The perturbative approach to nonlinear Sigma models and the associated renormalization group flow are discussed within the framework of Euclidean algebraic quantum field theory and of the principle of general local covariance. In particular we show in an Euclidean setting how to define Wick ordered powers of the underlying quantum fields and we classify the freedom in such procedure by extending to this setting a recent construction of Khavkine, Melati, and Moretti for vector valued free fields. As a by-product of such classification, we provide a mathematically rigorous proof that, at first order in perturbation theory, the renormalization group flow of the nonlinear Sigma model is the Ricci flow.

Ricci Flow from the Renormalization of Nonlinear Sigma Models in the Framework of Euclidean Algebraic Quantum Field Theory / Carfora, M.; Dappiaggi, C.; Drago, N.; Rinaldi, P.. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - 374:1(2020), pp. 241-276. [10.1007/s00220-019-03508-2]

Ricci Flow from the Renormalization of Nonlinear Sigma Models in the Framework of Euclidean Algebraic Quantum Field Theory

Drago N.;
2020-01-01

Abstract

The perturbative approach to nonlinear Sigma models and the associated renormalization group flow are discussed within the framework of Euclidean algebraic quantum field theory and of the principle of general local covariance. In particular we show in an Euclidean setting how to define Wick ordered powers of the underlying quantum fields and we classify the freedom in such procedure by extending to this setting a recent construction of Khavkine, Melati, and Moretti for vector valued free fields. As a by-product of such classification, we provide a mathematically rigorous proof that, at first order in perturbation theory, the renormalization group flow of the nonlinear Sigma model is the Ricci flow.
2020
1
Carfora, M.; Dappiaggi, C.; Drago, N.; Rinaldi, P.
Ricci Flow from the Renormalization of Nonlinear Sigma Models in the Framework of Euclidean Algebraic Quantum Field Theory / Carfora, M.; Dappiaggi, C.; Drago, N.; Rinaldi, P.. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - 374:1(2020), pp. 241-276. [10.1007/s00220-019-03508-2]
File in questo prodotto:
File Dimensione Formato  
CDDR.pdf

accesso aperto

Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 418.02 kB
Formato Adobe PDF
418.02 kB Adobe PDF Visualizza/Apri
s00220-019-03508-2.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 589.02 kB
Formato Adobe PDF
589.02 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/330347
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
  • OpenAlex ND
social impact