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Abstract

The perturbative approach to nonlinear Sigma models and the associated renormalization group flow

are discussed within the framework of Euclidean algebraic quantum field theory and of the principle

of general local covariance. In particular we show in an Euclidean setting how to define Wick ordered

powers of the underlying quantum fields and we classify the freedom in such procedure by extending

to this setting a recent construction of Khavkine, Melati and Moretti for vector valued free fields. As

a by-product of such classification, we provide a mathematically rigorous proof that, at first order in

perturbation theory, the renormalization group flow of the nonlinear Sigma model is the Ricci flow.

Keywords: locally covariant quantum field theory, algebraic quantum field theory, nonlinear Sigma mod-

els, Ricci flow.
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1 Introduction

In the realm of geometric analysis, there are several open avenues of research which have benefited from

results and models arising from classical and quantum field theory. One, if not the most prominent example

is the Ricci flow, which has come to the fore in the past few years thanks to Perelman proof [Per02, Per03] of

the geometrization programme for three-dimensional manifolds due to Thurston [Thu97]. Introduced in the

mathematical literature in the early eighties by Hamilton [Ham82], the Ricci flow has appeared independently

in the context of quantum field theory mainly thanks to the early works of Friedan [Fri80, Fri85] within

the analysis of nonlinear Sigma models over two-dimensional Riemannian manifolds as source and with

a Riemannian manifold of arbitrary dimension as target space. Despite the apparent distance between the

two settings in which the Ricci flow first appeared, the mutual influences have been manifold and the field

theoretical approach has been of inspiration for some of the ground breaking results of Perelman and for

several analyses of the structural properties of such flow, see e.g. [Car14].

From the viewpoint of nonlinear Sigma models, the Ricci flow arises when, by considering a perturbative

approach to the underlying Euclidean field theory, one studies at first order the renormalization group flow,

see e.g. [Car10, CM17] and also [Gaw99]. This is the main aspect on which we wish to focus in this paper

and in particular we shall address the criticism towards such derivation of Ricci flow, which is often labelled

not to be fully mathematically rigorous.

In order to tackle this problem, we shall work within the framework of algebraic quantum field theory, a

mathematically rigorous approach which was first formulated by Haag and Kastler [HK63]. Especially in the
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past few years it has been employed successfully to unveil and to characterize several structural properties

of free and interacting quantum field theories, ranging from the formulation of the principle of general

local covariance to a mathematically rigorous analysis of regularization and renormalization – see the recent

reviews [BDFY15, Rej16]. Yet, the vast majority of the efforts have been addressed towards formulating and

understanding the algebraic approach for field theories living on an underlying Lorentzian spacetime and

thus many results and constructions are tied to such class of backgrounds. For example the quantization of a

classical free field theory, the construction of an algebra of Wick polynomials or accounting interactions via

a perturbative approach (including the ensuing renormalization procedure) are nowadays fully understood.

Nonetheless a close scrutiny of all results unveils clearly that they rely on key structures which are tied to

Lorentzian metrics. Notable instances of this statement are the realization of the canonical commutation

relations in terms of advanced and retarded fundamental solutions associated to normally hyperbolic partial

differential operators or the construction of Wick ordered quantum fields as a by-product of the existence of

Hadamard sates, see [BDFY15].

Yet there is no a priori obstruction to work within the algebraic framework while considering classical or

quantum field theories which are living over a Riemannian manifold. Starting from the early seventies a few

works in this direction have appeared in the literature [OS73, OS75] and, despite most of the efforts went

towards formulating algebraic quantum field theory on Lorentzian backgrounds, it is clear that most of the

ideas, of the technique and of the structural aspects admit a well-defined Euclidean counterpart. A notable

example in this direction are the recent works by Keller on the formulation of Euclidean Epstein-Glaser

renormalization [Kel09, Kel10], see also [Sch98, Wa79].

Hence, motivated and inspired by these works, we decide to opt for a bottom-up approach towards the

analysis of the nonlinear Sigma models which are at the heart of the Ricci flow. At a classical level such mod-

els are realized considering as kinematic configurations arbitrary smooth maps ψ from a two-dimensional

Riemannian manifold (Σ, γ) into a target Riemannian background (M,g) of arbitrary dimension. The dy-

namics is ruled by the stationary points of the so-called harmonic Lagrangian LH and considering its lineari-

sation around an arbitrary configuration, we obtain a free field theory, which up to a source term, is governed

by an elliptic operator E. This model is closely connected to string theory and its quantization from the

algebraic viewpoint has been considered in [BRZ14].

As a starting point, we address the question of studying the quantization of the ensuing linearised theory.

To this end, first we define the notion of an Euclidean locally covariant quantum field theory translating to a

Riemannian framework the renown principle of general local covariance, formulated in a Lorentzian setting

in [BFV03]. This leads us naturally to identifying an Euclidean quantum field theory as a functor between

a suitable category of background data into that of unital ∗-algebras which satisfies in addition a scaling

hypothesis. Without entering into the technical details in the introduction, this requirement entails, that there

exists an action of R+ := (0,∞) on the background data which, in turn, yields a corresponding isomorphism

between the algebras of observables associated to each of the backgrounds constructed via such action. In

order for the model of our interest to fit in this scheme, we need as second step to show how to associate a

∗-algebra of locally covariant observables to the linear theory ruled by the operator E.

To this end, we work with the functional formalism, which has been successfully applied to the Lorentzian

setting, see for example [BDF09, Rej16]. On the one hand we cannot follow slavishly these references, since

we need to cope with several features which are tied to the Riemannian setting. On the other hand this ap-

proach has the net advantage that it allows to individuate in the ensuing algebra of observables a class of

elements which could naturally be interpreted as Wick ordered powers of the underlying quantum field.

This observation leads to the second part of our paper in which we address the question of giving an ab-

stract definition of Wick powers of an associated quantum field. This brings us to two relevant results. On the

one hand, we characterize and classify the freedom which exists in constructing such polynomials, starting

from the given definition. In tackling this problem, we extend to our framework the recent work of Khavkine,

Melati and Moretti [KMM17], who have completely answered this question for vector valued Bosonic linear

field theories, extending the seminal works of [HW01, HW02, HW05]. On the other hand we show that,

since per assumption there exists an action of R+ on the background data, this induces a one-parameter

family of Wick ordered powers of the underlying quantum field. It is worth mentioning that the formalism

used in our work is strongly connected to the one of the recent monograph [Her19]. Yet, in this reference,

perturbative quantum field theory is presented from a very general viewpoint highlighting the minimal set of
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underlying assumptions which allow for the whole procedure to work. On the contrary we focus on a very

specific scenario and in particular we follow a different approach to discuss the renormalization ambiguities

of the underlying model.

Subsequently, following the standard rationale used in perturbative algebraic quantum field theory [HW03],

it turns out that, to each coherent assignments of a one-parameter family of Wick polynomials, one associates

a corresponding family of locally covariant Lagrangian densities, where parametric dependence is codified

in the coupling constant, namely the metric of the target Riemannian manifold. As a last step, using the

classification result of the ambiguities between two coherent assignment of Wick polynomials, we prove that

such one-parameter family of metrics obeys the Ricci flow equation.

The paper is organized as follows: In the next subsection we fix the notation and we introduce all the

geometric and analytic building blocks necessary for our investigation, in particular the nonlinear sigma

models, we are interested in and their linearisation. Section 2 is devoted entirely to defining and to studying

locally covariant Euclidean field theory. In particular in Subsection 2.1, first we introduce all the categories

that we will be using and subsequently we give the formal definition of an Euclidean locally covariant

theory, emphasizing in particular the so-called scaling hypothesis. In Subsection 2.2 we show instead that the

linearisation on the nonlinear Sigma models, that we consider, fits in the framework formulated in Subsection

2.1. In Subsection 2.3 we still focus on the model of our interest, defining the notion of locally covariant

observables and studying their behaviour under the action of the scaling which is intrinsic in the definition

of locally covariant Euclidean field theory. Finally in Subsection 2.4, we generalize [KMM17] to our setting

defining first what is a family of Wick powers and then classifying the ambiguities existing in giving such

definition. In Section 3 we apply the results and the construction of Section 2 to give a rigorous derivation

of the Ricci flow from the perturbative renormalization group of the nonlinear Sigma models introduced in

Subsection 1.1.

1.1 General Setting

The goal of this section is to fix the notation and to introduce all the geometric and analytic building blocks

necessary for our investigation.

To start with, we consider two connected, oriented, Riemannian manifolds (Σ, γ) and (M,g) where

dimM = D, while dimΣ = D′. Later we will consider only the case D′ = 2. In order to avoid confusion

when dealing with the geometric structures associated to these backgrounds, we shall employ the convention

that Greek (resp. Latin) indices are associated to quantities related to Σ (resp. to M ). In addition, we denote

with ∇Σ,∇M the Levi-Civita connections defined respectively on TΣ, TM .

Remark 1: For future convenience we recall the definition of pull-back bundle and of pull-back connection,

cf. [Hus94]. Let B
πB−→ M be a vector bundle over M – typically B = TM or B = T ∗M – and let

ψ ∈ C∞(Σ;M). The pull-back bundle ψ∗B is the vector bundle over Σ defined by

ψ∗B := {(x, ξ) ∈ Σ×B| πB(ξ) := ψ(x)} πψ∗B(x, ξ) := x , (1)

From the definition it follows that ψ̂ : ψ∗B ∋ (x, ξ) 7→ ξ ∈ B|ψ(Σ) is an injective morphism of vector bundles

which lifts ψ, namely ψ̂ ◦πB = ψ ◦πψ∗B . This leads to an injective morphism of vector spaces ψ♯ : Γ(B) →

Γ(ψ∗B) defined by ψ♯s(x) := (ψ̂−1◦s◦ψ)(x) = (x, s◦ψ(x)) for all s ∈ Γ(B). Considering the Levi-Civita

connection ∇B on B the pull-back connection ∇ψ on ψ∗B is defined as follows [MS76, App. C]. The push-

forward dψ : TΣ → TM induces an injective homomorphism of sections dψ∗ : Γ(T ∗M) → Γ(T ∗Σ). The

pull-back connection ∇ψ : Γ(B) → Γ(T ∗Σ⊗B) is the unique one such that ∇ψ ◦ ψ♯ = (dψ∗ ⊗ ψ♯) ◦ ∇M .

Furthermore, per definition ∇ψα := ∇Σα for all α ∈ Γ(T ∗Σ).

On top of Σ, we consider kinematic configurations ψ ∈ C∞(Σ;M) while dynamics is ruled by the

stationary points of the so-called harmonic Lagrangian density LH:

LH[ψ, γ, g] := trγ(ψ
∗g)µγ

loc.
= gabγ

αβ(dψ)aα(dψ)
b
βµγ , (2)

where µγ is the volume form induced by γ while dψ : TΣ → TM is the push-forward along ψ. In this

paper we shall not work directly with (2), rather we consider an expansion of LH up to the second order with
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respect to an arbitrary, but fixed background kinematic configuration ψ. More precisely, for ϕ ∈ Γ(ψ∗TM)
let ψν : Σ → M be ψν(x) := expψ(x)

[
νϕ(x)

]
, where expψ(x) : Tψ(x)M → M is the exponential map at

ψ(x) ∈ M , while ν ∈ I ⊂ R, where I is an open subset of R which includes the origin – cf. remark 1. The

Taylor expansion of LH(ψν , γ, g) centred at ν = 0 yields

L(ψν , γ, g;ϕ) = LH(ψ, γ, g) +

[
νg(ϕ,Q(ψ)) −

ν2

2
〈ϕ,Eϕ〉 +

ν2

2
h(Riem(ϕ,dψ)ϕ,dψ)

]
µγ +O(ν3) ,

(3)

where ψ0(x) ≡ ψ(x), h|x
loc.
= gab|ψ(x)γ

αβ|x
∂
∂xα

⊗ ∂
∂xβ

⊗ dya ⊗ dyb, while the operator E is defined by

E : Γ(ψ∗TM) → Γ(ψ∗T ∗M) Eϕ := trh(∇
ψ ◦ ∇ψϕ) , (4)

where ∇ψ stands for the pull-back connection associated with ∇M ,∇Σ on the pull-back bundle ψ∗TM over

Σ– cf. remark 1. Finally the operator Q : C∞(Σ,M) → Γ(ψ∗T ∗M) is a differential operator whose explicit

form is inessential for what follows – see [Car10] for details. For our purposes the following property is of

paramount relevance:

Lemma 2: The operator E is elliptic and its principal symbol coincides with that of Ê : Γ(ψ∗TM) →
Γ(ψ∗T ∗M), locally defined by (Êϕ)a(x) := gab(ψ(x))∆γ(ϕ

b(x)) for ϕ ∈ Γ(ψ∗TM), where ∆γ is the

Laplace-Beltrami operator built out of γ.

Proof. For any point x ∈ Σ and for any local trivialization of ψ∗TM centred at x, (4) reads

(Eϕ)b
loc.
= gab∆γ(ϕ

a) + gab∆γ(ψ
ℓ)Γ a

ℓc [g]ϕc + gabγ
αβ

[
(dψ)ℓα

∂

∂xβ
(
Γ a
ℓc [g]ϕc

)
+ (dψ)ℓαΓ

a
ℓc [g]

∂ϕc

∂xβ

]

+ gabγ
αβ(dψ)ℓβ(dψ)

p
αΓ

a
ℓc [g]Γ c

pd [g]ϕd .

where ϕ ∈ Γ(ψ∗TM). Considering the definition of principal symbol,

σE(dζ)ϕ := lim
z→+∞

z−2e−zζE(ezζϕ) , ∀ζ ∈ C∞(Σ), ϕ ∈ Γ(ψ∗TM) , (5)

the sought statement follows.

Remark 3: From now on the main object of our interest will be the expansion in (3) and therefore ψ, γ, g will

be considered as parameters/background structures of the theory, whereas the role of kinematic configuration

will be taken by ϕ ∈ Γ(ψ∗TM). Observe that, in (3), 〈ϕ,Eϕ〉µγ , plays the rôle of a kinetic term ruled by

E, the elliptic operator (4) associated to the Lagrangian L.

To conclude the section, we focus on the behaviour of the background structures under scaling and in

particular we are interested in the engineer dimension of (ψ,ϕ, g). The latter can be computed as follows:

Consider the transformation

γ → γλ , (γλ)αβ := λ−2γαβ, λ > 0. (6)

The engineer dimensions dψ,dϕ,dg ∈ R respectively of ψ,ϕ, g, appearing in (3), are the unique real num-

bers such that, if

ψ → ψλ := λdψψ , ϕ→ ϕλ := λdϕϕ , g → gλ , (gλ)ab := λdggab , (7)

then the corresponding scaled Lagrangean density L(ψλ, γλ, gλ;ϕλ) remains invariant, that is

L(ψλ, γλ, gλ;ϕλ) = L(ψ, γ, g;ϕ) .

Considering (3) and that µγλ = λ−D
′

µγ , a straightforward computation leads to

dψ = dϕ = 0, dg = D′ − 2. (8)
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2 Locally Covariant Euclidean Field Theories

In this Section, our goal is twofold. On the one hand we want to introduce locally covariant Euclidean

quantum field theories using the language of categories and of functionals as first introduced in [BFV03]

and [BDF09] respectively. Since, contrary to these seminal papers, we will also be interested in vector

valued fields defined over Riemannian manifolds, we will also benefit greatly from [Kel09, Kel10] and from

the recent works [KM16, KMM17]. At the same time we want to reinterpret and to analyse the model

introduced in Section 1.1 within this more general conceptual framework.

2.1 General Local Covariance

Following [BFV03], the starting point of the principle of general local covariance consists of identifying a

suitable set of categories which encode all necessary information of the underlying model. For the scopes of

this paper the necessary ingredients are:

1. BkgD′,D, the category of background geometries, such that

• Obj(BkgD′,D) are pairs (N ; b) where N ≡ (Σ,M) identifies a pair of smooth, connected, ori-

ented manifolds, with dimΣ = D′ and dimM = D, while b ≡ (ψ, γ, g) codifies the background

data, that is ψ ∈ C∞(Σ;M) while γ and g are smooth Riemmannian metrics respectively on Σ
and M .

• Ar(BkgD′,D) are pairs (τ, t) where τ : Σ → Σ̃ and t : M → M̃ are orientation preserving,

isometric embeddings subject to the compatibility condition

ψ̃ ◦ τ = t ◦ ψ , (9)

where ψ̃ ∈ C∞(Σ̃; M̃ ). If dimΣ = D′ = 2, with a slight abuse of notation we write Bkg ≡
Bkg2,D as D plays no relevant role in our analysis

2. Alg is the category whose objects are unital ∗-algebras, while the arrows are unit preserving, injective

∗-homomorphisms.

3. Vec is the category whose objects are real vector spaces while the arrows are injective linear mor-

phisms.

Remark 4: Observe that, in comparison with [KMM17, Def. 3.4], we adopt a slightly different definition

of category of background geometries, adapted to the framework we consider. Nevertheless BkgD′,D still

enjoys the notable property of being dimensionful in the sense of [KMM17]. In other words there exists an

action of R+ := (0,∞) on Obj(BkgD′,D)

(N ; b) = (Σ,M,ψ, γ, g) → (N ; bλ) := (Σ,M ;ψλ, γλ, gλ) := (Σ,M ;ψ, λ−2γ, λD
′−2g) , (10)

which is preserved by the arrows of BkgD′,D and whose definition is tied to the engineer dimension of ψ, g
as per (8).

Definition 5: An Euclidean locally covariant theory is a covariant functor A : BkgD′,D → Alg which satis-

fies the scaling hypothesis: For all λ > 0, let Aλ : BkgD,D′ → Alg be the covariant functor A ◦ ρλ, where

ρλ : BkgD,D′ → BkgD,D′ is the functor defined as the identity on morphisms while on objects it acts as per

(10). Then, for all λ, µ, σ > 0, there exists a natural isomorphism Aµ

ςλ,µ
=⇒ Aλ (with inverse Aλ

ς−1

λ,µ
=⇒ Aµ)

such that

ςλ,µ[N ; b] = ςλ,σ[N ; b] ◦ ςσ,µ[N ; bλ] , ςλ,λ[N ; b] = IdA[N ;b] , (11)

for all (N ; b) ∈ Obj(BkgD′,D).

Remark 6: For notational convenience we shall adopt the convention

ςλ[N ; b]
.
= ς1,λ[N ; b]. ∀[N ; b] ∈ Obj(Bkg)

5



Remark 7: The role of ςλ is to ensure that the scaling (N ; b) → (N ; bλ) is consistently implemented in the

theory described by the functor A. In turn Aλ can be interpreted as the functor describing the theory A at the

scale λ, while the map ςλ[N ; b] : Aλ[N ; b] → A[N ; b] codifies the rules needed to transform the same theory

between different scales. This interpretation will have a significant rôle in our main result, see Theorem 47.

2.2 Linearised nonlinear Sigma models as a locally covariant theory

In this subsection we will show how to reformulate the model in Section 1.1 as an Euclidean locally covariant

theory as per Definition 5. Therefore, henceforth dimΣ = 2 and we will only be interested in the category

of background geometries Bkg ≡ Bkg2,D.

As starting point we focus on an arbitrary, but fixed, background geometry (N ; b) ∈ Obj(Bkg) showing

how to build the algebra A[N ; b] associated with the Lagrangian (3), reformulating the whole construction

in terms of categories only at a later stage.

Let thus (N ; b) = (Σ,M ;ψ, γ, g) ∈ Obj(Bkg) be a background geometry and let E : Γ(ψ∗TM) →
Γ(ψ∗T ∗M) be the elliptic differential operator (4). SinceE is elliptic as per Lemma 2, it admits a parametrix

P : Γc(ψ
∗T ∗M) → Γ(ψ∗TM), c.f. [Wel08, Th. 4.4], unique up to smoothing operators such that

PE − IdΓc(ψ∗TM) ∈ Γ(ψ∗TM ⊠ ψ∗T ∗M) , EP − IdΓc(ψ∗T ∗M) ∈ Γ(ψ∗TM ⊠ ψ∗T ∗M) . (12)

Remark 8: Throughout this paper we shall employ the following notation. Given a vector bundle B
πB−→M

and k ∈ N we denote with S⊗kB
π
S⊗kB−→ M the k-th symmetric tensor product of B. With B⊠n

π
B⊠n
−→ Mn we

identify the k-th exterior tensor product ofB, that is, the vector bundle overMk with fibre π−1
B⊠n(x1, . . . , xn) =

⊗n
ℓ=1π

−1
B (xℓ). For a given s ∈ Γ(B⊠n) we denote with [s] ∈ Γ(B⊗n) the section obtained by considering

the coinciding point limit of s, that is, the section obtained by pull-back of s along the inclusion of the total

diagonal Dn → Mn where Dn := {(x1, . . . , xn) ∈ Mn| x1 = . . . = xn}. The notation SΓ(B⊠n) always

refers to smooth sections over B⊠n which are symmetrized with respect to the base points. Notice that if

s ∈ SΓ(B⊠n) then [s] ∈ Γ(S⊗nB) . In particular, for s ∈ Γ(B) we denote s[⊗]n := [s⊗n] ∈ Γ(S⊗nB)
where s⊗n ∈ SΓ(B⊠n).

Notice that the properties of the parametrices of being symmetric will play a distinguished rôle in the

construction of a commutative algebra of observables – cfr. Definition 20, in sharp contrast with the outcome

of the same procedure in a Lorentzian setting where the dynamics is ruled by symmetric hyperbolic partial

differential operators.

Remark 9: Since E is formally self-adjoint, it follows that the formal adjoint of any parametrix P is again

a parametrix for E. We can therefore consider formally self-adjoint parametrices, whose space will be

denoted with Par[N ; b]. Notice that, because of equation (12), Par[N ; b] is an affine space modelled over

SΓ(ψ∗TM⊠2).

Remark 10: The parametrix P admits locally a Hadamard representation which is constructed in detail in

Appendix A – cf. proposition 52. Here we recall the final result: Let (x, x′) be a pair of points lying in a

suitably constructed convex, geodesic neighbourhood O →֒ Σ centred at x. Then the integral kernel of P
reads locally

P ab(x, x′) = Hab(x, x′) +W ab
P (x, x′) , Hab(x, x′) = V ab log

σ(x, x′)

ℓ2H
, (13)

where σ(x, x′) is the halved squared geodesic distance between x and x′, V ∈ SΓ(ψ∗TO⊠2) is a suitable

symmetric tensor, while H codifies the singular part of the parametrix and WP ∈ SΓ(ψ∗TO⊠2). It is

important to keep in mind that, although (13) is meaningful only locally, one can use [WP ] ∈ Γ(S⊗2ψ∗TO)
together with a partition of unity argument in order to identify a globally defined [WP ] ∈ Γ(S⊗2ψ∗TM)
– which does not depend on the chosen partition of unity – where the subscript is used to highlight the

dependence on the choice of the parametrix P – cf. remark 1. The Hadamard representation and [WP ] will

be particularly important in the following construction as well as in the definition of locally covariant Wick

powers – cf. Example 43.
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In the following we will indicate with P ∈ Par[N ; b] both the linear operator P : Γ(ψ∗T ∗M) →
Γ(ψ∗TM) and its associated distribution P ∈ SΓc(ψ

∗T ∗M⊠2)′ [Hö03, Thm.8.2.12], the subscript c in-

dicating that we consider distributions over compactly supported test-sections. Recall that with Γc we are

implicitly assuming that the sections are symmetrized also with respect to the base points.

Now we consider an arbitrary but fixed P ∈ Par[N ; b], using it first to define a suitable unital ∗-algebra

associated to the system whose dynamics is ruled by the operator E. Secondly we show how to built an

algebra which is independent from the chosen P .

Definition 11: We denote with Ploc[N ; b] the complex vector space of functionals F : Γ(ψ∗TM) → C

spanned by monomial functionals

Fωk(ϕ) :=

∫

Σ
〈ϕ[⊗]k, ωk〉 , ωk ∈ Γc(∧

topT ∗Σ⊗ S⊗kψ∗T ∗M) , k ∈ N ∪ {0} , (14)

where ϕ[⊗]k ∈ Γ(S⊗kψ∗TM) denotes the coinciding point limit of the symmetric tensor product S⊗kϕ ∈
SΓ(ψ∗TM⊠k) – cf. remark 1. Moreover, Γc(∧

topT ∗Σ ⊗ S⊗kψ∗T ∗M) denotes the compactly supported

sections of the vector bundle ∧topT ∗Σ ⊗ S⊗kψ∗T ∗M – here ∧topT ∗Σ denotes the bundle of densities on

Σ – while 〈ϕk, ωk〉 denotes the pairing ϕa1(x) . . . ϕak(x)ωa1...ak(x). We refer to Ploc[N ; b] as to the space

of local polynomial functionals (with no derivatives of the configurations). For future convenience we set

P[N ; b] :=
⊕

n≥0P
⊗n
loc [N ; b] with P⊗0

loc ≡ C.

Remark 12: Notice that any F ∈ Ploc[N ; b] enjoys the following remarkable properties which will be

exploited in the forthcoming discussion:

1. F is smooth, namely, for all ϕ,ϕ1, ..., ϕn ∈ Γ(ψ∗TM), n ≥ 1, the n-th functional derivative F (n)[ϕ],
defined as

〈
F (n)[ϕ], ϕ1 ⊗ . . . ⊗ ϕn

〉
:=

∂n

∂s1 . . . ∂sn
F

(
ϕ+

n∑

i=1

siϕi

)∣∣∣∣
s1=...sn=0

, (15)

identifies a symmetric, compactly supported distribution F (n)[ϕ] ∈ SΓ(ψ∗TM⊠n)′.

2. F is compactly supported, that is,
⋃
ϕ supp(F (1)[ϕ]) is compact;

3. F is local, because for all ϕ ∈ Γ(ψ∗TM), the n-th functional derivative F (n)[ϕ] is supported on the

thin diagonal of Σn = Σ× ...×Σ︸ ︷︷ ︸
n

, that is supp(F (n)[ϕ]) ⊂ Dn := {(x1, . . . , xn) ∈ Σn|x1 = . . . =

xn}. Moreover WF(F (n)[ϕ]) is transversal T ∗Dn =, where WF(F (n)[ϕ]) stands for the wave front

set of F (n)[ϕ], [Hö03, Def. 8.1.2].

For simplicity – cf. the proof of Proposition 13 and Remark 15 – our definition excludes local polynomial

functionals which contain derivatives of the configuration ϕ; the latter class will play no rôle in what follows.

Proposition 13: The vector space P[N ; b] consisting of smooth, local, polynomial functionals is an associa-

tive and commutative ∗-algebra if endowed with the product

(F ·P G)(ϕ) = (M◦ exp(ΥP )(F ⊗G)) (ϕ) := F (ϕ)G(ϕ) +
∑

n≥1

1

n!

〈
F (n)[ϕ], P⊗nG(n)[ϕ]

〉
, (16)

where P⊗nG(n)[ϕ] ∈ SΓc(ψ
∗T ∗M⊠n)′ is the extension of P ⊗ ...⊗ P︸ ︷︷ ︸

n

to G(n)[ϕ] according to [Hö03, Thm.

8.2.13], while

M(F ⊗G)(ϕ) = F (ϕ)G(ϕ),

is the pointwise product. Here ΥP is such that, for all ϕ1, ϕ2 ∈ Γ(ψ∗TM),

ΥP (F ⊗G)(ϕ1, ϕ2) := 〈F (1)[ϕ1], PG
(1)[ϕ2]〉 .

The ∗-involution is completely characterized on P[N ; b] by requiring F ∗(ϕ) := F (ϕ). We denote with

FP [N ; b] the ∗-algebra (P[N ; b], ·P , ∗).
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Proof. The first step consists of observing that (16) is well-defined. Convergence of the sum is guaranteed

since, the functionals being polynomial, only a finite set of terms contributes. The only problem might arise

from 〈F (n)[ϕ], P⊗nG(n)[ϕ]〉. Yet, in the case at hand, the singular behaviour of F (n)[ϕ], G(n)[ϕ] is known –

cf. remark 12 – while that of P is that of the Hadamard parametrix H whose local behaviour is logarithmic

in the halved squared geodesic distance σ, see equations (67). Hence, using that the scaling degree of H
is smaller than 2 and that F,G do not contain derivatives of ϕ, we can use [BF99, Thm. 5.2] to infer that

the contraction of P⊗n ∈ SΓc(ψ
∗T ∗M⊠2n)′ with F (n) ⊗ G(n) ∈ SΓ(ψ∗TM⊠2n)′ yields a well-defined

distribution with compact support in C∞(Σ)′, which can thus be integrated against the constant function.

To conclude the proof, we observe that associativity is guaranteed per construction while commutativity is a

by-product of the fact that the parametrix P is symmetric – cf. remark 9.

Remark 14: Equation (16) is well-defined as a consequence of [Hö03, Thm. 8.2.13] and of the extension

of the parametrix P as a distribution on Γc(∧
topT ∗Σ⊗ψ∗T ∗M). This is defined setting Pα := µγP (∗

−1
γ α)

for α ∈ Γc(∧
topT ∗Σ⊗ ψ∗T ∗M) and

〈α,Pβ〉 :=

∫

Σ
〈α, ∗γPα〉 , (17)

for α, β ∈ Γc(∧
topT ∗Σ⊗ψ∗T ∗M) while ∗γ denotes the Hodge operator ∗γ : Γ(∧

•T ∗Σ) → Γ(∧dimΣ−•T ∗Σ).

Remark 15: Notice that the previous Proposition strongly relies on the assumption dimΣ = 2 as well

as on Definition 11 of smooth polynomial local functionals without derivatives. As a matter of fact, for

higher dimension or considering polynomial functionals including derivatives of the configuration ϕ, the

contraction between P⊗n and F (n) ⊗G(n) would not be uniquely defined. In this case, different extensions

exist as one can infer following [BF99] and thus one has to cope with families of well-defined products ·P .

An application of these ideas has already been studied in [FR12, FR13] in the context of gauge theories. The

discussion of such scenario is behind the scopes of this paper and it is postponed to a future work [DDR19],

see also [Kel09, Kel10] and [Da14].

Remark 16: It is worth observing that the algebra of local polynomial functionals FP [N ; b] already in-

cludes elements which can be interpreted as Wick powers of a field ϕ. As a concrete example, thought

especially for a reader who is more familiar with the standard point splitting procedure, consider the func-

tional Fω(ϕ) =
∫
Σ dµγ ϕ

a(x)ϕb(x)ωab(x) with ω ∈ Γc(S
⊗2ψ∗T ∗M). One can in turn pick any se-

quence (gn)a(x)(fn)b(x
′) with fn, gn ∈ Γc(ψ

∗T ∗M) for all n ∈ N such that, in the weak topology,

lim
n→∞

(fn)a(x)(gn)b(x
′) = ωab(x)δ(x, x

′). As a consequence one can rewrite

Fω(ϕ) = lim
n→∞

F ′
fn
(ϕ)F ′

gn(ϕ) = lim
n→∞

((
F ′
fn

·P F
′
gn

)
(ϕ)− P (fn, gn)

)
,

where F ′
fn
(ϕ) =

∫
Σ dµγ fn(x)ϕ(x). The right hand side of this last chain of equalities translates in the

functional language the standard expression yielding the definition of a Wick ordered, squared field via a

point splitting procedure.

Notice that (N ; b) → FP [N ; b] does not identify an Euclidean locally covariant theory as per Definition

5 due to the choice of an arbitrary P ∈ Par[N ; b]. Our next goal is to overcome this hurdle and the first

step in this direction consists of showing that, for a fixed object in Bkg, all choices of P are equivalent. The

following Proposition generalizes to the case in hand a well-known property, see e.g. [HW01, Lemma 2.1]

for the counterpart in a Lorentzian setting. Since the proof is identical, mutatis mutandis to that of [Lin13,

Prop. 1.4.7], [Kel09, Prop. II.4], we omit it.

Proposition 17: Let (N ; b) ∈ Obj(Bkg) be arbitrary but fixed and let P, P̃ ∈ Par[N ; b]. Then the algebras

FP [N ; b] and F
P̃
[N ; b] are ∗-isomorphic, the ∗-isomorphism being realized by

αP̃P : F
P̃
[N ; b] → FP [N ; b] , (αP̃PF )(ϕ) :=

[
exp

[
Υ
P−P̃

]
F

]
(ϕ) , (18)

where
[
exp

[
Υ
P−P̃

]
F

]
(ϕ) =

∞∑

n=0

1

2nn!
〈(P − P̃ )⊗n, F (2n)[ϕ]〉 (19)
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and where Υ
P−P̃

is such that

(Υ
P−P̃

F )(ϕ) :=
1

2

〈
P − P̃ , F (2)[ϕ]

〉
.

In view of this last Proposition we can recollect all ∗-algebras FP [N ; b] in a single object:

Definition 18: We call E [N ; b] the bundle

E [N ; b] :=
⋃

P

FP [N ; b], (20)

with base space Par[N ; b] and projection map πE[N ;b](FP ) := P .

Remark 19: Notice that the action P → P +W of SΓ(ψ∗TM⊠2) on Par[N ; b] can be lifted to E [N ; b] via

the ∗-isomorphism (18):

αW (FP ) := αPP+WFP , ∀FP ∈ E [N ; b] . (21)

Definition 20: Let Γeq(E [N ; b]) be the the complex vector space of equivariant sections on E [N ; b]

Γeq(E [N ; b]) :=
{
F ∈ Γ(E [N ; b]) | F (P ) = αP̃PF (P̃ ) ∀P, P̃ ∈ Par[N ; b]

}
. (22)

We denote with A[N ; b] ≡ (Γeq(E [N ; b]), ·, ∗) the unital ∗-algebra with the pointwise product ·P as in (16)

and with the fiberwise involution

(F ·G)(P ) := F (P ) ·P G(P ) , F ∗(P ) := F (P )∗ , (23)

for all F,G ∈ Γeq(E [N ; b]).

We can now prove that A[N ; b] is the sought algebra.

Remark 21: The algebra A[N ; b] can also be read as a concrete realization of the unique (up to ∗-isomorphism)

∗-algebra A[N ; b] for which there exists a family of ∗-isomorphisms αP : A[N ; b] → FP [N ; b] for all

P ∈ Par[N ; b] such that, αP = αPQ ◦ αQ for all P,Q ∈ Par[N ; b]. In addition we observe that the

concrete algebras that we have constructed do not carry any topology. Following [BDLR18] one can bypass

this limitation. Yet, working with topological ∗-algebras would not change significantly the properties and

the constructions in this paper. On the contrary it would play a key role whenever one looks for algebraic

states on A[N ; b] and for the associated GNS representation. Since this issue goes well beyond the scope of

this work, we shall not further comment about it.

Remark 22: In the following we need to specify a few additional functor. We call

Γ: Obj(Bkg) → Obj(Vec) Γ[N ; b] := Γ(ψ∗TM) ,

Γc : Obj(Bkg) → Obj(Vec) Γc[N ; b] := Γc(ψ
∗T ∗M) ,

Par : Obj(Bkg) → Obj(Vec) [N ; b] 7→ Par[N ; b] .

Let (τ, t) ∈ Ar(Bkg) be an arrow from (N ; b) to (Ñ ; b̃), that is, τ : Σ → Σ̃ and t : M → M̃ are isometric,

orientation preserving embeddings such that ψ̃ ◦ τ = t ◦ ψ. The map τ can be lifted to an isomorphism of

vector bundles τ̂ : τ∗ψ̃∗TM̃ → ψ̃∗T ∗M̃ |τ(Σ) by setting τ̂(x, ξ) := (τ(x), ξ) – cf. Remark 1. In addition the

compatibility condition (9) implies

τ∗ψ̃∗TM̃ = (ψ̃ ◦ τ)∗TM̃ = (t ◦ ψ)∗TM̃ = ψ∗t∗TM̃ = dt ◦ ψ̂(ψ∗TM) ,

where dt : TM → TM̃ is the push-forward along t, while ψ̂ : ψ∗TM → TM |ψ(Σ) has been defined in

Remark 1. The composition τ̂t := τ̂ ◦dt◦ ψ̂ : ψ∗TM → ψ̃∗TM̃ |τ(Σ) is thus an injective morphism of vector

bundles and the same applies to τ̂t,c : ψ
∗T ∗M → ψ̃∗T ∗M̃ |τ(Σ). Hence, we can consider

Γ[τ, t] : Γ[Ñ ; b̃] → Γ[N ; b] Γ[τ, t]ϕ̃ := τ̂t
−1 ◦ ϕ̃ ◦ τ ,

Γc[τ, t] : Γc[N ; b] → Γc[Ñ ; b̃] Γc[τ, t]ω := τ̂t,c ◦ ω ◦ τ−1 ,

Par[τ, t] : Par[Ñ ; b̃] → Par[N ; b] Par[τ, t]P̃ := Γ[τ, t] ◦ P̃ ◦ Γc[τ, t] .
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Notice that Γc[τ, t]ω is well-defined on account of the support properties of ω, in particular Γc(τ, t)ω|x = 0
if x /∈ τ(Σ). In other words Γ,Par (resp. Γc) are contravariant (resp. covariant) functors from Bkg to Vec.

Proposition 23: For all (N ; b) ∈ Obj(Bkg), let A : Bkg → Alg be such that, for all (N ; b) ∈ Obj(Bkg),
A[N ; b] is the unital ∗-algebra as per Definition 20, while, for every (τ, t) ∈ Arr(Bkg), A[τ, t] ∈ Ar(Alg) as

A[τ, t] : A[N ; b] → A[Ñ ; b̃] A[τ, t]F := Γ[τ, t]♯ ◦ F ◦ Par[τ, t] ,

where

Γ[τ, t]♯ : F
Par[τ,t]P̃

[N ; b] → F
P̃
[Ñ , b̃] Γ[τ, t]♯F := F ◦ Γ[τ, t] .

Then A is a covariant functor.

Proof. It suffices to observe that A is well-defined when acting on objects since A[N ; b] = Γeq[N ; b] is per

construction a unital ∗-algebra, whereas the analysis in Remark 22 entails that A[τ, t] ∈ Arr(Alg) for all

(τ, t) ∈ Ar(Bkg). Since all structure used to define A act covariantly, A is a covariant functor.

In order to conclude that the functor A introduced in Definition 20 identifies an Euclidean locally covariant

theory as per Definition 5, the scaling property remains to be discussed. It is particularly important to stress

the relation between such property and the local Hadamard representation of the parametrix – cf. remark 25.

Proposition 24: Let (N ; b) = (Σ,M ;ψ, γ, g) ∈ Obj(Bkg), (N ; bλ) := (Σ,M ;ψ, λ−2γ, g) ∈ Obj(Bkg),
for λ > 0 – cf. Remark 4. Let A[N ; b],A[N ; bλ] be the associated ∗-algebras as per definition 20. Then the

map

sλ : Par[N ; b] → Par[N ; bλ] , sλP := Pλ := λ−2P , (24)

is an isomorphism of affine spaces. Furthermore, the map

ςλ : A[N ; bλ] → A[N ; b] , (ςλF )(P,ϕ) := ŝλF (Pλ, ϕ) , (25)

is an isomorphism of ∗-algebras such that condition (11) holds true. Here ŝλ : E [N ; bλ] → E [N ; b] denotes

the unique lift of sλ to an isomorphism of vector bundles such that πE[N ;b] ◦ ŝλ = sλ ◦ πE[N ;bλ].

Proof. The first assertion is a direct consequence of the defining properties (12) for P ∈ Par[N ; b] and

of the behaviour under the scaling γ → λ−2γ of the operator E defined in (4), that is E → λ2E. The

associated map ŝλ : E [N ; bλ] → E [N ; b] is defined by ŝλ(P,F ) := (Pλ, F ). Notice that this guarantees that

ςλ : Γeq[N ; bλ] → Γeq[N ; b] is well-defined and it satisfies condition (11).

It remains to be shown that the map ςλ defined in (25) is a ∗-isomorphism between A[N ; bλ] and A[N ; b].
For that it is enough to show that ςλ(F · G) = ςλF · ςλG for all F,G ∈ A[N ; bλ]. Let P ∈ Par[N ; b]. A

direct computation shows that

(ςλF )[P ]
(n) = ŝλF [Pλ]

(n) . (26)

Moreover, we have that

〈
(ςλF )[P ]

(n), P⊗n(ςλG)[P ]
(n)
〉
= ŝλ

〈
F (n)[Pλ], P

⊗nG(n)[Pλ]
〉
= ŝλ

〈
F (n)[Pλ], P

⊗n
λ G(n)[Pλ]

〉
, (27)

where in the first equality we used equation (26) and the fact that ŝλ commutes with the contraction with P ,

while the second equality follows from the scaling properties of the Hodge operator ∗γ → λ2∗γ – cf. remark

14. By inserting these results in the equations (16-23) for · the equality ςλ(F · G)[P ] = [ςλ(F ) · ςλ(G)][P ]
follows.

Remark 25: With reference to Remark 10, we compare the local Hadamard expansion of the integral kernels

P bc(x, x′), P bcλ (x, x′) of the parametrices P,Pλ = λ−2P . Notice that, although Pλ = λ−2P , at the level

of integral kernels it holds P bcλ (x, x′) = P bc(x, x′) because of the presence of the different volume forms

µγ , µγλ = λ2µγ – cf., Remark 14. Yet the Hadamard parametrix H,Hλ, appearing in equation (13), and the
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associated smooth remainders WP ,WPλ do change. More precisely, under the scaling γ → λ−2γ, in any

geodesic neighbourhood O ⊂ Σ, the singular part of the parametrix transforms as

Hab(x, x′) → Hab
λ (x, x′) = V ab

λ (x, x′) log
σλ(x, x

′)

ℓ2H
,

where Vλ ∈ SΓ(ψ∗TM⊠2). As a consequence, whenever we choose a parametrix P , which decomposes as

P ab = Hab +W ab, the counterpart associated with the rescaled Hadamard parametrix Hλ reads

P ab(x, x′) = Hab
λ (x, x′) +W ab

λ (x, x′) , (28)

As already highlighted in Remark 10, one can consider the coinciding point limit x → x′ to construct

[WP ] ∈ Γ(S⊗2ψ∗TM). On account of proposition 52 of Appendix A, under scaling the global section [WP ]
transforms as [WP,λ]

bc = [WP ]
bc − 2gbc log λ.

Collecting definition (20) and propositions 17-23-24 we have the following result which concludes the

construction of an Euclidean locally covariant theory as per Definition 5.

Proposition 26: The functor A : Bkg → Alg identifies an Euclidean locally covariant theory as per Defini-

tion 5.

Remark 27: Notice that the whole construction of the functor A profits from a simplification due to the

dimensional restriction D = 2. Indeed, as pointed out in remark 15, for D > 2 the singularity behaviour

of the parametrices P would spoil the possibility to define the product · as per Definition 20 on the whole

set of local polynomials P[N ; b]. In this latter case the product would have been defined on the subset

Preg[N ; b] ⊂ P[N ; b] made of those elements F ∈ P[N ; b] with smooth functional derivatives at any order.

An extension procedure should be applied to define the product · among local polynomial functionals in the

same spirit of [BDF09, HW02, Kel09]. We will refrain from describing such a procedure here, see however

[DDR19].

For the rest of this paper we will consider the local covariant theory A introduced in Definition 20.

2.3 Local covariance of observables and of quantum fields

In this section we will be especially interested in identifying a distinguished class of elements of A[N ; b]
yielding notion of locally covariant observable. For future convenience we first introduce the following

functors.

Definition 28: Let (N ; b) = (Σ,M ;ψ, γ, g), (Ñ , b̃) = (Σ̃, M̃ ; ψ̃, γ̃, g̃) ∈ Obj(Bkg) and let (τ, t) ∈
Ar(Bkg) be an arrow from (N ; b) to (Ñ ; b̃). We call C∞

c : Bkg → Alg the covariant functor

C∞
c [N ; b] := C∞

c (Σ) C∞
c [τ, t]f := f ◦ τ−1 ∀f ∈ C∞

c [N ; b] . (29)

Notice thatC∞
c [τ, t]f is well-defined on account of the support properties of f , in particular C∞

c [τ, t]f(x) =
0 whenever x /∈ τ(Σ). Let ∧topT ∗Σ denotes the bundle of densities on Σ. Then we can

Definition 29: Let k ∈ N. We call SΓkc : Bkg → Alg, the covariant functor such that, for all (N ; b) ∈
Obj(Bkg)

SΓkc [N ; b] :=
∞⊕

m=0

SΓc((∧
topT ∗Σ⊗ S⊗kψ∗T ∗M)⊠m) , SΓc((∧

topT ∗Σ⊗ S⊗kψ∗T ∗M)⊠0) ≡ C (30)

where SΓc((∧
topT ∗Σ⊗ S⊗kψ∗T ∗M)⊠m) denotes the compactly supported symmetric sections of the m-th

exterior tensor product of the vector bundle ∧topT ∗Σ ⊗ S⊗kψ∗T ∗M – cf. Remark 8. In addition, for all

(τ, t) ∈ Arr(Bkg),
SΓkc [τ, t] : Γ

k
c [N ; b] → Γkc [Ñ ; b̃],

where SΓkc [τ, t]ω := τ̂m,kt,c ◦ ω ◦ τ−1 for all ω ∈ SΓkc ((∧
topT ∗Σ⊗ S⊗kψ∗T ∗M)⊠m). Here τ̂t,c : ψ

∗T ∗M →

ψ̃∗T ∗M̃ |τ(Σ) is an injective morphism of vector bundles– cf. proof of proposition 23, which extends to a map

τ̂m,kt,c : (∧topT ∗Σ⊗ S⊗kψ∗T ∗M)⊠m → (∧topT ∗Σ̃⊗ S⊗kψ̃∗T ∗M̃)⊠m|τ(Σ), m ∈ N ∪ {0}, by considering a

suitable symmetrized tensor product and pull-back for top-densities.
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Observe that similarly we define the contravariant functor Γk : Bkg → Alg as

SΓk[N ; b] :=
∞⊕

m=0

SΓc((S
⊗kψ∗TM)⊠m) , (31)

The associated arrow Γk[τ, t] : Γ[Ñ ; b̃] → Γk[N ; b] is obtained by considering the injective morphism of vec-

tor bundle τ̂t : ψ
∗TM → ψ̃∗TM̃ |τ(Σ) – cf. proof of Proposition 23 – and its extension to τ̂m,kt : (S⊗kψ∗TM)⊠m →

(S⊗kψ̃∗TM̃)⊠m|τ(Σ) for all m ∈ N ∪ {0}. The arrow SΓk[τ, t] : SΓk[Ñ ; b̃] → SΓk[N ; b] is then defined as

SΓk[τ, t]C̃ := (τ̂m,kt )−1 ◦ C̃ ◦ τ for all C̃ ∈ SΓ((S⊗kψ̃∗TM̃)⊠m).

Remark 30: Since, from time to time, it is convenient to focus on a fixed m-th symmetric, exterior tensor

product of ∧topT ∗Σ ⊗ S⊗kψ∗T ∗M , we can work also with the covariant functors SΓk,mc : Bkg → Vec,

m ∈ N ∪ {0}, such that for all (N ; b) ∈ Obj(Bkg) and for all (τ, t) ∈ Ar(Bkg),

SΓk,mc [N ; b] := SΓc((∧
topT ∗Σ⊗ S⊗kψ∗T ∗M)⊠m) , SΓk,mc [τ, t] := SΓkc [τ, t]

∣∣
SΓk,mc [N ;b]

. (32)

In the following we will be mainly interested in functionals which are constructed out of compactly sup-

ported sections of an arbitrary (∧topT ∗Σ⊗S⊗kψ∗T ∗M)⊠m. We stress that our analysis is tied to the functor

A introduced in Definition 20, though the procedure can be extended to any Euclidean locally covariant

theory as per Definition 5. As a first step we need to relate the functors A and SΓkc . Inspired by [BFV03],

we introduce

Definition 31: Let k ∈ N and let A : Bkg → Alg and SΓkc : Bkg → Alg be the functors as per Definition 20

and 29 respectively. We call locally covariant observable of degree k a natural transformation Ok : SΓ
k
c → A

i.e., for every (N ; b) ∈ Obj(Bkg), Ok[N ; b] : SΓkc [N ; b] → A[N ; b] is an arrow in Alg such that, for every

(τ, t) ∈ Ar(Bkg) mapping (N ; b) to (Ñ ; b̃), it holds that

Ok[Ñ ; b̃] ◦ SΓkc [τ, t] = A[τ, t] ◦ Ok[N ; b] . (33)

For concreteness, we underline that, for all (N ; b) ∈ Obj(Bkg), Ok[N ; b] can be read as an algebra-

valued distribution, that is, for all P ∈ Par[N ; b], for all ϕ ∈ Γ(ψ∗TM) and for all m ∈ N,

Ok[N ; b](•, P, ϕ) : SΓc((∧
topT ∗Σ⊗ S⊗kψ∗T ∗M)⊠m) ∋ ωm 7→ Ok[N ; b](ωm, P, ϕ) ∈ C , (34)

defines a distribution Ok[N ; b](•, P, ϕ) ∈ SΓc((∧
topT ∗Σ ⊗ S⊗kψ∗T ∗M)⊠m)′. Henceforth we will follow

(34) writing for notational simplicity Ok[N ; b](ω,P, ϕ) in place
[
Ok[N ; b](ω)

]
(P,ϕ).

Remark 32: The previous definition can be generalized by substituting the functor SΓkc with an arbitrary

functor F : Bkg → Alg. In this case we still call local and covariant observable any natural transformation

O : F → A – cf. equation (57) in section 3.

Remark 33: Notice that, since Ok[N ; b] ∈ Ar(Alg), for all m ∈ N and ω1 ⊗ . . .⊗ ωm ∈ SΓk,mc [N ; b] with

ωj ∈ SΓk,1c [N ; b] for all j = 1, . . . ,m it holds

Ok[N ; b](ω1 ⊗ · · · ⊗ ωm) = Ok[N ; b](ω1) · · · Ok[N ; b](ωm) .

This property implies that a locally covariant observable as per Definition 31 is known once it is known its

value on degree m ∈ {0, 1}. In this sense, a locally covariant observable consists of a locally covariant

polynomial in the field – Ok[N ; b] at degree m = 1 – together with its powers according to the product · of

A[N ; b] – see Definition 20. As already stressed in Remark 27 these observations depend crucially on the

dimensional restriction D = 2. For generic D, the identification of a locally covariant observable Ok can be

interpreted as: (a) the identification of a local and covariant polynomial functional in the field configuration

ϕ, namely of Ok[N ; b] at degree m = 1; (b) the identification of an extension of the product ·, which allows

to define the product between Ok[N ; b] with itself.

Example 34: Consider (N ; b) ∈ Obj(Bkg) and let Φ[N ; b] : SΓ1
c [N ; b] → A[N ; b] be defined as follows. If

ω1 ∈ SΓ1,1
c [N ; b] then Φ[N ; b](ω1) is the linear functional such that, for all (P,ϕ) ∈ Par[N ; b]×Γ(ψ∗TM),

Φ[N ; b](ω1, P, ϕ) :=

∫

Σ
〈ω1, ϕ〉 . (35)
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As pointed out in Remark 33, this fixes completely Φ[N ; b] on the whole SΓ1,1
c [N ; b]. Let now (τ, t) ∈

Ar(Bkg) be a mapping from (N ; b) to (Ñ , b̃) ∈ Obj(Bkg). To conclude that Φ is a natural transformation,

we need to show that [A(τ, t)]◦Φ[N ; b] = Φ[Ñ , b̃]◦SΓ1
c(τ, t). This is a direct consequence of the definition,

as one can readily infer, since, for every ω1 ∈ SΓ1,1
c [N ; b] and P̃ ∈ Par(Ñ ; b̃), ϕ̃ ∈ Γ(ψ̃∗TM̃)

[
A[τ, t]Φ[N ; b](ω1)

]
(P̃ , ϕ̃) = Φ[N ; b](ω1,Par[τ, t]P̃ ,SΓ

1[τ, t]ϕ̃) =

∫

Σ̃
〈ϕ̃,SΓ1

c [τ, t]ω1〉

= Φ[Ñ , b̃](SΓ1
c(τ, t)ω1, P̃ , ϕ̃) ,

where Par[τ, t]P̃ ∈ Par[Ñ ; b̃] has been defined in the proof of proposition 23. In view of its definition and

of its properties Φ[N ; b] identifies a locally covariant observable of degree 1 to which we refer as a locally

covariant quantum field.

Example 35: In order to define powers of a locally covariant quantum field, which could be interpreted also

as locally covariant observables, the starting point is Remark 16. Here a candidate for a well-defined Wick

ordered, squared field is introduced, but the definition depends on the choice of a parametrix P , a procedure

which is intrinsically non locally covariant. In order to bypass this hurdle, constructing at the same time

an equivariant section of E [N ; b], we need to rely on the Hadamard representation of any parametrix P
as in Equation (13). As outlined in Example 10, we can use such representation to identify from each

parametrix P , [WP ] ∈ Γ(S⊗2ψ∗TM). Bearing in mind this information, consider (N ; b) ∈ Obj(Bkg) and

let Φ2[N ; b] : SΓ2
c [N ; b] → A[N ; b] be defined as follows. If ω1 ∈ SΓ2,1

c [N ; b] then Φ2[N ; b](ω1) is the linear

functional such that, for all (P,ϕ) ∈ Par[N ; b]× Γ(ψ∗TM),

Φ2[N ; b](ω1, P, ϕ) :=

∫

Σ
〈ϕ[⊗]2 + [WP ], ω1〉 , (36)

where ϕ[⊗]2 ∈ Γ(S⊗2ψ∗TM) – cf. remark 8. In order to realize that Φ2 identifies a locally covariant

observable of degree 1, it suffices to proceed as in Example 34 and thus we shall not dwell into the details. It

is important to observe that (36) is a possible realization of a Wick power of Φ, but it is not the unique one.

We will discuss this issue in detail in the next section.

For later convenience we introduce a notion which intertwines locally covariant observables with scaling

yielding as a by-product an abstract notion of engineer dimension which matches the one discussed at the

end of Section 1.1.

Definition 36: Let k ∈ N, and let Ok : SΓ
k → A be a locally covariant observable of degree k as per

Definition 31. For any [N ; b] ∈ Obj(Bkg) we call rescaled locally covariant observable at scale λ > 0,

SλOk the locally covariant observable defined by
(
SλOk

)
[N ; b] := Ok[N ; bλ] , (37)

where [N ; bλ] is defined in (10). In addition we say that Ok[N ; b] has engineering dimension dOk ∈ R if

(SλOk)[N ; b](ωm) = λdOkmOk[N ; b](ωm) , (38)

holds for all [N ; b] ∈ Obj(Bkg) and ωm ∈ SΓk,mc [N ; b]. On the contrary we say that Ok scales almost

homogeneously with dimension κ ∈ R and order ℓ ∈ N if

SλOk[N ; b](ωm) = λκmOk[N ; b](ωm) + λκm
ℓ∑

j=0

log(λ)jOj [N ; b](ωm) , (39)

holds for all [N ; b] ∈ Obj(Bkg) and ωm ∈ SΓk,mc [N ; b] where, for all j ∈ {0, . . . , ℓ}, Oj is a locally

covariant observables which scales almost homogeneously with degree κ and order ℓ− j.

Remark 37: We stress, that while our analysis could be slavishly applied to models for which the dimension

of Σ is arbitrary, Definition 36 relies on dimΣ = 2. In the general case, (37) should be modified as follows
(
SλO

)
[N ; b] := ςλ[N ; b] ◦ O[N ; bλ] ,

where dimΣ = D while ςλ[N ; b] : A[N ; bλ] → A[N ; b] is the scaling transformation introduced in Defini-

tion 5.
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The engineering dimension can be computed explicitly in many notable instances:

Example 38: Consider the locally covariant observables defined in Example 34 via the natural transforma-

tions Φ. Putting together (35) and (10), one can compute that SλΦ = Φ that is the engineering dimension of

Φ is 0.

At the same time, if we consider the locally covariant observable Φ2 as per Example 35, in order to

evaluate its behaviour under scaling we need to take into account Remark 25 according to which [WP,λ]
bc =

[WP ]
bc − 2gbc log λ. Hence, for all λ > 0

(SλΦ
2) = Φ2 + V log λ,

where V is the locally covariant observable of degree 0 such that

V[N ; b](ω1, P, ϕ) = −2

∫

Σ

〈g♯, ω1〉 , ω1 ∈ SΓ2,1
c [N ; b] .

In other words Φ2 scales almost homogeneously with dimension 0 and order 1.

2.4 Wick ordered powers of quantum fields

Following our previous analysis, in this section we address the issue of Wick ordering in order to construct,

for any [N ; b] ∈ Obj(Bkg), well-defined algebra valued distributions, which can be read as locally covariant

powers of the underlying, locally covariant quantum field Φ as the one introduced in Example 34.

Although, in the Lorentzian framework, this is an overkilled topic starting from the seminal work

[HW01], here we will be mainly interested in the Euclidean setting and in vector-valued fields. For this

reason we shall follow mainly the rationale used in [KMM17]. In particular, tackling the problem of Wick

ordering can be divided in two separate issues, the first concerning the existence of a well-defined ordering

scheme, the second addressing the question of classifying the possible ambiguities in the construction of

Wick ordered observables, while keeping track of local covariance.

In the following we give an abstract definition of Wick ordered powers of a quantum field adapting to

the case in hand [KMM17, Def. 5.2].

Definition 39: Let Φ be a locally covariant observable defined in Example 34. A family of Wick powers

associated to Φ is a family of natural transformations Φ• = {Φk}k∈N with Φk : SΓkc → A such that it holds

1. For all k ∈ N ∪ {0}, Φk is a locally covariant observable which scales almost homogeneously with

dimension κ = 0.

2. If k = 1, Φ1 = Φ while, if k = 0 Φ0 := 1A, where for all (N ; b) ∈ Obj(Bkg) and for all z ∈ C,

1A[N ; b](z) := z 1A[N ;b], the right hand side of this equality being the identity element of A[N ; b].

3. For all k ∈ N ∪ {0}, it holds, that, for all (N ; b) ∈ Obj(Bkg), ω1 ∈ SΓk,1c [N ; b], P ∈ Par[N ; b] and

ϕ1, ϕ2 ∈ Γ(ψ∗TM), then,

〈
Φk[N ; b](ω1, P )

(1)[ϕ1], ϕ2

〉
= kΦk−1[N ; b](ϕ2yω1, P, ϕ1) , (40)

where ϕ2yω1 ∈ SΓk−1,1
c [N ; b] denotes the section which reads locally ϕa12 (ω1)a1...ak , while the super-

script (1) refers to the functional derivative as per Definition 11.

4. Let d ∈ N and let (N ; bs) ∈ Obj(Bkg) be such that {bs = (ψ, γs, gs)}s∈Rd is a smooth, compactly

supported d-dimensional family of variations of b = (ψ, γ, g) as per Definition 55. For all smooth fam-

ily {Ps}s∈Rd where Ps ∈ Par(N, bs) for all s ∈ R
d, let Uk ∈ Γc(π

∗
dS

⊗kψ∗T ∗M)′ be the distribution

on the pullback bundle π∗dS
⊗kψ∗T ∗M over the base space R

d × Σ – here πd : R
d × Σ → Σ denotes

the canonical projection – defined by

Uk(χ⊗ ω1) :=

∫

Rd

dsΦk[N ; bs](ω1, Ps, 0)χ(s) , ω1 ∈ SΓk,1c [N ; b] , χ ∈ C∞
c (Rd) . (41)
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We require that, for all k ∈ N ∪ {0}.

WF(Uk) = ∅ , (42)

where WF(Uk) denotes the wavefront set of Uk, [Hö03, Def. 8.1.2].

Remark 40: Notice that condition 4 in Definition 39 exploits a smooth, compactly supported d-dimensional

family of variations (γs, gs) of the metrics γ and g while the background configuration ψ has been fixed.

The choice of a smooth family of parametrices {Ps}s∈Rd should be compared with the smooth class of

states ω ◦ τ−1
s introduced in [KMM17, Def. 5.2]. In particular {Ps} is associated with a unique P ∈

SΓc(π
∗
dψ

∗T ∗M⊠2)′ – cf. Definition 55 in Appendix B. The existence of the family {Ps}s∈Rd is a conse-

quence of the smoothness in the parameter s ∈ R
d of the elliptic operator Es associated to the background

data bs – cf. equation (4) – and of the construction of Ps as a pseudodifferential operator [Shu87, Thm.

5.1]. Notice that, given {Ps}s∈Rd , any other family of parametrices is of the form {Ps +Ws}s∈Rd where

{Ws}s∈Rd is a smooth family such that Ws ∈ SΓ(ψ∗TM⊠2) – that is, {Ws}s∈Rd is associated with a unique

W ∈ SΓ(π∗dψ
∗TM⊠2).

Remark 41: Observe that, if condition (42) holds true for Φℓ with ℓ ≤ k then, to verify it for Φk, it suffices

to check it for any, but fixed choice of the family of {Ps}s∈Rd .

The proof of this statement goes by induction: Condition (42) holds true for k = 0, 1 independently

from {Ps}s∈Rs since both Φ0[N ; b] and Φ1[N ; b] = Φ[N ; b] identify per construction constant sections over

E [N ; b]. Let now assume that condition (42) holds true for Uℓ for all ℓ ≤ k and for all smooth family

{Ps}s∈Rd . We now show that, if (42) holds true for Uk built out of a particular smooth family {Ps}s∈Rd ,

then it holds true for all distributions Ũk associated with any other smooth family {P̃s}s∈Rd . From the

equivariance condition – see (22) – it descends

Ũk(χ⊗ ω) =

∫

Rd

dsΦk[N ; bs](ω, P̃s, 0)χ(s) =

∫

Rd

ds αPs
P̃s

[
Φk[N ; bs](ω,Ps)

]
(0)χ(s) .

Definition (18) entails that αPs
P̃s

[
Φk[N ; bs](ω,Ps)

]
is a linear combination of functional derivatives with

respect to ϕ ∈ Γ(ψ∗TM) of Φk[N ; bs](ω,Ps) evaluated at ϕ = 0. By condition (40) each of such derivatives

which is non trivial can be reduced to a Wick power Φℓ with ℓ ≤ k. Explicitly it holds

αPs
P̃s

[
Φk[N ; bs](ω,Ps)

]
(0) = Φk[N ; bs](ω,Ps, 0) +

k∑

2ℓ=2

k!!

(2ℓ)!!(k − 2ℓ)!!
Φk−2ℓ[N ; bs]([P̃s − Ps]

⊗ℓ
yω,Ps, 0) ,

where locally ([P̃s −Ps]
⊗ℓ
yωk)(x) = (P̃s −Ps)

a1a2(x, x) . . . (P̃s −Ps)
aℓ−1aℓ(x, x)(ωk)a1...ak(x). Observe

that P̃s − Ps ∈ SΓ(ψ∗TM⊠2) is smooth in s ∈ R
d and moreover the last expression contains only terms of

the form Uℓ, ℓ ≤ k, where (42) holds true by the inductive hypothesis.

Remark 42: Notice that, if Φ• identifies a family of Wick powers as per Definition 39, then for all λ > 0
we can construct another family of Wick powers Φ•

λ via scaling – cf. Definition 36. Actually we set

Φkλ[N ; b] := (SλΦ
k)[N ; b] := Φk[N ; bλ] , (43)

where (N ; bλ) is defined in (10). This fact will play a crucial rôle in Section 3.

Example 43: We provide a constructive scheme yielding a natural candidate to play the role of a family of

Wick powers. Let k ∈ N and let (N ; b) ∈ Obj(Bkg) and ω ∈ SΓk,1c [N ; b] be arbitrary. Define φk[N ; b] ∈
Ploc[N ; b] – see Definition 11 – to be

φk[N ; b](ω,ϕ) :=

∫

Σ
〈ϕ[⊗]k, ω〉 , (44)

where ϕ[⊗]k ∈ Γ(S⊗kψ∗TM) has been defined in remark 8, while locally 〈ϕ[⊗]k, ω〉 = ϕa1 . . . ϕakωa1...ak .

Since we are interested in functionals which are equivariant with respect to the choice of P ∈ Par[N ; b], we

set for all ω ∈ SΓk,1c [N ; b] and ϕ ∈ Γ(ψ∗TM),

:Φk : [N ; b](ω,P, ϕ) :=

[
exp

[
Υ[WP ]]φ

k[N ; b](ω)

]
(ϕ) , (45)
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where Γ[WP ] is defined as in (19) where we also exploited the support property of the functional derivatives

of any local functionals – see Defnition 11. Moreover [WP ] ∈ Γ(S⊗2ψ∗TM) is defined as in Remark 10.

Notice that such a local decomposition depends on the chosen background geometry (N ; b) out of which H
is identified.

By extending Φk[N ; b] to a locally covariant observable – see Remark 33 – the collection of all Φk

defines a family of Wick powers as per Definition 39. Indeed observe that, adapting (43) to Φk, this scales

almost homogeneously with dimension κ = 0 while the second and third condition in Definition 39 follow

per construction. Finally (42) holds true since

:Φ2ℓ+1 : [N ; b](ω,P, 0) = 0 , :Φ2ℓ : [N ; b](ω,P, 0) =

∫

Σ
〈[WP ]

[⊗]ℓ, ω〉 ,

where [WP ]
[⊗]ℓ := [[WP ]

⊗ℓ] – cf. remark 8. The smoothness of the associated distribution Uk – see equation

(41) – follows.

Our next step consists of addressing the question concerning the characterization and the classification

of the freedom in the construction of a family of Wick powers. In the Lorentzian setting this question has

already been thoroughly investigated for a large class of field theories, see [HW01, KMM17, KM16], while

here we tackle the same problem for the model in hand, introduced in Section 1.1.

In the same spirit of [KMM17, Thm. 5.2, Thm. 6.2] the result is divided in two parts – see Theorems

45 and 46. In the first we prove a general formula – Equation (50) – which starts from two families of

Wick powers, say Φ̂• and Φ•, relating each Φ̂k to a linear combination of {Φℓ}ℓ≤k whose coefficients are

a collection of locally covariant observables {Cℓ}1≤ℓ≤k−2. This result profits of the Peetre-Slovák theorem

which we briefly recall in Appendix B. In the second part, we prove additional structural properties of the

coefficients Cℓ, recasting in this framework [KMM17, Thm. 6.2].

Before stating the key results of this section, we prove a key lemma.

Lemma 44: Let k ∈ N and for all (N ; b) ∈ Obj(Bkg) let ck[N ; b] ∈ SΓk,1[N ; b] be such that

ck[Ñ ; b̃] = τ∗ck[N, b] ,

for all [τ, t] ∈ Ar(Bkg) between (N, b) and (Ñ ; b̃). Then, for any (N ; b) = (Σ,M ;ψ, γ, g) ∈ Obj(Bkg),
there exists a map Dk,Σ,M : Γ(S⊗2T ∗Σ⊗ S⊗2ψ∗T ∗M) → Γk,1[N ; b] such that

ck[N ; b] = ck[Σ,M ;ψ, γ, g] = Dk,Σ,M(γ, ψ∗g) . (46)

Proof. Per hypothesis, for every pair [N ; b] = (Σ,M ;ψ, γ, g), [Ñ , b̃] = (Σ̃, M̃ ; ψ̃, γ̃, g̃) ∈ Obj(Bkg) such

that there exists (τ, t) ∈ Ar(Bkg) from [N ; b] to [Ñ , b̃], it holds

ck(Σ̃, M̃ ; ψ̃, γ̃, g̃) = τ∗ck(Σ,M ;ψ, γ, g) . (47)

Consider the special case where [Ñ , b̃] and (τ, t) are such that Σ̃ = Σ, M̃ =M , τ = IdΣ while t : M →M
is any diffeomorphism in M such that t|ψ(Σ) = Id |Σ. Condition (9) entails ψ̃ = ψ̃ ◦ τ = t ◦ ψ = ψ, while

g = t∗g̃, γ̃ = γ. Equation (47) implies

ck[N ; b] = ck(Σ,M ;ψ, γ, g̃) = ck(Σ,M ;ψ, γ, t∗g̃) .

It follows that ck(Σ,M ;ψ, γ, g) depends on g only via ψ∗g, that is

ck(Σ,M ;ψ, γ, g) =: dk(Σ,M ;ψ, γ, ψ∗g) .

We prove that ck[N ; b] depends on ψ only via ψ∗g. As above let τ = IdΣ and let t : M → M be any

diffeomorphism: by condition (46) we find

dk(Σ,M ; ψ̃, γ, ψ̃∗g̃) = ck(Σ,M ; ψ̃, γ, g̃) = ck(Σ,M ;ψ, γ, t∗g̃)

= dk(Σ,M ;ψ, γ, ψ∗t∗g̃) = dk(Σ,M ;ψ, γ, ψ̃∗ g̃) ,

where we exploited equation (9) so that ψ∗t∗g̃ = (t ◦ ψ)∗g̃ = ψ̃∗g̃. This implies that

ck(Σ,M ;ψ, γ, g) =: Dk,Σ,M(γ, ψ∗g) ,

which entails the sought result.
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Theorem 45: Let Φ̂• and Φ• be two families of Wick powers associated to Φ as per Definition 39. Then, for

all integers k > 2, there exists a collection {Cℓ}2≤ℓ≤k of locally covariant observables Cℓ : SΓ
ℓ
c → A, each

of which scales almost homogeneously with dimension κ = 0 so that, for all (N, b) ∈ Obj(Bkg) and for all

ω1 ∈ SΓk,1c [N ; b]

Cℓ[N ; b](ω1) =

∫

Σ
〈cℓ[N ; b], ω1〉 1A[N ;b] , (48)

where cℓ[N ; b] ∈ SΓℓ,1[N ; b] for all (N ; b) ∈ Obj(Bkg). Furthermore, if (N ; b) = (Σ,M ;ψ, γ, g), then

cℓ(Σ,M ;ψ, γ, g) = Dℓ,Σ,M(γ, ψ∗g) , (49)

where Dℓ,Σ,M : Γ(S⊗2T ∗Σ ⊗ S⊗2ψ∗T ∗M) → Γ(S⊗ℓψ∗TM) is a differential operator of locally bounded

order in the sense of Definition 53 in Appendix B. In addition, for all (N ; b) ∈ Obj(Bkg) and for all

ω1 ∈ SΓk,1c [N ; b],

Φ̂k[N ; b](ω1) = Φk[N ; b](ω1) +

k−2∑

ℓ=0

(
k

ℓ

)
Φℓ[N ; b](ck−ℓ[N ; b]yω1) , (50)

where ck−ℓ[N ; b]yω1 ∈ SΓℓ,1c [N ; b] reads locally
(
ck−ℓ[N ; b]yω1

)
a1...aℓ

= c
aℓ+1...ak
k−ℓ [N ; b](ω1)a1...ak .

Proof. The proof proceeds per induction with respect to k. First of all we prove Equation (50) for k = 2.

Hence, we set C2 := Φ̂2 − Φ2, showing that it is of the wanted form. Let (N ; b) ∈ Obj(Bkg) and let

ω1 ∈ SΓ2,1
c [N ; b], while ϕ1, ϕ2 ∈ Γ(ψ∗TM) and P ∈ Par[N ; b]. Equation (40) entails

〈
C2[N ; b](ω1, P )

(1)[ϕ1], ϕ2

〉
= 2(Φ − Φ)[N ; b](ϕ2yω1, P, ϕ1) = 0 .

It follows that, as an element of A[N ; b], C2[N ; b](ω1) does not depend on (P,ϕ), that is, it is a multiple of

the identity element:

C2[N ; b](ω1, P, ϕ) =

∫

Σ
〈c2[N ; b], ω1〉 1A[N ;b] ,

where c2 is an assignment to (N ; b) ∈ Obj(Bkg) of an element in SΓ2,1[N ; b] on account of the regularity

condition (42). Moreover C2 inherits from Φ2 and Φ̂2 the property of scaling almost homogeneously with

degree κ = 0. Since the arrows of Bkg act on c2[N ; b] via pull-back, the hypotheses of Lemma 44 are met

and we can conclude that c2(Σ,M ;ψ, γ, g) = D2,Σ,M (γ, ψ∗g) for all (N ; b) = (Σ,M ;ψ, γ, g). It descends

that, for all x ∈ Σ, D2,Σ,M(γ, ψ∗g)(x) depends only on the germ of γ, ψ∗g at x. Furthermore, condition

(42) ensures that (γ, ψ∗g) 7→ D2,Σ,M (γ, ψ∗g) is weakly regular as per Definition 56. By the Peetre-Slovák

Theorem – see Appendix B – it follows that D2,Σ,M : Γ(S⊗2T ∗Σ ⊗ S⊗2ψ∗T ∗M) → Γ(S⊗2ψ∗TM) is a

differential operator of locally bounded order. This concludes the proof of the theorem for k = 2.

Let us assume that, for all 2 ≤ p ≤ k, (N, b) ∈ Obj(Bkg) and for all ω1 ∈ SΓp,1c [N ; b]

Φ̂p[N ; b](ω1) = Φp[N ; b](ω1) +

p−2∑

ℓ=0

(
p

ℓ

)
Φℓ[N ; b](cp−ℓ[N ; b]yω1) . (51)

Here for all q ∈ {1, . . . , p − 2}, Cq is a locally covariant observable which scales almost homogeneously

with dimension κ = 0, so that

Cq[N ; b](ω1) =

∫

Σ
〈cq[N ; b], ω1〉 1A[N ;b] ∀ω1 ∈ SΓq,1c [N ; b] ,

where cq[N ; b] = cq(Σ,M ;ψ, γ, g) = Dq,Σ,M(γ, ψ∗g) ∈ SΓq,1[N ; b], being Dq,Σ,M a differential operator

of locally bounded order. We prove the inductive step, namely that equation (51) holds true for p = k + 1.

As for the case k = 2, let Ck+1 be defined as

Ck+1[N ; b](ω1) := Φ̂k+1[N ; b](ω1)− Φk+1[N ; b](ω1)−
k−1∑

ℓ=0

(
k + 1

ℓ

)
Φℓ[N ; b](ck+1−ℓ[N ; b]yω1) , (52)
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for all ω1 ∈ SΓk+1,1
c [N ; b]. Equation (40) and the inductive hypothesis (51) entail that Ck+1[N ; b](ω1) is

an element of A[N ; b] that does not depend on the choice of (P,ϕ). Hence there exist an assignment to

(N ; b) ∈ Obj(Bkg) of an element ck+1[N ; b] ∈ SΓk+1,1[N ; b] such that

Ck+1[N ; b](ω1) =

∫

Σ

〈
ck+1[N ; b], ω1

〉
1A[N ;b] .

where we used the regularity condition (42). In addition, still on account of the inductive hypothesis (51),

Ck+1 scales almost homogeneously with degree κ = 0. This implies that ck+1[N ; b] satisfies the hypothesis

of Lemma 44 and, thus, it follows that ck+1(Σ,M ;ψ, γ, g) = Dk+1,Σ,M(γ, ψ∗g). The regularity condition

(42) ensures that Dk+1,Σ,M : Γ(S⊗2T ∗Σ ⊗ S⊗2ψ∗T ∗M) → Γ(S⊗k+1ψ∗TM) is weakly regular and that,

for all x ∈ Σ, Dk+1,Σ,M(γ, ψ∗g)(x) depends on γ, ψ∗g only via their germs at x. By the Peetre-Slovák

Theorem Dk+1,Σ,M is a differential operator of locally bounded order. This completes the proof.

To conclude we state the last result of this section.

Theorem 46: Under the same assumptions of Theorem 45, it holds that, for each k ∈ N and for each

(N ; b) = (Σ,M ;ψ, γ, g) ∈ Obj(Bkg), the map Dk,Σ,M defined in equation (49) enjoys the following

properties:

1. Dk,Σ,M : Γ(S⊗2T ∗Σ⊗ S⊗2ψ∗TM) → Γk,1[N ; b] is a differential operator of globally bounded order

– see Definition 53 of Appendix B ;

2. for all x ∈ Σ, γ ∈ Γ(S⊗2T ∗Σ) and ψ∗g ∈ Γ(S⊗2ψ∗T ∗M) it holds

Dk,Σ,M(γ, ψ∗g)(x) = Dk

(
γαβ(x), ǫαβ(x), Rαβµν [γ](x), . . .∇

Σ
α1
. . .∇Σ

αp
Rαβµν [γ](x), . . . ,

gab(ψ(x)), Rabcd[g](ψ(x)), . . . ,∇
M
a1
. . .∇M

ar
Rabcd[g](ψ(x))

)
, (53)

where Dk is a tensor, covariantly constructed from its arguments, where the symbol R in the above

expression indicates the Riemann tensor while ǫαβ is the totally antisymmetric Levi-Civita tensor.

3. Each Dk is an homogeneous of degree κ = 0, linear combination of finitely many covariantly con-

structed tensors. These are polynomials in all the arguments on which Dk depends in (53) and the

functional form does not depend on the choice of [N ; b] ∈ Obj(Bkg).

Proof. On account of Lemma 44 the proof can follow almost slavishly that of [KMM17, Thm. 6.2]. For this

reason we omit it.

3 Renormalization and Ricci flow

Our main goal is to apply the results of Section 2.4 giving a rigorous derivation of the Ricci flow from the

renormalization of (the linearisation of) the non-linear Sigma-model introduced in Section 1.1 – see [Car10]

and also [Gaw99].

Perturbative Euclidean statistical field theory. In the framework of Euclidean algebraic quantum field

theory the expectation value of a (locally covariant) observable O is typically built out of a Lagrangian

density L, as the one introduced in equation (3), which is regarded as the covariance of an infinite dimensional

Gaussian measure. However, except for some rather special cases, this approach brings several difficulties

in dealing with non-linearities and thus one must resort to a perturbative approach. Fixing L to be the one of

(3), following the discussion and the notation at the beginning of Section 1.1, we split L in two contributions

L(ψ, γ, g;ϕ) := Lfree(ψ, γ, g;ϕ) + Lint(ψ, γ, g;ϕ) , (54)

Lfree(ψ, γ, g;ϕ) := −
ν2

2
〈ϕ,Eϕ〉µγ , (55)

Lint(ψ, γ, g, ϕ) := LH(ψ, γ, g) +

[
νg(ϕ,Q(ψ)) +

ν2

2
h(Riem(ϕ,dψ)ϕ,dψ)

]
µγ . (56)
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As the notation suggests, we interpret Lfree as the Lagrangian density of a free field theory while Lint is

interpreted as an interacting part.

One has to keep in mind that such subdivision is arbitrary and our choice is dictated by the fact that the

dynamics encoded in Lfree is ruled by the elliptic operator E. According to Proposition 26, we can associate

to it an Euclidean locally covariant theory A : Bkg → Alg. At the same time, to Lint we can associate a

locally covariant observable as per Definition 31 with the following procedure.

Consider a family of Wick powers Φ• as per Definition 39 and, starting from Lint, define the following

natural transformation which we indicate for simplicity as Lint[Φ
•] : C∞

c → A:

Lint[Φ
•][N ; b](f) := LH[N ; b](f) 1A[N ;b] + νΦ[N ; b](fQ(ψ)µγ) +

ν2

2
Φ2[N ; b](fθ[N ; b]µγ) , (57)

where (N ; b) ∈ Obj(Bkg), f ∈ C∞
c (Σ). The covariant functor C∞

c : Bkg → Alg has been defined in

definition 28. In addition θ[N ; b] ∈ Γ(S⊗2ψ∗TM) is locally defined by

θ[N ; b]cd(x) := γαβ(x)gℓb(ψ(x))R
ℓ

cad [g](dψ)aα(dψ)
b
β , (58)

while LH[N ; b](f) :=
∫
Σ dµγ fLH(ψ, γ, g), LH being the Lagrangian in (2).

Within the perturbative approach to Euclidean field theory one defines the (generating function) partition

function as the natural transformation Z[Φ•] : C∞
c → A

Z[Φ•][N ; b](f) := expA

[
zLint[Φ

k][N ; b](f)

]
:=
∑

n≥0

zn

n!
Lint[Φ

k][N ; b](f)n ∈ A[N ; b][[z]] , (59)

where the exponential series is considered as a formal power series in the formal parameter z and the product

is the one defined by A[N ; b], for all [N ; b] ∈ Obj(Bkg). Out of Z[Φ•] one can build pertubatively the above

mentioned expectation value of any locally covariant observable O. A complete discussion of the structural

properties of the perturbative approach to Euclidean algebraic field theories is beyond the scope of this paper

and we postpone it to a forthcoming work [DDR19].

Application to Ricci flow. As explained at the beginning of this section, once it has been fixed a family of

Wick powers Φ• – cf. Definition 39 – we may define a corresponding locally covariant Lagrangian density

Lint[Φ
•] – see equation (57) – and the associated partition function Z[Φ•] as per equation (59). The key

point consists in realizing that different choices of Φ• yield different explicit forms for Lint[Φ
•], which, on

account of theorems 45 and 46, differ only by a linear combination of terms proportional to certain locally

covariant quantum fields – see equation 50.

In the framework of the renormalization group approach such ambiguity is studied by choosing, for each

real λ > 0, Φ̂• := SλΦ
•, see Remark 42, in particular Equation (43). As a consequence we consider an

interacting Lagrangean density Lint[SλΦ
•] which, by Theorem 45 can be written as Lint[SλΦ

•] = Lint[Φ
•]+

Rλ[Φ
•] , where Rλ[Φ

•] is a suitable remainder. The main idea behind the renormalization group approach is

that Rλ[Φ
•] can be reabsorbed in the full Lagrangian density, namely, for every λ > 0, there exists a natural

transformation, dubbed renormalized Lagrangian at the scale λ, Lint,λ[Φ
•] : C∞

c → A such that

Lint[SλΦ
•] = Lint[Φ

•] +Rλ[Φ
•] =: Lint,λ[Φ

•] . (60)

In what follows we will compute explicitly the renormalized Lagrangian density at scale λ > 0, Lλ[Φ
•] :=

Lfree[Φ
•] + Lint,λ[Φ

•] – see Theorem 47. For concreteness we will work with the family of Wick powers

defined in Example 43, though any well-defined, different choice can be made without affecting the final

result. Eventually we comment how the result of Theorem 47 are linked to the derivation of the Ricci flow

[Car10] – see Lemma 49.

Theorem 47: Let :Φ• : be the family of Wick powers as per Example 43 and let Lint[Φ
•] be the locally co-

variant interacting Lagrangian density as per Equation (57). For all λ > 0, let Lint[SλΦ
•] be the counterpart

of Lint[Φ
•] – defined in (60) – constructed out of the rescaled natural transformation SλΦ

•. Then it holds

Lint,λ[Φ
•][N ; b](f) = LH,λ[N ; b](f) 1A[N ;b] + νΦ[N ; b](fQ(ψ)µγ) +

ν2

2
Φ2[N ; b](fθ[N ; b]µγ) , (61)
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where f ∈ C∞
c (Σ) and [N ; b] = (Σ,M ;ψ, γ, g) while

LH,λ[N ; b](f) :=

∫

Σ
f trγ(ψ

∗glog λ)µγ , (glog λ)ab(x) = gab(x)− ν2 log(λ)Rab[g](x) . (62)

Proof. Let [N ; b] = (Σ,M ;ψ, γ, g) ∈ Obj(Bkg), f ∈ C∞
c (Σ,M), P ∈ Par[N ; b] and ϕ ∈ Γ(ψ∗TM).

Recalling Definition 36 as well as equation (45) – see Example 43 – it holds

Lint[SλΦ
•][N ; b] = Lint[Φ

•][N ; bλ] . (63)

Recalling Proposition 52 and Remark 25, we can use the local Hadamard representation of the parametrix

P = H +W for E to realize that, in a geodesic neighbourhood of any point x ∈ Σ, P = Hλ +Wλ where

[WP,λ]
ab(x) := W ab

λ (x, x) = [WP ]
ab(x)− 2 log(λ)gab(ψ(x)).

Using (45), the first two terms in Lint in (57) remain unchanged because they are respectively constant

and linear in ϕ. On the contrary, the third term yields

ν2

2
Φ2[N ; bλ][f θ[N ; bλ]µγλ , P, ϕ] =

ν2

2
Φ2[N ; b][f θ[N ; b]µγ , P, ϕ]

− ν2 log(λ)

∫

Σ
γαβRab[g](dψ)

a
α(dψ)

b
βfµγ , (64)

where we used (58) for θ[N ; b]. Inserting Equation (64) in (63), the sought result descends.

Remark 48: Notice that the results of Theorem 47 depend on the particular choice for :Φ• :. As a matter of

fact Theorem 45 entails that any other choice, say Φ• would be so that Φ2 =:Φ2 : +C2, being C2 a locally

covariant quantum field which scales almost homogeneously with degree zero – cf. Theorem 46. As a by

product, Equation (64) holds true also for Φ2 if and only if C2 scales exactly homogeneously with degree

zero – that is, if and only if C2 is invariant under scaling. Nevertheless, theorems 45-46 allow us to control

the variation of equation (64) with respect to the chosen family of Wick powers Φ•.

Lemma 49 (Ricci flow): Under the assumptions of Theorem 47, setting λ := e2τ , the corresponding metric

g(τ) := g2τ as per Equation (62) satisfies

d

dτ
g(τ) = −2ν2Ric[g] = −2ν2Ric[g(τ)] +O(ν3) . (65)

Proof. Considering Equation (62) and recalling the approximation made in Section 1.1,

gablog λ = gab − ν2 log(λ)Rab[g] +O(ν3) , ν2 log(λ)Rab[glog λ] = ν2 log(λ)Rab[g] +O(ν3) .

Neglecting O(ν3)-contributions the previous equation leads to the wanted Ricci flow equation for the renor-

malized metric g(τ).

Remark 50: It appears clear that the above derivation of the Ricci flow equation (65) is linked to the expan-

sion in powers of ν made in the previous Section 1.1. It is also possible to consider an higher order expansion

for the Lagrangian density (3), which leads to a corresponding improved Ricci flow equation. As an example,

the expansion up to o(ν4) leads to the so-called Ricci flow equation at two loops, also known as RG−2 flow

[CG18]. It is noteworthy that, thanks to Theorem 45, the present framework can be used to obtain an anal-

ogous of Theorem 47 from which the higher order corrections to the Ricci flow can be explicitly computed.

Yet, in this work, we refrain from providing a detailed computation, which follows the lines of the proof of

Theorem 47.

Remark 51: We stress that, in our derivation of the Ricci flow equation – see Remark 49 – as well as in

the proof of all the results of the previous Sections, we only assume that ψ ∈ C∞(Σ;M). In particular, we

do not require ψ to be harmonic and the results of Theorem 47 and Remark 49 do not depend on ψ. Stated

differently, the results of this paper hold true also considering off-shell background configuration ψ, rather

that on-shell (harmonic) background configurations.
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A Hadamard expansion for the parametrix of E

Goal of this appendix is to give a finer description of the local structure of a parametrix P associated with the

elliptic operator E, introduced in Equation (4). Let [N ; b] = (Σ,M ;ψ, γ, g) ∈ Obj(Bkg) be arbitrary but

fixed. In the following, we will be considering convex, geodesic neighbourhoods of Σ, but at the same time

we will be concerned about their image under the action of ψ which is smooth, but not necessarily proper.

Hence, whenever we consider convex, geodesic neighbourhoods of a point, we are implicitly constructing

them as follows: For any x ∈ Σ, consider ψ(x) ∈ M and any convex, geodesic neighbourhood U ⊂ M
centred at this point. Being ψ smooth, ψ−1(U) is an open subset of Σ centred at x. If this is not a convex,

geodesic neighbourhood, then consider an open subset, which we identify with O, which has this property.

In addition ψ(O) is a subset of U and hence any two points therein are connected by a unique geodesic of

(M,g).

We summarize our results in the following proposition:

Proposition 52: Let (N ; b) = (Σ,M, γ, g, ψ) ∈ Obj(Bkg) and let E : Γ(ψ∗TM) → Γ(ψ∗T ∗M) be the

elliptic operator defined in (4). For λ > 0 let H,Hλ ∈ SΓc(ψ
∗T ∗M⊠2)′ be the Hadamard parametrices

associated with background data (N ; b) and (N ; bλ) respectively – cf. Remark 10 and Definition 4. It holds

Hbc
λ (x)−Hbc(x) = −2 log(λ)V bc(x) , (66)

where V ∈ Γ(S⊗2ψ∗TO) is constructed out the background data (ψ, γ, g) – cf. equation (69) – and it

satisfies [V ]bc(x) := gbc(ψ(x)).

Proof. Let O be a geodesically convex neighbourhood of Σ. We begin by recalling the construction of the

so-called Hadamard parametrix associated to the restriction to O of E on the background data (N ; b). This

is defined as the bi-distribution H ∈ SΓc(ψ
∗T ∗O⊠2)′ whose integral kernel reads [G98, Mor99a, Mor99b]

Hbc(x, x′) := V bc(x, x′) log
σ(x, x′)

ℓ2H
:=
∑

n≥0

V bc
n (x, x′)σ(x, x′)n log

σ(x, x′)

ℓ2H
, (67)

where σ(x, x′) denotes the halved squared geodesic distance between x, x′ ∈ O, while ℓH ∈ R is an arbitrary

reference length, which will play no rôle in the proof. Before focusing on the tensor coefficients V bc
n (x, x′),

observe that Equation (67) defines H in terms of the so-called Hadamard expansion which is a formal power

series in σ. Hence, with a slight abuse of notation, we have left implicit both the existence of a suitable

cut-off which ensures convergence of (67) and the necessity or replacing σ with a regularized counterpart

σ + iǫ, which controls the singularity as x = x′. Neither the cut-off nor the regularization will play a rôle in

our analysis.

We focus now on the remaining unknowns, the tensor coefficients V bc
n of (67). Recalling that both HE

and EH coincide with the identity operator up to smooth terms, it holds locally that

(EH)ca =
∑

n≥0

E(Vn)
c
aσ

n log
σ

ℓ2H

+
∑

n≥0

[
ngabV

bc
n

(
∆γσ + 2(n− 1)

)
+ 2ngabγ

αβ(∇ψVn)
bc
α(dσ)β

]
σn−1 log

σ

ℓ2H

+
∑

n≥0

[
2gabγ

αβ(∇ψVn)
bc
α(dσ)β + gabV

bc
n

(
∆γσ − 2 + 4n

)]
σn−1 , (68)

where we omitted for notational simplicity the explicit dependence on (x, x′) and where we exploited the

identity γαβ(dσ)α(dσ)β = 2σ, see e.g. [PPV11]. To ensure thatEH−IdΓc(ψ∗T ∗M) ∈ Γ(ψ∗TM⊠ψ∗T ∗M),
the coefficients multiplying log σ and σ−1 ought to vanish. This leads to the following hierarchy of equations

for V bc
n :

2gabγ
αβ(∇ψV0)

bc
α(dσ)β + gabV

bc
0 (∆γσ − 2) = 0 (69a)

E(Vn−1)
c
a + 2ngabγ

αβ(∇ψVn)
bc
α(dσ)β + ngabV

bc
n

(
∆γσ + 2(n− 1)

)
= 0 . (69b)
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Notice that the latter is a system of transport equations which can be solved recursively once we provide

initial conditions for the tensors V bc
n . The customary choice for the initial data is to consider the limit

x → x′ of equation (69). Denoting with [A](x) := limx→x′ A(x, x
′) the coinciding point limit of a generic

smooth bi-tensor – cf. remark 8 – we get

[E(V0)
c
a] + 2[gabV

bc
1 ] = 0 , [E(Vn−1)

c
a] + 2n2[gabV

bc
n ] = 0 , (70)

where we used the identities

[σ] = 0 , [(dσ)α] = 0 , [(∇Σ ◦ ∇Σσ)αβ ] = γαβ . (71)

Notice that the equations in (70) specify initial data for V bc
n for all n ≥ 1, leaving us only with an arbitrariness

in the choice of the initial datum for V0. In order for EP − Id , PE − Id ∈ Γ(ψ∗TM ⊠ ψ∗T ∗M), we fix

[V bc
0 ] = gbc . (72)

We now consider the Hadamard parametrix Hλ associated with E and background data (N ; bλ). Once

again we have

Hbc
λ (x, x′) =

∑

n≥0

V bc
λ,n(x, x

′)σλ(x, x
′)n log σλ(x, x

′) ,

where σλ is the halved squared geodesic distance built out of the metric λ−2γαβ . The smooth tensors V bc
λ,n

satisfy the system (69) with background data (N ; bλ). Observe that equation (69a) is invariant under scaling

γαβ → λ−2γαβ because σλ = λ−2σ. Together with the initial conditions [V0]
bc = [Vλ,0]

bc = gbc this entails

Vλ,0 = V0. By induction it easily follows from the scaling behaviour of equations (69b) that Vλ,n = λ2nVn.

Therefore

Hbc
λ −Hbc =

∑

n≥0

V bc
λ,nλ

−2nσn
(
log σ − 2 log λ

)
−
∑

n≥0

V bc
n σ

n log σ = −2 log(λ)V bc .

Using the initial condition 72, equation (66) follows.

B The Peetre-Slovák theorem

In this section we recall succinctly the Peetre-Slovák theorem as well as all ancillary definitions. For more

details, we refer to [NS14] and especially to [KM16, Appendix A], to which this appendix is inspired. In

the following E
πE→ B,F

πF→ B are smooth bundles over a smooth manifold B, while JrE denotes the r-jet

bundle over B for r ∈ N – refer to [KMS93] for definitions and properties.

Definition 53: A map D : Γ(E) → Γ(F ) is a called a differential operator of globally bounded order r ∈ N

if there exists a smooth map d : JrE → F such that πF ◦ d = πJrE and

D(ε) = d(jrε) ∀ε ∈ Γ(E) , (73)

where jrε ∈ Γ(JrE) denotes the r-jet extension of ε.

Definition 54: A map D : Γ(E) → Γ(F ) is called a differential operator of locally bounded order if for all

x0 ∈ B and for al ε0 ∈ Γ(E), there exists

1. an open subset U ⊆ B containing x0 and with compact closure,

2. an integer r ∈ N, as well as a neighbourhood Zr ⊆ JrE of jrε0(U) such that πJrEZ
r = U ,

3. a smooth map d : Zr → F such that πF ◦ d = πJrE

so that

D(ε)(x) = d(jrε)(x) , (74)

for all x ∈ U and ε ∈ Γ(E) with jrε(U) ⊆ Zr.
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The Peetre-Slovák’s Theorem gives a sufficient condition for a mapD : Γ(E) → Γ(F ) to be a differential

operator of locally bounded order.

In addition recall that, denoting with πd : B × R
d → B the canonical projection to B, the pull-back

bundle π∗dE
ππ∗
d
E

→ B × R
d is the smooth bundle defined by

π∗E := {(s, x, e) ∈ R
d ×B × E| πE(e) = πd(s, x)} ≃ R

d × E . (75)

Denoting with πd,E the projection πd,E : π∗dE → E, each smooth section ζ ∈ Γ(π∗dE) induces a smooth

family of sections {ζs}s∈Rd in Γ(E) defined by ζs(x) := πd,Eζ((s, x)) which, in turn, depends smoothly on

the parameter s ∈ R
d.

Definition 55: Let d ∈ N and let {ζs}s∈Rd be a smooth family of sections in Γ(E) induced by a smooth

section ζ ∈ Γ(π∗dE). We say that {ζs}s∈Rd is a smooth compactly supported d-dimensional family of

variations if there exists a compact K ⊆ B such that ζ(s, x) = ζ(s′, x) for all x /∈ K and for all s, s′ ∈ R
d.

Definition 56: A map D : Γ(E) → Γ(F ) is called weakly-regular if, for all d ∈ N and for all smooth

compactly supported d-dimensional families of variations {ζs}s∈Rd – see Definition 55 – ψs := Dζs is a

smooth compactly supported d-dimensional family of variations.

Theorem 57 (Peetre-Slovák): Let D : Γ(E) → Γ(F ) be a smooth map such that

• for all ε ∈ Γ(E) and for all x ∈ B, Dε(x) depends only on the germ of ε at x ∈ B, i.e. (Dε)(x) =
(Dε̃)(x) for all ε̃ ∈ Γ(E) which coincides with ε in a neighbourhood of x;

• D is weakly regular as per Definition 56.

Then D is a differential operator of locally bounded order as per Definition 53.

C Fulfilment of the perturbative agreement

In this section we comment on the principle of perturbative agreement (PPA for short) for the model we have

introduced in Definition 20.

The PPA has been introduced in [HW05] as a further constraint on the structure of Wick powers – see

also [DHP16, Za15]. Loosely speaking, it requires that a theory associated with a quadratic perturbation Es
of the elliptic operator E introduced in equation (4) should yield to an algebra As[N ; b] compatible with

the unperturbed algebra A[N ; b]. Here Es − E ∈ Γc(S
⊗2ψ∗T ∗M) is a smooth and compactly supported

(1-dimensional) family of variation. The compatibility between As and A is in the sense of formal power

series in s – cf. definition 61.

As pointed out in [Za15] the PPA is important in our setting because, among other things, it ensures

that the renormalization group flow technique we applied in Section 3 does not depend on the splitting

L = Lfree + Lint. A complete discussion of the PPA is out not within the scopes of this paper – for a

complete discussion in the Riemannian setting see [DDR19]. In the present appendix we provide a brief

resumé of the content of the PPA, proving that there exists a family of Wick powers as per definition 39

which fulfils it – cf. Proposition 63.

In what follows Es will always denote a smooth and compactly supported (1-dimensional) family of

variation – cf. Definition 55 – of the elliptic operator E defined as per equation (4). In particular Es is

elliptic for all s. Notice that, for the sake of simplicity, we are assuming that Es−E ∈ Γc(S
⊗2ψ∗T ∗M) is a

differential operator of order at most 1. This is actually enough for our setting see however [DDR19, HW05]

for completeness.

Formulation of the PPA. In order to formulate the PPA a few preliminary definitions are in due order.

First of all we need a linear isomorphism Rs : Par[N ; b] ∋ P → Ps ∈ Pars[N ; b] between the space of para-

metrices Pars[N ; b] associated with Es and those of E. The construction of this map is rather standard, see

[DDR19] for further details and [DD16, DHP16, HW05, Za15] for the corresponding map in the Lorentzian
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setting. For what concerns the PPA, we just need the perturbative expansion of Rs as a formal power series

in s up to a smooth remainder. Let P ∈ Par[N ; b]; since Qs := Es − E is compactly supported,

Es = E +Qs = E(Id+PQs)− SQs ,

where S ∈ Γ(ψ∗TM ⊠ ψ∗T ∗M) is such that PE − IdΓc(ψ∗T ∗M) = S – cf. equation (12). We consider the

map R[[s]] : Γc(ψ
∗T ∗M) → Γ(ψ∗TM)[[s]] defined by

R[[s]]ω :=
∑

n≥0

(−PQs)
nPω . (76)

This map can be interpreted as a perturbative expansion (up to a smooth remainder) of a well-defined isomor-

phism Rs : Par[N ; b] → Pars[N ; b] – cf. [DD16, DDR19, DHP16, HW05].

The second ingredient we need is a ∗-isomorphism βs : Areg[N ; b] → As,reg[N ; b]. Here the subscript reg

denotes the algebra generated by regular local functional, namely those with smooth functional derivatives

of all orders. We will not enter into the details of this construction, however, we give the explicit form for

βs:

(βsF )(Ps) := exp
[
ΥPs−P

]
F [P ] ∀F ∈ A[N ; b] . (77)

This can be extended to a map β[[s]] : A[N ; b] → Γ(E [N ; b])[[s]] with values in the algebra of formal power

series in s with coefficients in Γ(E [N ; b]) – cf. Definitions 18-20. The expansion is possible since, on

account of equation (76), Ps − P = P[[s]] − P +R =
∑

n≥1(−PGs)
nP +R has a well-defined coinciding

point limit (here R is a smooth remainder). Therefore βs is well-defined at each order in s. As explained in

[DDR19, DHP16] the map β[[s]] can be interpreted as an extension of the expansion in formal power series

of βs.
We focus on Wick powers, strengthening the smoothness requirement of Definition 39 by allowing also

variations of the elliptic operator Es.

Definition 58: Let d, n ∈ N and let (N ; bs) ∈ Obj(Bkg) be such that {bs = (ψ, γs, gs)}s∈Rd is a smooth,

compactly supported d-dimensional family of variations of b = (ψ, γ, g) as per Definition 55. Moreover

let Et,s be a smooth and compactly supported n-dimensional family of variations of the elliptic operator Es
constructed out of the background data bs as per equation (4). For all smooth families {Pt,s}s∈Rd where

Pt,s ∈ Part(N, bs) is a parametrix for Et,s for all s ∈ R
d and t ∈ N

n, let Uk ∈ Γc(π
∗
d+nS

⊗kψ∗T ∗M)′ be

the distribution defined by

Uk(χ⊗ ω1) :=

∫

Rd+n

dsdtΦkt [N ; bs](ω1, Pt,s, 0)χ(s, t) , (78)

where ω1 ∈ SΓk,1c [N ; b], χ ∈ C∞
c (Rd+n). Here Φkt [N ; bs] denotes the (k-th) Wick power associated with

the background data (N ; bs) and with the elliptic operator Es,t. If WF(Uk) = ∅, we call the family of Wick

powers Φ• smooth.

Remark 59: Loosely speaking Definition 58 requires a suitable smoothness of Φ• with respect both to the

background data b and to the variation of the elliptic operator E. For certain models – like the scalar field

cf. [DDR19] – the variations of the background data exhaust all possible variations of the associated elliptic

operator E. In this situation the smoothness as per Definition 58 coincides with the one required in Definition

39.

Remark 60: A smooth family of parametrices Pt,s ∈ Part[N ; bs] can be constructed by setting Pt,s := RtPs
where Ps ∈ Par[N ; bs] is a smooth family of parametrices for Es – cf. Remark 40.

From now on Φ• will denote a family of Wick powers as per Definition 39 satisfying the smoothness

requirement of Definition 58. Notice that the family : Φ• : defined in Example 45 satisfies such smoothness

requirement.

Definition 61: Let Es denote a smooth and compactly supported (1-dimensional) family of variation – cf.

definition 55 – of the elliptic operator E defined as per equation 4. We say that the family of Wick powers
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Φ• satisfies the principle of perturbative agreement (PPA) if for all k ≥ 2, n ∈ N ∪ {0}, P ∈ Par[N ; b],

ωm ∈ SΓk,mc [N ; b] it holds

dn

dsn
Φks [N ; b](ωm, Ps)

∣∣∣∣
s=0

=
dn

dsn
βs(Φ

k[N ; b])(ωm, Ps)

∣∣∣∣
s=0

. (79)

Remark 62: A direct computation shows that the PPA is satisfied if and only if equation (79) holds true for

n = 1 – cf. [DDR19]. Moreover, on account of the lack of renormalization ambiguities for m ≥ 2 – cf.

Remarks 15-27 – the PPA is fulfilled whenever it holds for m = 1.

We state the main result of this appendix.

Proposition 63: The family :Φ• : defined in equation (43) satisfies the PPA as per Definition 61 with respect

to a family of variations Es of the elliptic operator E such that Es − E ∈ Γc(S
⊗2ψ∗T ∗M) is a differential

operator of order at most 1.

Proof. Observe that on account of Theorems 45-46 we may write for all k ≥ 2 and ω ∈ SΓk,1c [N ; b]

Φks [N ; b](ω1) = :Φk :s [N ; b](ω1) +
k−2∑

ℓ=0

:Φℓ :s
(
cs,k−ℓ[N ; b]yω1

)
,

where : Φk : is defined as in Example 43 while cs,ℓ ∈ Γℓ,1[N ; b] satisfies the hypothesis of theorem 45-46.

Moreover, cs,ℓ is a smooth and compactly supported family of variation and we set cℓ := cs,ℓ|s=0.

Our aim is to show that : Φ• : satisfies equation (79). In particular we shall impose equation (79) for a

generic family Φ• of Wick powers. This will constraint the coefficient cs,ℓ defined above, in particular we

shall prove that equation (79) implies that we can choose cs,ℓ = 0, that is, Φ• =:Φ• :. We first consider the

case k = 2. Setting δ := d
ds

∣∣
s=0

, by direct inspection it holds

δ[Φ2[N ; b](ω1, P )] = δ
[
:Φ2 : [N ; b](ω1, P ) + Cs,2[N ; b](ω1)

]

= Υδ(WP ) :Φ
2 : [N ; b](ω1, P ) + δ

[
C2[N ; b](ω1))

]
,

where C2[N ; b](ω1) :=
∫
Σ〈c2[N ; b], ω1〉. Similarly the first order in s in the right hand side of equation (79)

reads

d

ds
βsΦ

k[N ; b](ω1, Ps)

∣∣∣∣
s=0

= Υδ(P )Φ
2[N ; b](ω1, P ) = Υδ(P ) :Φ

2 : [N ; b](ω1, P ) ,

where we exploited equations (76)-(77). Equation (79) entails

δ
[
C2[N ; b](ω1))

]
= −Υδ(WP )+δ(P ) :Φ

2 : [N ; b](ω1, P ) = 〈[δ(H)], ω1〉 ,

where we used equation (40) and Remark 10. Therefore the PPA for k = 2 can be fulfilled if

δ(c2) = −[δ(H)] . (80)

Since δ(H) is local and covariant the above equation can be considered as a definition of the coefficient

c2 – indeed, it respects all requirement of Theorems 45-46. In particular c2,s is the solution to the ODE

δ(c2,s) = −[δ(Hs)].
For the general case we compute once again the right and the left hand side of equation (79) using

equation (50). The final result is

0 =

k−2∑

ℓ=0

:Φℓ : [N ; b](δ(ck−ℓ[N ; b])yω1, P )

−Υ[δ(H)]

[
:Φk : [N ; b](ω1, P ) +

k−2∑

ℓ=0

:Φℓ : [N ; b](ck−ℓ[N ; b]yω1, P )

]
,
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Equation (40) leads to the following generalization of equation (80)

δ(ck−ℓ) = −(ℓ+ 2)(ℓ+ 1)[δ(H)][⊗]ck−2−ℓ 2 ≤ ℓ ≤ k − 3 .

Once again this can be used to define inductively the coefficients cℓ.
We now prove that [δ(H)] = 0, which implies that the choice cs,ℓ = 0 leads to a family of Wick

powers satisfying the PPA. We recall that we are considering families of variations Es such that Es − E ∈
Γc(S

⊗2ψ∗T ∗M) is a differential operator of order at most 1. For ϕ ∈ Γ(ψ∗TM) we can write locally

(Esϕ− Eϕ)a = (As)
α
ab(∇

ψϕ)bα + (Ts)abϕ
b , (81)

where (As)
α
ab, (Ts)ab are suitable smooth tensors. This implies that the Hadamard parametrix Hs associated

with Es has the form

Hs =
∑

n≥0

Vs,nσ
n log σ ,

where σ does not depend on s since so it does the principal symbol of Es [G98]. The tensors Vs,n ∈
SΓ(ψ∗TM⊠2) satisfies a hierarchy of transport equations analogous to system (69). In particular Vs,0 satis-

fies

2gabγ
αβ(∇ψVs,0)

bc
α(dσ)β + gabV

bc
s,0(∆γσ − 2) + (As)

α
abV

bc
s,0(dσ)α = 0 [Vs,0]

bc = gbc . (82)

It then follows that δ(V0) satisfies a transport equation with initial condition [δ(V0)] = 0. This implies that

δ(V0) = 0 and therefore

δ(H) =
∑

n≥1

δ(Vn)σ
n log σ = O(σ) . (83)
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