (V ).
Unless � is itself a ball, one always has the strict inequality ωn Rn

� < |Em
h�

|, and one can
easily exhibit sets for which |Em

h�
| − ωn Rn

� is as big as one wishes, see Sect. 5 for some
examples in dimension n = 2. Thus, there is a possibly very wide range of volumes for which
we cannot tackle directly the isoperimetric problem through the unconstrained minimization
of Fκ for suitable values of κ . In particular, this approach fails because the functional Fκ

is uniquely minimized by the empty set for values κ < h�. However, by suitably shrinking
the class of competitors we can altogether avoid this problem. Namely, we consider the
minimization problem

inf{Fκ [E] := P(E) − κ|E | : E ∈ C(κ) } , (1.4)

where the class of competitors C(κ) is set as follows:

C(κ) =
{
E ⊂ � Borel , if κ > h� ,

E ⊂ � Borel s.t. |E | ≥ (n − 1)nωnκ
−n , if n−1

R�
≤ κ ≤ h� .

(1.5)

In principle, one could also consider a mean curvature κ
n−1 smaller than R�

−1, as long as

ωn(n − 1)nκ−n ≤ |�|, which ensures that C(κ) �= ∅. Nevertheless, the choice R−1
� ≤ κ

n−1
is key to get full information on the mean curvature of the minimizers, see Remark 3.3.

We shall thus consider theminimization problem (1.4), when� is a 2d set whose boundary
is a Jordan curve with zero 2-dimensional Lebesgue measure, and such that � has no necks
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of radius r for all r ≤ h−1
� (see Definition 2.1), which corresponds to the setting of our

previous paper [21]. In particular, for κ ≥ h� we recover the results1 of [21]. In the case
R−1

� ≤ κ < h�, the addition of a lower bound on the volume as an extra constraint prevents
the empty set, and in general any set of small volume, from being a minimizer. One of the
core results of this paper is Theorem 2.3, which shows that all minimizers of (1.4), for
any fixed κ ≥ R−1

� , are geometrically characterized as “suitable unions of balls of radius
κ−1 contained in �”. This characterization extends [21, Theorem 2.3], where it was proved
only for minimizers of Fκ with the least and the greatest volumes, and under the restrictive
assumption κ ≥ h�.

This geometric characterization allows us to find, for any given volume V ≥ πR2
�, a

curvature κ ≥ R−1
� and a minimizer Eκ of (1.4) such that |Eκ | = V . Hence, we can

characterize all minimizers of (1.1) and provide an extension of [36, Theorem 3.32], which
was proved only for convex sets in dimension n = 2. For the sake of completeness, we recall
that this latter result was not completely new at the time: the dual problem (maximize volume
under a perimeter constraint among subsets of a convex, 2d set) had been first discussed in
[5, Variant III] under the assumption of convexity of minimizers, which was later shown
to be redundant in [32] (for perimeters P ≤ P(�)) Additionally, the characterization [36,
Theorem 3.32] was known for triangles since the papers of Steiner [33,34], see also [8], and
for circumscribed polygons [22].

Our approach of building isoperimetric sets as minimizers of Fκ for a suitable κ also
allows us to prove some convexity properties of both the isoperimetric profile J , which we
show to be convex for V ≥ πR2

�, and its square J 2, which we show to be globally convex.
Besides the trivial fact that the total isoperimetric profile is concave up to V ≤ πR2

�, we are
not aware of any result in the literature concerning its convexity properties until the last year,
when few results were first proved. Indeed, in [7, Section 3] it was proved that a suitable
relaxation of (1.1) is convex, while in our previous paper [21, Section 6], we proved that,
for the same class of domains now under consideration, there exists a threshold volume V
(which is the volume of the minimal Cheeger set of�, |Em

h�
|), above which the isoperimetric

profile is convex. Essentially, here we prove that one can lower this threshold all the way
down to πR2

�. This finally means that J is convex for all volumes V ≥ πR2
�. In some sense,

the presence of the boundary of � as an obstacle forces the isoperimetric profile to switch
from concave to convex, in the range of volumes where the interaction between isoperimetric
sets and the obstacle ∂� becomes effective.

Finally, it is worth noting that our proof of convexity does not rely on knowing the shape
of minimizers, but rather on knowing that for all volumes above a certain threshold V one
can find isoperimetric sets as minimizers of Fκ for a suitable κ . Thanks to the results in
[2], we infer convexity of J above V = |Em

h�
| for n-dimensional, bounded, C1,1 regular,

convex sets�. If one could extend the arguments of [2], which exploit themaximumprinciple
and Korevaar’s comparison principle [13,14], to (n − 1)R−1

� ≤ κ < h�, then one would
immediately get the convexity of J for all V ≥ ωn Rn

� and the global convexity of its
n(n − 1)−1 power by following our same proofs.

It is interesting to compare these convexity properties, to those of the relative isoperimetric
profile

Jrel(V ) := inf { P(E;�) : |E | = V , E ⊂ � } ,

1 In this former paper we considered C(h�) = {E ⊂ �}, but we explicitly ruled out from our results the
empty set, considering as minimizers of (1.2) for κ = h� only those of (1.3). By changing the class of
competitors and considering (1.4), we now avoid treating κ = h� as a special case.
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that have been well studied: the first results in this direction were obtained for bounded,
C2,α regular, convex sets �, and it was shown that the profile is concave [35] and so it is its
n(n − 1)−1 power [15]; these have been later extended to bounded, convex bodies without
any further regularity assumption on their boundaries [24, Section 6], see also [27]; then to
arbitrary, unbounded, convex bodies [18].

The paper is structured as follows. In Sect. 2 we give the definition of the class of sets�we
will consider alongwith themain results. In Sect. 3 we prove several properties of minimizers
of (1.4) and then prove the geometric characterization of its minimizers. Section 4 deals with
the isoperimetric profile. Finally, Sect. 5 completes the paper with few explicit examples.

2 Main results

In this section we state and comment the main results of the paper. We start by the following
definition, first introduced in [16].

Definition 2.1 A set � has no necks of radius r , with r ∈ (0, R�] if the following condition
holds. If Br (x0) and Br (x1) are two balls of radius r contained in �, then there exists a
continuous curve γ : [0, 1] → � such that

γ (0) = x0, γ (1) = x1, Br (γ (t)) ⊂ �, ∀t ∈ [0, 1].
Before stating our main results, we need to recollect the following proposition which

introduces some of the notation that we will need later on. For the sake of completeness, we
recall that a Jordan curve is the image of a continuous and injective map 	 : S1 → R

2 and
a Jordan domain is the domain bounded by such a curve, which is well defined thanks to the
Jordan–Schoenflies Theorem. We also recall that for r ≤ R�, the set �r is the (closed) inner
parallel set of � at distance r , i.e.,

�r := { x ∈ � : dist(x; ∂�) ≥ r } .

The reach of a closed set A, which was introduced in the seminal paper [9] (see also the
recent book [26]) is defined as

reach(A) := sup{ r : ∀x ∈ A ⊕ Br , x has a unique projection onto A } ,

where ⊕ denotes theMinkowski sum, and we use the notation Br = Br (0).
In the next proposition we collect various results from [21] (in particular, see Proposi-

tion 2.1, Remark 4.2, Lemma 5.3, and Remark 5.4).

Proposition 2.2 Let� be a Jordan domainwith no necks of radius r . The following properties
hold:

(a) if �r is nonempty but has empty interior, then either it consists of a single point or there
exists an embedding γ : [0, 1] → R

2 of class C1,1, with curvature bounded by r−1, such
that γ ([0, 1]) = �r ;

(b) if int(�r ) �= ∅, then there exist two (possibly empty) families 
1
r and 
2

r of embedded
curves contained in�r with the following properties. For each i = 1, 2 and each γ ∈ 
i

r ,

(i) γ : [0, 1] → �r is nonconstant and of class C1,1, with curvature bounded by r−1;
(ii) if i = 1, then int(�r ) ∩ γ = {γ (0)};
(iii) if i = 2, then int(�r ) ∩ γ = {γ (0), γ (1)};
(iv) 
1

r is a finite collection of curves;
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Fig. 1 A set with a curve in 
1
r

and one in 
2
r

γ2 γ1

Ω

Ωr

(v) we have

�r \ int(�r ) =
⋃

γ∈
1
r

γ ((0, 1]) ∪
⋃

γ∈
2
r

γ ((0, 1)) .

Moreover, for every θ : 
1
r → [0, 1] the compact set

Cθ = int(�r ) ∪
⋃

γ∈
2
r

γ ([0, 1]) ∪
⋃

γ∈
1
r

γ ([0, θ(γ )]) ,

is simply connected and such that reach(Cθ ) ≥ r . By C0 and C1 we shall denote the sets
obtained with the choices θ(γ ) ≡ 0, 1 for every γ ∈ 
1

r .
Finally, if � has no necks of radius r for all r ∈ [r̄ , r̄ + ε], and for given r̄ > 0 and
ε > 0, then 
2

r = ∅ for all such r.

To have a better picture of the situation described in Proposition 2.2, we refer to Fig. 1.
Loosely speaking, curves in
1

r correspond to the presence of “tendrils” of width r in�, while
curves in 
2

r correspond to “handles” of width r between different connected components of
int(�r ). For the sake of completeness, we notice that the last part of the previous statement,
corresponding to [21, Remark 4.2], is written here in a local form, while it was originally
stated under the global assumption of no necks for all r ∈ [0, r̄ ]. The proof of this part is
exactly the same as the one outlined in that remark.

The next result provides a precise, geometric characterization of all minimizers of Fκ .

Theorem 2.3 Let � be a Jordan domain with |∂�| = 0 and let κ ≥ R−1
� be fixed. Assume

� has no necks of radius r = κ−1. Let Eκ be a minimizer of problem (1.4), that is, of the
functional Fκ restricted to the class C(κ). Then, with reference to the notation introduced in
Proposition 2.2, the following properties hold:

(i) if r < R� and 
1
r �= ∅, then there exists θ : 
1

r → [0, 1] such that

Eκ = Cθ ⊕ Br ,

and in particular

Em
κ = C0 ⊕ Br , EM

κ = C1 ⊕ Br = �r ⊕ Br

are, respectively, the unique minimal and maximal minimizers of Fκ ;
(ii) if r < R� and 
1

r = ∅, then Eκ is the unique minimizer of Fκ , given by

Eκ = �r ⊕ Br ;
(iii) if r = R�, then �r is a closed curve of class C1,1 (possibly reduced to a point) and

there exists a connected subset K ⊂ �r such that

Eκ = K ⊕ Br .

Moreover any ball of radius r centered on �r is a minimal minimizer, while EM
κ =

�r ⊕ Br is the unique maximal minimizer.
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Apart from the technical assumption |∂�| = 0, the other hypotheses of Theorem 2.3 are
sharp, as showed by suitable examples (see [16,20]). Moreover, the minimizers appearing in
the theorem are also solutions of the isoperimetric problem (1.1) (with V equal to their own
volume).

The next result shows the converse, that is, any solution of the isoperimetric problem (1.1),
for a prescribed volume V ≥ πR2

�, is also a minimizer of Fκ for some κ ≥ R−1
� . As a

consequence, all isoperimetric solutions are geometrically characterized as in Theorem 2.3.

Theorem 2.4 Let � be a Jordan domain with |∂�| = 0 and without necks of radius r , for all
r ∈ (0, R�]. Then, for all V ∈ [πR2

�, |�|) there exists a unique κ ∈ [R−1
� ,+∞) such that

a set E of volume V is isoperimetric if and only if it minimizes Fκ in C(κ).

This theoremhas fewconsequences. First, it represents an extension of [36, Theorem3.32],
where the authors classify isoperimetric sets within 2d convex sets, to themuch richer class of
Jordan domainswithout necks (for instance, theKoch snowflake belongs to this class, see [16,
Section 6]). Second, it supports some algorithmic procedures for the construction of isoperi-
metric sets and for the computation of the isoperimetric profile, see [37], where the authors
had in mind the political phenomenon of gerrymandering, which can be discussed using
isoperimetric arguments, see also [7,30]. Indeed, in [37] the authors numerically computed
the isoperimetric profile of a Jordan domain � by implicitly assuming the characterization
of minimizers that we have now completely proved here. We remark that in such numerical
applications, the way to go is to consider the cut locus C (also known as medial axis), i.e.,
the set of points in � where the distance function from the boundary is not differentiable.
To every x ∈ C one can associate the so-called medial axis transform f (x) = dist(x; ∂�),
which simply evaluates the distance from the boundary. Then, one notices that f attains its
maximum on the set �R� . As the cut locus has a tree structure, see [16, Section 3], one can
prove that the function f decreases while moving away from �R� , and it is locally constant
at x only if the set � is such that 
1

f (x) �= ∅. Then, in order to build isoperimetric sets, one
is lead to consider the union

⋃
x∈C

f (x)>r

Br (x) .

Whenever � is such that 
1
r = ∅ for all r ≤ R�, Theorems 2.3 and 2.4 guarantee that the

above procedure yields all isoperimetric sets.
Third and finally, it allows us to prove the following result about convexity properties of

the isoperimetric profile J (see Sect. 4.1).

Theorem 2.5 Let � be a Jordan domain with |∂�| = 0 and without necks of radius r , for all
r ∈ (0, R�]. Then, the isoperimetric profile J is convex in [πR2

�, |�|], while J 2 is convex
in [0, |�|].

The proof of convexity of J essentially relies on the existence of a threshold V such that
minimizers ofJ also minimizeFκ for a suitable κ . It is worth noticing that it does not rely on
the precise shape of the minimizer. Indeed, using the results of [2], we can prove as well that
the isoperimetric profile for V ≥ |Em

h�
| is convex for n-dimensional, convex, C1,1 regular

sets �, see Sect. 4.2.
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3 Shape of minimizers

This section is dedicated to the proof of Theorem 2.3, which is contained in Sect. 3.3. We
recall that fromnowon (unless explicitly stated)� denotes an open bounded set inR2. Prior to
the proof, we need to discuss some properties ofminimizers of (1.4), see Sect. 3.1.Moreover,
when � is a Jordan domain, one has some additional properties, see Sect. 3.2. These results
are generalizations and/or adaptations of those already known in the case κ ≥ h�. Whenever
the adaptation is straightforward, no proof is given and a reference is provided.

3.1 Properties of minimizers

First thing we need to prove is that there exist minimizers of Fκ when R−1
� ≤ κ < h�. One

easily checks it by taking a minimizing sequence which, up to subsequences, is shown to
converge in the BV topology. By lower semicontinuity of the perimeter, the limit set is a
minimizer, provided it belongs to C(κ). Details are given in the following proposition.

Proposition 3.1 Let κ ≥ R−1
� . There exist non trivial minimizers of (1.4), that is, of Fκ

restricted to the class C(κ).

Proof If κ ≥ h� this is well known. Let now R−1
� ≤ κ < h�, and notice that this choice

ensures that the class of competitors is nonempty.Moreover, the functional is clearly bounded
from below by −κ|�|, thus we can pick {Eh}h a minimizing sequence in C(κ). Without loss
of generality we may assume that

P(Eh) − κ|Eh | ≤ inf
C(κ)

{Fκ [E]} + 1 ,

and thus

P(Eh) ≤ inf
C(κ)

{Fκ [E]} + 1 + κ|�| ≤ const ,

as � is bounded. Therefore, up to subsequences, Eh converges in the L1 topology to a limit
set E . As |Eh | ≥ πκ−2 for all h, by taking the limit as h → ∞ we infer |E | ≥ πκ−2. This
shows that E belongs to C(κ), hence the lower semicontinuity of the perimeter yields the fact
that E is indeed a nontrivial minimizer of Fκ in C(κ).

There are several, well-established properties of non trivial minimizers ofFκ , for κ ≥ h�,
which hold the same for κ ≥ R−1

� . We recall them below.

Proposition 3.2 Let Eκ be a minimizer of (1.4), that is, of Fκ restricted to C(κ). Then, the
following statements hold true:

(i) ∂Eκ ∩ � is analytic and coincides with a countable union of circular arcs of curvature
κ , with endpoints belonging to ∂�;

(ii) the length of any connected component of ∂Eκ ∩ � cannot exceed πκ−1;
(iii) for � with locally finite perimeter, if x ∈ ∂Eκ ∩ ∂∗�, then x ∈ ∂∗Eκ and ν�(x) =

νEκ (x).

Point (i) for κ > h� comes from the regularity of perimeter minimizers, and the condition
of the curvature directly from writing down the first variation of the functional, refer for
instance to [23, Section 17.3]. For κ ≤ h� one has to consider two cases in view of the
definition of C(κ). Either |Eκ | > πκ−2, and then one is allowed to make variations changing
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the volume both from above and below, thus obtaining the same result. Or the equality
|Eκ | = πκ−2 holds, and then � contains a ball of curvature κ because it contains a ball of
radius R�. Therefore, by the isoperimetric inequality, all such balls are the only minimizers
of Fκ . Point (ii) can be proved exactly the same as in [17, Lemma 2.11]. Point (iii) comes
from regularity properties of (�, r0)-minimizers; a proof for Lipschitz � is available in [10],
while for sets � with just locally finite perimeter we refer to [19, Theorem 3.5].

Remark 3.3 There is nothing preventing us from minimizing Fκ in the class {E ⊂
�,Borel, s.t. |E | ≥ πκ−2 }, for √

π |�|− 1
2 ≤ κ < R−1

� (this choice of κ ensures that
the class is nonempty). The issue here is that property (i) can be no more guaranteed. Indeed,
if a minimizer Eκ has volume exactly equal to πκ−2, we are only allowed to make outer
variations, obtaining that the curvature of ∂Eκ ∩ � is not smaller than κ . In other words,
the lack of a ball contained in � with volume at least πκ−2 prevents us from recovering an
equality on the curvature, leaving us just with an inequality. A similar remark is valid in the
general, n-dimensional case.

For κ ≥ h� it is well-known that the class ofminimizers is closedwith respect to countable
union and intersections, see for instance the first part of the proof of [21, Proposition 3.2]
or [6, Lemma 2.2 and Remark 4.2]. As κ drops below h� this is still true, provided that the
intersection is still a viable competitor, as we show in the next lemma.

Proposition 3.4 Let κ ∈ [R−1
� , h�), and let Eκ , Fκ be minimizers of Fκ . Assume that |Eκ ∩

Fκ | ≥ πκ−2. Then, the union Eκ ∪ Fκ and the intersection Eκ ∩ Fκ are minimizers of Fκ .

Proof. By minimality we have

P(Eκ ) + P(Fκ ) − 2minFκ = κ(|Eκ | + |Fκ |) = κ|Eκ ∪ Fκ | + κ|Eκ ∩ Fκ |
≤ P(Eκ ∪ Fκ ) + P(Eκ ∩ Fκ ) − 2minFκ .

By the well-known inequality (see for instance [23, Lemma 12.22])

P(Eκ ∪ Fκ ) + P(Eκ ∩ Fκ ) ≤ P(Eκ ) + P(Fκ ) ,

and provided that |Eκ ∩ Fκ | ≥ πκ−2, we obtain

P(Eκ ) + P(Fκ) − 2minFκ = κ|Eκ ∪ Fκ | + κ|Eκ ∩ Fκ |
≤ P(Eκ ∪ Fκ ) + P(Eκ ∩ Fκ ) − 2minFκ

≤ P(Eκ ) + P(Fκ ) − 2minFκ ,

therefore the two last inequalities must be equalities. But this can happen if and only if

P(Eκ ∪ Fκ ) − κ|Eκ ∪ Fκ | = P(Eκ ∩ Fκ ) − κ|Eκ ∩ Fκ | = minFκ .

We stress the necessity of requiring that the measure of the intersection is big enough,
otherwise one can easily produce counterexamples, as shown in Fig. 2. The choice κ = R−1

�

is not restrictive, as one can find counterexamples for general κ ∈ [R−1
� , h�) by considering

a suitable “balanced dumbbell”, namely two identical squares linked by a very thin corridor,
as in Fig. 3.

As the class of minimizers is not closed under (countable) unions or intersections when
R−1

� ≤ κ < h�, one cannot directly define the maximal minimizer as the union of all min-
imizers, or the minimal minimizer as the intersection of all minimizers (for κ > h�) as
in [21, Definition 2.2, Proposition 3.2 and Remark 3.3] or [6, Definition 2.1, Lemma 2.2
and Lemma 2.5]. Nevertheless, we can give an alternative definition in terms of maxi-
mal/minimal volume.
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(a) A minimizer (b) A minimizer (c) The intersection (d) The union

Fig. 2 On the left two minimizers for κ = R−1
� ; on the right their intersection and union which are not

minimizers

Fig. 3 For values κ ∈ [R−1
� , h�),

a balanced dumbbell has two
minimizers. Both are maximal
and minimal at the same time

Definition 3.5 A minimal minimizer of Fκ is a set Em
κ belonging to

argmin{ |Eκ | : Eκ is a minimizer of Fκ } .

Similarly, a maximal minimizer is a set EM
κ belonging to

argmax{ |Eκ | : Eκ is a minimizer of Fκ } .

Proposition 3.6 There exist both minimal and maximal minimizers of Fκ .

Proof Take any extremizing sequence of minimizers. Up to subsequences, it converges to a
limit set E , such that its volume is the infimum (or the supremum) of the volumes. As in the
proof of Proposition 3.1, one sees that E is a minimizer.

When dealing with R−1
� ≤ κ < h�, we remark that in contrast with the case κ ≥ h� one

might have multiple maximal minimizers, and in contrast with κ > h� multiple minimal
minimizers. Consider for instance a balanced dumbbell, depicted in Fig. 3. If the handle is
thin enough, for all κ ∈ [R−1

� , h�), there are exactly two minimizers, corresponding to the
two components shaded in gray in the figure. Both are at the same time maximal and minimal
minimizers, while their union and intersection are not minimizers (indeed, the value of Fκ

on the union is twice the positive infimum of Fκ , while the intersection is empty and hence
not in Cκ ).

Finally, we provide an extended version of the rolling ball lemma [17, Lemma 2.12],
which also extends [16, Lemma 1.7]. This lemma, already known in the case κ = h�, holds
for a general κ and its proof is an easy adaptation of the original one. Before stating the
lemma, we introduce some needed terminology. Given two balls Br (x0), Br (x1) ⊂ �, with
same radius but possibly different centers, we say that Br (x0) can be rolled onto Br (x1) if
there exists a continuous curve γ : [0, 1] → � with γ (0) = x0, γ (1) = x1 and such that
Br (γ (t)) ⊂ � for all t ∈ [0, 1] (such γ will be called a rolling curve).

Lemma 3.7 (Rolling ball - extended version) Let κ = r−1 ≥ R−1
� be fixed, and let Eκ be a

minimizer of Fκ . Then the following properties hold:

(i) if Eκ contains a ball Br (x0), then it contains any ball Br (x1) with x1 ∈ int(�r ), and
such that Br (x0) can be rolled onto Br (x1);
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(a) A cuspidal type singular-
ity for ∂E on ∂Ω

(b) A rounded X-type singu-
larity for ∂E ∩ Ω

Fig. 4 The singularities occurring in Lemma 3.7. The boundary of � is represented by the thick continuous
lines

(ii) if Eκ contains two balls Br (x0) and Br (x1) that can be rolled onto each other, then it
contains all balls of radius r centered on the points of the rolling curve;

(iii) if Eκ is amaximalminimizer ofFκ such that Br (x0) ⊂ Eκ for some x0, then Eκ contains
any other ball Br (x1), which Br (x0) can be rolled onto.

Proof Point (iii) was first proved in [17, Lemma 2.12] and later refined in [16, Lemma 1.7].
As for point (i), one can argue by contradiction assuming that Br (x1) is not contained in

Eκ . Then, fix γ : [0, 1] → � with γ (0) = x0, γ (1) = x1 and such that Br (γ (t)) ⊂ � for
all t ∈ [0, 1], and assume that γ is parametrized by a multiple of the arc-length. Denote by
α+(t) the half-circle made by the points of the form γ (t) + rν, with ν such that |ν| = 1
and ν · γ̇ (t) > 0. Denote as t∗ the supremum of t ∈ [0, 1] such that Br (γ (s)) ⊂ Eκ for all
s ∈ [0, t]. Clearly we have t∗ < 1. Arguing as in [17, Lemma 2.12], we infer that α+(t∗)
coincides with a connected component of ∂Eκ ∩�, and the set Ẽκ = Eκ ∪⋃

s∈[t∗,1] Br (γ (s))
turns out to be aminimizer aswell. Thus byProposition 3.2 (i) and (ii), a connected component
of ∂ Ẽκ ∩ � not larger than a half-circle should be contained in ∂Br (x1), which is a compact
subset of �, hence its endpoints should belong to � ∩ ∂� = ∅, a contradiction.

The proof of point (ii) is achieved through a similar argument to the one used for proving
point (i). Let t∗ denote the supremum of t ∈ [0, 1] such that Br (γ (s)) ⊂ Eκ for all s ∈ [0, t],
and similarly let t∗ be the infimum of t ∈ [0, 1] such that Br (γ (s)) ⊂ Eκ for all s ∈ [t, 1].
Assume by contradiction that t∗ < t∗. Denoting by α−(t) the half-circle whose points are
of the form γ (t) + rν, with ν such that |ν| = 1 and ν · γ̇ (t) < 0, we have that both α+(t∗)
and α−(t∗) coincide with two distinct connected components of ∂Eκ ∩�. Finally, by rolling
Br (γ (t∗)) towards Br (γ (t∗))we could construct a minimizer that would exhibit either a non-
admissible singularity of cuspidal type on ∂�, see Fig. 4a, or a non-admissible singularity of
“rounded X” type for ∂E ∩ �, see Fig. 4b. Both cannot happen, as “cutting the singularity”
would produce a competitor with smaller perimeter and greater volume.

3.2 Additional properties whenÄ is a Jordan domain

When the set � is a Jordan domain, satisfying the technical assumption |∂�| = 0, the
minimizers enjoy some additional properties, which we recall here. These were originally
proved in [16] for the case κ = h�, and their proofs are easily adapted to a general κ , hence
we shall omit the details here.
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Proposition 3.8 Suppose � ⊂ R
2 is a Jordan domain with |∂�| = 0, and let Eκ be a

minimizer of Fκ . Then,

(i) the curvature of ∂Eκ is bounded from above by κ in both variational and viscous senses;
(ii) Eκ is Lebesgue-equivalent to a finite union of simply connected open sets, hence its

measure-theoretic boundary ∂Eκ is a finite union of pairwise disjoint Jordan curves;
(iii) Eκ contains a ball of radius κ−1.

For the definitions of curvature in variational and in viscous senses we refer to, resp., [4]
and [16, Definition 2.3]. The proof of (i), for κ ≥ h� is obtained as in [16, Lemma 2.2 and
Lemma 2.4]. When κ ∈ [R−1

� , h�) and |Eκ | > πκ−2, one can analogously show that Eκ

is a (�, r0)-minimizer of the perimeter (see [23]) with r0 = r0(|Eκ |) > 0, and the same
reasoning applies. Whenever the minimizer is such that |Eκ | = πκ−2, as we have already
discussed immediately after Proposition 3.2, the minimizer needs to be a ball, and thus the
claim is trivial. The proof of (ii) follows from the same argument of [16, Propositions 2.9
and 2.10]. Point (iii) follows from (i) and (ii) paired with [16, Theorem 1.6].

Remark 3.9 Weobserve that Proposition 3.8 implies that everyminimizer, for κ ∈ [R−1
� , h�),

has a unique P-connected component, that is the analog of connected component in the theory
of sets of finite perimeter (see [3]). Indeed, the bound on the variational curvature stated
in (i) holds on every P-connected component. By (ii) each of these components is a simply
connected open set, whose boundary is a Jordan curve. Then, (iii) holds for each component,
and hence each component has volume at least πκ−2 and thus it belongs to C(κ). Assume
now by contradiction that Eκ has more than one P-connected component, say without loss
of generality E1

κ and E2
κ , which, by the above discussion, are competitors for (1.4). Recall

that in the regime κ ∈ [R−1
� , h�) one has minFκ > 0, and thus

Fκ [Ei
κ ] > 0 , i = 1, 2 .

The contradiction now is reached, since Fκ [Eκ ] = Fκ [E1
κ ] + Fκ [E2

κ ] and removing a com-
ponent produces a competitor with a strictly smaller energy.

3.3 Characterization of theminimizers ofF�

This subsection is devoted to the proof of Theorem 2.3. At the end, we will obtain as a
corollary the monotonicity (in the set inclusion sense) of minimizers of Fκ with respect to κ .

First, we shall see that assuming that � has no necks of radius r = κ−1, and combining
Proposition 3.8 (iii) and Lemma 3.7 yield the following result.

Corollary 3.10 Let � be a Jordan domain with |∂�| = 0 and let κ > R−1
� be fixed. Assume

� has no necks of radius r = κ−1. Let Eκ be a minimizer of Fκ . Then,

(i) Eκ contains C0 ⊕ Br , where C0 is defined as in Proposition 2.2, namely

C0 = int(�r ) ∪
⋃

γ∈
2
r

γ ([0, 1]) ;

(ii) there exists a unique maximal minimizer, EM
κ ;

(iii) EM
κ coincides with the union of all minimizers.

Points (ii) and (iii) hold the same for κ = R−1
� .
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Proof Let κ > R−1
� be fixed. By Proposition 3.8 (iii) we know that Eκ contains a ball Br (x)

with x ∈ �r . By the no neck assumption, it then must contain any ball of radius r centered on
int(�r ). If this were not the case, we could find y ∈ int(�r ) such that Br (y) is not contained
in Eκ , thus obtaining a contradiction with Lemma 3.7 (i). Hence Eκ ⊃ int(�r ) ⊕ Br . By
definition of 
2

r , and thanks to Lemma 3.7(ii), Eκ must also contain any ball of radius r
centered on every point of γ ∈ 
2

r . This establishes point (i).
Regarding point (ii), argue by contradiction and assume there are two distinct maximal

minimizers. Since they both contain C0 ⊕ Br , their intersection has volume at least πκ−2.
Hence by Proposition 3.4, their union is a viable competitor with greater volume. This is
a contradiction and point (ii) follows. Point (iii) follows with the same reasoning, again
exploiting point (i).

For κ = R−1
� , Proposition 3.8 (iii) paired with Lemma 3.7 (iii) implies that Eκ contains

�R� ⊕ BR� . This is enough to prove points (ii) and (iii), by following the same reasoning
used for general κ > R−1

� .

Second, we recall a lemma about the so-called arc-ball property for minimizers of Fκ .
This property was first shown for Cheeger sets in planar strips in [17] and later extended
to Cheeger sets in Jordan domains without necks in [16]. The proof follows that of [16,
Theorem 1.4].

Lemma 3.11 (Arc-ball property) Let � be a Jordan domain with |∂�| = 0, and let κ ≥ R−1
�

be fixed. Assume � has no necks of radius r = κ−1 and let Eκ be a minimizer of Fκ . Then
any connected component of ∂Eκ ∩ � is contained in the boundary of a ball of radius r
contained in Eκ .

Proof Let α be a connected component of ∂Eκ ∩ �. By Proposition 3.2 (i) we know that
α is a circular arc of radius r belonging to a ball Br (x). If Br (x) is contained in Eκ we
have nothing to prove. Otherwise, let y ∈ α be the midpoint of α and consider the largest
0 < t < r such that setting zt = y + t (x−y)

|x−y| we have Bt (zt ) ⊂ Eκ . One can now argue
exactly as in the proof of [16, Theorem 1.4, pag. 21].

Proof of theorem 2.3 For κ = h� the characterization of minimal and maximal minimizers
was proved in [16, Theorem 1.4], and later extended to κ ≥ h� in [21, Theorem 2.3]. Here we
generalize those previous proofs in order to deduce the complete classification of minimizers
of the prescribed curvature problem.

The proof of the structure of the maximal minimizer EM
κ in the case κ ∈ [R−1

� , h�) is
essentially the same as the one for κ ≥ h�. By Corollary 3.10 (ii), we already know that it
is unique. The assumption of no necks of radius r paired with Lemma 3.7(iii) implies that
EM

κ ⊇ �r ⊕ Br . The opposite inclusion follows by reasoning exactly as in the proof of
Theorem 1.4 in [16].

Proof of (i). We assume r = κ−1 < R� and 
1
r �= ∅. We start by proving that Cθ ⊕ Br

minimizesFκ for any θ : 
1
r → [0, 1], using the fact that EM

κ = C1⊕Br = �r ⊕Br . Indeed,
by Proposition 2.2 we know that Cθ is contractible and satisfies reach(Cθ ) ≥ r . Therefore
we can use Steiner’s formulas, see for instance [9] and [16, Section 2.3], and write

|Cθ ⊕ Br | = |Cθ | + rMo(Cθ ) + πr2 , P(Cθ ⊕ Br ) = Mo(Cθ ) + 2πr , (3.1)

where Mo(F) is the outer Minkowski content of F , i.e.,

Mo(F) = lim
t→0

|F ⊕ Bt | − |F |
t

.
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Since |Cθ | = |C1| by definition, using (3.1) and r = κ−1, it is immediate to check that the
equality Fκ [Cθ ⊕ Br ] = Fκ [EM

κ ] holds. By Corollary 3.10 (i), this implies in particular that
C0 ⊕ Br is the unique minimal minimizer.

Let now Eκ be any minimizer. By Corollary 3.10 (i), it contains C0 ⊕ Br . Given θ, θ ′ :

1
r → [0, 1], we write θ ≤ θ ′ if θ(γ ) ≤ θ ′(γ ) for every γ ∈ 
1

r . Let θr be maximal (in the
sense of the order relation ≤) among those θ for which Cθ ⊕ Br ⊂ Eκ .

In order to conclude that Eκ = Cθr ⊕ Br , we only need to show the inclusion Eκ ⊂
Cθr ⊕ Br . We can assume without loss of generality that θr �≡ 1, as otherwise Eκ would
coincidewith themaximalminimizer EM

κ givenbyC1⊕Br . ByCorollary 3.10 (iii) Eκ ⊂ EM
κ ,

therefore we can find γ ∈ 
1
r and a point z in the interior of Eκ \ (Cθr ⊕ Br ), such that

z ∈ Br (γ (τ )) for some τ ∈ (θr (γ ), 1).
We now have the following alternative: either it is Br (γ (τ )) ⊂ Eκ , or it is ∂Eκ ∩

Br (γ (τ )) �= ∅.
In the first case, using Lemma 3.7 (ii), and the no neck assumption, immediately gives a

contradiction to the maximality of θr . In the second case the intersection ∂Eκ ∩ Br (γ (τ ))

must necessarily be a single arc of curvature κ contained in a connected component α of
∂Eκ ∩ �. By Lemma 3.11 there exists a ball Br (y) ⊂ Eκ such that α ⊂ ∂Br (y), and with
z ∈ Br (y) and y /∈ Cθr . Again, by using Lemma 3.7(ii) we reach a contradiction with the
maximality of θr .

Proof of (ii). This is immediate because, as in the previous case, we have �r ⊕ Br ⊂ Eκ .
However, thanks to the assumption 
1

r = ∅, we also have Eκ ⊂ EM
κ = �r ⊕ Br , which

gives (ii) at once.
Proof of (iii). By Proposition 2.2 (a) we have that either �r is reduced to a point, or it is a

C1,1-diffeomorphic image of the interval [0, 1]. In the first case, the inball of� is easily seen
to represent the unique minimizer. In the second case if [a, b] ⊂ [0, 1] and γ : [0, 1] → �r

is a C1,1-diffeomorphism with curvature bounded by κ , one can show that γ ([a, b]) ⊕ Br is
a minimizer, arguing as we did for (i). Viceversa, let Eκ be a minimizer, for which we know
that there exists a ball Br (x) centered at some x ∈ �r and contained in Eκ . Denote by [a, b]
the largest closed subinterval of [0, 1] such that K := γ ([a, b]) contains x and K ⊕Br ⊂ Eκ .
Of course, if [a, b] = [0, 1] we conclude that Eκ = EM

κ = �r ⊕ Br . Otherwise, we argue as
in the proof of (i) and finally obtain the opposite inclusion Eκ ⊂ K ⊕ Br . This finally shows
(iii) and concludes the proof of the theorem.

Corollary 3.12 Let � be a Jordan domain such that |∂�| = 0 and let κ2 > κ1 ≥ R−1
� . If �

has no necks of radius κ−1
2 and κ−1

1 , then one has

EM
κ2

⊇ Em
κ2

⊇ EM
κ1

⊇ Em
κ1

.

Proof One reasons in the same way as in [21, Corollary 5.6]. Fix ri = κ−1
i for i = 1, 2, with

r2 < r1. Trivially the set int(�r2) contains �r1 , and thus int(�r2) ⊕ Br2 contains �r1 ⊕ Br1 .
The claim immediately follows from Theorem 2.3.

Remark 3.13 The inclusion Em
κ2

⊇ EM
κ1

is strict as soon as κ1 < κ2 and 0 < |EM
κ1

| < |�|.
Indeed, this information on the volume is equivalent to say EM

κ1
�= � and EM

κ1
�= ∅. Assuming

then EM
κ1

= Em
κ2

one obtains ∂EM
κ1

∩ � = ∂Em
κ2

∩ � �= ∅, whence κ1 = κ2, a contradiction.
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4 The isoperimetric profile

In this section we use Theorem 2.3 to characterize all isoperimetric sets of a Jordan domain
� with no necks of any radius. The full characterization is the content of Theorem 2.4, and
this will be employed to prove some convexity properties of the isoperimetric profile, see
Sect. 4.1. Before the proof of Theorem 2.4, that is the core of the section, we need to prove
the following lemma.

Lemma 4.1 Let R > 0 be fixed and let � be a Jordan domain with no necks of radius r , for
all r ≤ R. Let m(r) and μ(r) be the functions defined as

m(r) = Mo(�
r ) , μ(r) = Mo(int(�r )) .

Then, m is upper semicontinuous in (0, R], while μ is lower semicontinuous in (0, R).
Consequently, one has

lim sup
r→r̂

|EM
r−1 | ≤ |EM

r̂−1 |, lim inf
r→r̂

|Em
r−1 | ≥ |Em

r̂−1 | (4.1)

for every r̂ ∈ (0, R].
Proof Thanks to [21, Lemma 6.1], we already have the upper (resp., lower) semicontinuity
of m (resp., μ) on the open interval (0, R). The very same proof yields as well the upper
semicontinuity up to R included of m, and thus we refer the reader to the original one. Then,
by coupling Steiner’s formulas

|EM
r−1 | = πr2 + r m(r) + |�r | ,

|Em
r−1 | = πr2 + r μ(r) + |int(�r )|

with the properties of m(r) and μ(r), and the fact that |�r | = | int(�r )| for each r > 0, we
obtain (4.1).

Proof of Theorem 2.4 Assume πR2
� < V < |�| without loss of generality, and note that the

thesis is a consequence of the following claim:

∃ κ̂ ≥ R−1
� , ∃ Eκ̂ ∈ argminFκ̂ with |Eκ̂ | = V . (4.2)

Indeed, let EV be such that |EV | = V and P(EV ) = J (V ). Assuming that (4.2) is verified,
we would deduce that EV minimizes Fκ̂ since

P(EV ) − κ̂V ≤ P(Eκ̂ ) − κ̂V = inf
C(κ̂)

Fκ̂

(note that the previous inequality is in fact an identity). In order to prove (4.2), we define

κ∗ = inf{ κ : |EM
κ | > V }, κ∗ = sup{ κ : |Em

κ | < V } .

Notice that both sets are nonempty, hence the infimum and supremum are finite. Indeed, being
� an open set, we can approximate it in L1 by sets of the form �r ⊕ Br , for 0 < r ≤ R�,
which shows that the first set is nonempty. The second set is obviously nonempty, as it
contains at least the curvature of the inball of � by Theorem 2.3 (iii).

We now claim that κ∗ = κ∗. Indeed, let us first assume by contradiction that κ∗ < κ∗.
Then we would find two curvatures κ1, κ2 such that

κ∗ < κ1 < κ2 < κ∗ .
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By definition of κ∗ and of κ∗ we would have

|Em
κ2

| < V < |EM
κ1

| ,
against the fact Em

κ2
⊇ EM

κ1
, as granted by Corollary 3.12. By a similar argument we can

also exclude the case κ∗ < κ∗. Indeed, assume that the strict inequality holds and, for any
κ ∈ (κ∗, κ∗), let Eκ be a minimizer of Fκ . On the one hand, the lower bound κ > κ∗
implies |Em

κ | ≥ V , while the upper bound κ < κ∗ implies |EM
κ | ≤ V . Hence, we have

|EM
κ | = |Em

κ | = V for all κ ∈ (κ∗, κ∗). Since V < |�|, this yields a contradiction with
Corollary 3.12 (see also Remark 3.13).

Let now κ̂ := κ∗ = κ∗ and r̂ = 1/κ̂ , hence by Lemma 4.1 we infer that

|EM
κ̂

| ≥ V ≥ |Em
κ̂

| .
Now, if one of these two inequalities is an equality, we are done. If they are both strict, by
Theorem 2.3 we necessarily have that 
1

r̂ is not empty. As the parametrized sets Cθ ⊕ Br
and K ⊕ Br , defined in Theorem 2.3, form a family of minimizers with volumes varying
continuously from |Em

κ̂
| up to |EM

κ̂
|, we can always find one of them with volume exactly V ,

which proves (4.2) and thus the theorem.

Remark 4.2 Nestedness of isoperimetric sets is not true in general. However, with reference
to Theorem 2.3, one can always select a one-parameter family of nested isoperimetric sets.
In the case r < R�, this family is of the form Cθs ⊕ Br . The choice of θs can be made in
such a way that the map s �→ |Cθs ⊕ Br | is continuous, θs is increasing in s ∈ [0, 1] with
respect to the order relation ≤, θ0 ≡ 0, and θ1 ≡ 1. Similarly, in the case r = R�, one can
set Ks as the image of the interval [0, s] through the C1,1-parametrization γ of the set �r ,
and consider the nested family Ks ⊕ Br .

Corollary 4.3 Let � be a Jordan domain with |∂�| = 0 and without necks of radius r , for
all r ∈ (0, R�]. Suppose that �R� = {x}. Then the following hold:

(i) if the set 
1
r consists of at most one curve for all r < R�, then there exists a unique

isoperimetric set for all V ∈ [πR2
�, |�|);

(ii) if the set 
1
r is empty for all r < R�, and if we let κ be the curvature of ∂E ∩ �, where

E is the unique isoperimetric set of volume V ≥ πR2
�, then the map 	(V ) = κ is a

bijection.

Proof Let V ≥ πR2
� be fixed, and let κ be the unique curvature such that |Em

κ | ≤ V ≤ |EM
κ |,

as in the proof of Theorem 2.4. If Em
κ and EM

κ coincide, i.e., 
1
r = ∅, uniqueness follows. If

otherwise
1
r consists of exactly one curve γ , then by Theorem 2.3 all the possibleminimizers

of Fκ are given by the one-parameter family

Et :=
(
int(�r ) ∪ γ (0, t)

)
⊕ Br .

As t �→ |Et | is strictly increasing, there exists a unique t ∈ [0, 1] such that the corresponding
minimizer has volume exactly V , hence the uniqueness.

Regarding the second point, by Theorem 2.3, we already know that for each volume V
there exists a unique curvature κ , thus we are left to prove that the map is injective. Under
the assumptions of the corollary, for each κ we have the set equality Em

κ = EM
κ . Pairing this

with the nestedness property granted by Corollary 3.12, yields the injectivity.

Corollary 4.4 Let � be a Jordan domain with |∂�| = 0 and without necks of radius r , for all
r ∈ (0, R�]. For all V ≥ πR2

�, let 	(V ) be the map defined as in Corollary 4.3 (ii). Then
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the image 	([πR2
�, |�|)) is a finite interval [R−1

� , κ̄) if and only if � satisfies an interior
ball condition of curvature κ̄ , that is, reach(R2 \ �) ≥ κ̄−1.

Proof First notice that in general one has

� = lim
r→0

(
�r ⊕ Br

)
.

By the characterization of minimizers given in Theorem 2.3, and the nestedness granted by
Corollary 3.12, the image 	([πR2

�, |�|)) is a finite interval [R−1
� , κ̄) if and only if

� = lim
κ→κ̄

(
�rκ ⊕ Brκ

) = �rκ̄ ⊕ Brκ̄ ,

where rκ = κ−1 as usual, and the limit is meant in a set-wise sense. This happens if and only
if � minimizes Fκ̄ . If � is such a minimizer, then the claim is immediate. Conversely, an
interior ball condition of radius r̄ = κ̄−1 implies � = �r̄ ⊕ Br̄ , see [31, Lemma 3.1], thus
the opposite claim is as well established.

4.1 Convexity properties

In this section we establish some convexity properties of the isoperimetric profile J and of
its square J 2. The key point is to prove that, for V ∈ [πR2

�, |�|], J (V ) is the Legendre
transform of a convex function.

We remark that the following is the natural extension of Proposition 6.2 in [21], which
allowed us to establish the Legendre duality for the smaller interval [|Em

h�
|, |�|]. Exploiting

Theorem 2.4, we can prove that this duality holds true for the larger interval [πR2
�, |�|].

Proposition 4.5 Let�be a Jordandomainwith |∂�| = 0 andwith nonecks of radius r = κ−1

for all r ∈ (0, R�]. Then, the isoperimetric profile J (V ) restricted to V ∈ [πR2
�, |�|) is the

Legendre transform of

G(κ) = − min
E∈C(κ)

Fκ (E)

restricted to κ ≥ R−1
� , where C(κ) is defined as in (1.5).

Proof The convexity ofG follows as in the proof of [21, Proposition 6.2]. Indeed, thanks to the
geometric characterization of theminimizers obtained in Theorem2.3, and for any admissible
choice κ ≥ R−1

� , all minimizers of Fκ contain at least a ball of radius R�. Therefore, for any
choice of κ , one can minimize over the smaller class of competitors C(R−1

� ) in place of the
larger one C(κ) without affecting the value of the minimum or the minimizers.

We are left to show that the Legendre transform G∗ of G coincides with the isoperimetric
profile J on the claimed interval. By definition the Legendre transform is

G∗(V ) := sup
κ≥R−1

�

{ κV − G(κ) }

= sup
κ≥R−1

�

{
κV + min

E∈C(R−1
� )

{P(E) − κ|E | }} , (4.3)

and we refer the interested reader to [28, Part V, Chap. 26] for the basic definitions and results
on the Legendre transform. By Theorem 2.4 for all V ≥ |BR | there exist (a unique) κ̄ ≥ R−1

�
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and a minimizer Eκ̄ of Fκ̄ with |Eκ̄ | = V and such that J (V ) = P(Eκ̄ ). Hence, on the one
hand

G∗(V ) ≥ κ̄V + min
E∈C(R−1

� )

{ P(E) − κ̄|E | }

= κ̄V + P(Eκ̄ ) − κ̄|Eκ̄ | = P(Eκ̄ ) = J (V ).

On the other hand, for all κ we have

κV − G(κ) = κV + min
E∈C(R−1

� )

Fκ (E)

≤ κV + P(Eκ̄ ) − κ|Eκ̄ | = P(Eκ̄ ).

Thus, by this inequality and (4.3) one has

G∗(V ) ≤ P(Eκ̄ ) = J (V ),

and the claim follows at once.

Remark 4.6 We remark that the isoperimetric profile J is differentiable at V ∈ (0, |�|), and
its derivative is given by the curvature of ∂E ∩�, being E any isoperimetric set of volume V .
For volumes less than or equal to πR2

� it is an immediate computation. For volumes above
this threshold it follows from the fact that J coincides with the Legendre transform of G. To
see this, we first note that G = (G∗)∗, since G is convex and lower semicontinuous. Second,
from the equalities G = (G∗)∗ and G∗ = J we have

G(κ) = sup
V≥πR2

�

{κV − J (V )} = κV − J (V ) , (4.4)

for some (possibly non unique) V . The equalities in (4.4) imply that κ belongs to the subd-
ifferential ∂J (V ) because

κV − J (V ) ≥ κV ′ − J (V ′)

for all V ′ ≥ πR2
�. Now one concludes, since Theorem 2.4 implies that for any volume V

there exists a unique curvature κ , (and necessarily κ = κ), for which (4.4) is attained by V .
Thus the subdifferential ∂J (V ) reduces to the single element κ , and being J convex this
means that it is differentiable at V with derivative given by κ . We also note that the link
between the derivative of the isoperimetric profile and the (mean) curvature of the (internal)
boundary of the minimizer is a classical fact, see for instance [29].

Remark 4.7 By closely following the proof of Proposition 4.5, one notices that the key ingre-
dient is to find a minimizer of Fκ for every choice of volume above a certain threshold V , in
this case V ≥ πR2

�.

Remark 4.8 Thanks to our geometric characterization, one can still obtain convexity of J
on subintervals of [πR2

�, |�|] for sets � which have no necks of radius r with r ∈ [r1, r2].
Indeed, Theorem 2.4 can be applied for all volumes V ∈ [|Em

r−1
2

|, |EM
r−1
1

|], finding then a

suitable curvature κ̄ ∈ [r−1
2 , r−1

1 ]. Thus, one obtains convexity of J on such an interval of
volumes by following the proof of Proposition 4.5.

Remark 4.9 It is easy to verify that whenever 
1
r �= ∅, the isoperimetric profile J is linear

in the interval of volumes [|Em
r−1 |, |EM

r−1 |], and viceversa. There exist sets with no necks
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of radius r for all r ≤ R� that have such a linear growth on countably many intervals (of
volume), i.e., such that 
1

r �= ∅ for countably many r , see for instance [21, Example 5.8 and
Figure 4].

We are now ready to prove Theorem 2.5 which establishes the convexity properties of J
and of J 2.

Proof of Theorem 2.5 On the one hand, as the Legendre transform maps convex functions
into convex functions, one immediately obtains by Proposition 4.5 the convexity of J for
V ≥ πR2

�. Therefore J 2 is convex as well on such interval. On the other hand, for volumes
V up to πR2

�, any ball of volume V is a minimizer. An immediate computation gives

J 2(V ) = 4πV , for V ∈ [0, πR2
�] ,

which is linear and thus convex. We are then left to show that the piecewise convex function
J 2 is globally convex. First, notice that J is continuous and so it is J 2. Second, recall that a
function f : [a, b] → R is convex if and only f ′−(x) ≤ f ′+(x) for all x ∈ (a, b). To conclude
the claim, it is enough to show that (J 2)′−(V0) ≤ (J 2)′+(V0) at V0 = πR2

�. Clearly both
the left and right derivatives are well defined, and one trivially has

(J 2)′−(V0) = 4π .

Let us now denote by I(V ) the isoperimetric profile of R2, i.e.,

I(V ) := inf{ P(E) : |E | = V , E ⊂ R
2 } ,

for which we know I2(V ) = 4πV . By the isoperimetric inequality we have

I2(V ) ≤ J 2(V ) , ∀ V > 0 .

The previous inequality, paired with I2(V0) = J 2(V0), immediately implies

(J 2)′−(V0) = (I2)′(V0) ≤ (J 2)′+(V0) ,

whence the claim follows.

4.2 Fewwords on dimension n

As seen in the previous section, Theorem 2.4 provides solutions of the isoperimetric problem
by solving a (partially) unconstrained problem, i.e., the minimization ofFκ on the class C(κ).
In the planar setting of Jordan domains � satisfying a no neck property, a full geometric
characterization of minimizers is provided. Unfortunately, in higher dimension n ≥ 3, we
cannot expect to find such a precise characterization ofminimizers ofFκ for a given, bounded,
open set � ⊂ R

n . Nevertheless, as noticed in Remark 4.7, the convexity of the profile above
some threshold V would simply follow by knowing that among the minimizers of J for
volumes greater than V , one can find minimizers of Fκ for suitable κ .

This program has been partially carried out in [2], for convex sets � ⊂ R
n of class C1,1

and with V ≥ |Eh� |, being Eh� the unique Cheeger set of �, as we hereafter recall.

Theorem 4.10 (Theorem 11 of [2]) Let � ⊂ R
n be convex and of class C1,1. Then, for each

volume |Eh� | ≤ V ≤ |�| there exists κ ∈ [h�,+∞) such that the unique minimizer Eκ of
Fκ satisfies

|Eκ | = V , J (V ) = P(Eκ ) .
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Thanks to Theorem 4.10 we immediately obtain the following convexity property of the
isoperimetric profile J for � ⊂ R

n convex, bounded and of class C1,1, in any dimension
n ≥ 2.

Theorem 4.11 Let n ≥ 2 and let � ⊂ R
n be convex, bounded, and of class C1,1. Then the

isoperimetric profile J is convex in [|Eh� |, |�|].
Proof Immediate consequence of Remark 4.7 and Theorem 4.10.

The proofs in [2] which lead to Theorem 4.10 heavily rely on the comparison principle and
Korevaar’s concavity maximum principle (see [13,14]) to study Fκ , with κ ≥ h�. It would
be of great interest to see if the approach of [2] can be extended to curvatures κ ∈ [R−1

� , h�)

by considering the same functional Fκ with the additional lower bound to the volume, just
as we did here, in order to prevent the empty set to be a minimizer. Were it possible to extend
their approach to κ ∈ [R−1

� , h�), one would easily find out that J n
n−1 is convex, just by

repeating the arguments of our Proposition 4.5 and Theorem 2.5.

5 Examples

In this final section we explicitly compute and plot the isoperimetric profile for two class of
sets: rectangles, and cross-shaped sets, which are non convex.

5.1 Rectangles

Take a rectangle which, up to scaling, has a fixed side of length 2 and the other side of length
L ≥ 2, and denote it as RL . The inradius of RL is 1. Notice that for all r < 1 the set 
1

r is
empty, therefore for any prescribed curvature κ > 1 there exists a unique minimizer of Fκ .
We have the following

i) for volumes V ≤ π , the minimizer is a ball of radius
√

π−1V ;
ii) for volumes V ∈ (π, π + 2(L − 2)], any minimizer is the convex hull of two balls of

radius 1;
iii) for volumes V > π + 2(L − 2), there exists κ > 1 such that Eκ = (RL)κ−1 ⊕ Bκ−1 is

the unique minimizer.

An easy computation yields

J (V ) =

⎧⎪⎨
⎪⎩
2
√

πV , V ∈ [0, π]
π + V , V ∈ (π, π + 2(L − 2)]
−2

√
4 − π

√
2L − V + 2(2 + L) , V ∈ (π + 2(L − 2), 2L]

By Theorem 2.5 we already know that J 2 is globally convex. As a visual confirmation of
this fact, in Fig. 5a (resp., Fig. 5b) one can see the plot of J (resp., J 2) for R4.

Finally, we notice that if one were interested in computing the Cheeger constant h(RL),
one would be led to look for critical points of V−1J (V ), whose plot is shown in Fig. 5c, for
R4. By [16, Theorem 1.4] the inner Cheeger set of RL cannot be empty, thus the minimum
of V−1J (V ) occurs in the interval (2L + π − 4, 2L). The Cheeger constant of h(RL) is by
now well-known to be

h(RL) = 1

2
· 4 − π

L
2 + 1 −

√
( L2 − 1)2 + π L

2

,
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(a) Plot of J (V )
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y

144

80

(b) Plot of J 2(V )

V

y

12

880

(c) Plot of V −1J (V )

Fig. 5 Plots of J (V ), J 2(V ) and V−1J (V ) forR4

Fig. 6 The cross-shaped set χL ,
for L = 4, and its inball

see for instance [25, Section 3.1] or the discussion following [12, Theorem 3] together with
the correction done in [11, Open problem 1]. Rationalizing the above ratio, one can easily see
that h(RL) converges to 1 as L → +∞, and precise asymptotic estimates are given in [17,
Theorem 3.2]. Therefore, the length of the interval [|Eh� |, |RL |] converges to 4 − π , while
the length of the interval [π, |Eh� |] diverges. This example shows that with Theorem 2.3
we can cover a range of volumes, [π, |RL |], that can be significantly larger than the range
covered by [21, Theorem 2.3], [|Eh� |, |RL |]. This can also happen for non convex sets, as
the next example shows.

5.2 Cross-shaped sets

We consider now a cross-shaped domain XL , given by the union of two rectangles RL in
such a way that they share the barycenter and their boundaries meet orthogonally, refer also
to Fig. 6.

Assuming that L ≥ 4, their intersection is a square of side 2. Hence, it is immediate to
see that inr(XL) = √

2. Then, we are in the following situation:

i) for volumes V ≤ 2π , the minimizer is a ball of radius
√

π−1V ;
ii) for volumes V ∈ (2π, 2π + 4], any minimizer is given by the intersection of the two

rectangles (a square of side 2) topped by four circular segments of radius r decreasing
from

√
2 to 1 as V increases;
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y
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0 12 V

(a) Plot of J (V )

y

256

0 12 V

(b) Plot of J 2(V )

y

16

0 12 V

(c) Plot of V −1J (V )

Fig. 7 Plots of J (V ), J 2(V ) and V−1J (V ) for X4

iii) for volumes V ∈ (2π + 4, 4L + 2π − 12], a minimizer is the suitable union of balls of
radius 1, and it is not difficult to show that there exists a unique one which is central-
symmetric;

iv) for volumes V ∈ (4L+2π −12, 4L−4], there exists κ > 1 such that Eκ = (XL)κ
−1 ⊕

Bκ−1 is the unique minimizer.

The corresponding profile is given by

J (V ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2
√

πV , V ∈ [0, 2π]
8r(V ) arcsin

(
1

r(V )

)
, V ∈ (2π, 2π + 4]

2π + V − 4 , V ∈ (2π + 4, 4L + 2π − 12]
−2

√
2
√
4 − π

√
4L − 4 − V + 4L , V ∈ (4L + 2π − 12, 4L − 4]

where r(V ) is the unique solution2 in [1,√2] of the equation

V = 4

(
1 + r2 arcsin

(
1

r

)
−

√
r2 − 1

)
.

In Fig. 7 the plots of J (V ), J 2(V ) and of V−1J (V ) are shown for the choice L = 4.
Regarding theCheeger constant, we recall that the innerCheeger formula tells us that r = h−1

�

satisfies the equality

|�r | = πr2.

Since for r ≥ 1 we have |�r | ≥ 4−π , it is immediate to see that the minimum of V−1J (V )

always lies in the fourth interval of definition of J . Thus, just as for the rectangles, one
can see that as L → +∞ the length of the interval [|Eh� |, |XL |] is bounded from above
by 8 − 2π (actually, it converges to), while the length of the interval [2π, |Eh� |] diverges,
showing again how relevant the extension provided by Theorem 2.3 can be, with respect to
previously known results.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is

2 Uniqueness follows from the fact that V (r) is strictly increasing, thus the inverse function exists.
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