We consider the perturbative construction, proposed in Fredenhagen and Lindner (Commun Math Phys 332:895, 2014), for a thermal state Ω β,λV{f} for the theory of a real scalar Klein–Gordon field ϕ with interacting potential V{ f}. Here, f is a space-time cut-off of the interaction V, and λ is a perturbative parameter. We assume that V is quadratic in the field ϕ and we compute the adiabatic limit f→ 1 of the state Ω β,λV{f} . The limit is shown to exist; moreover, the perturbative series in λ sums up to the thermal state for the corresponding (free) theory with potential V. In addition, we exploit the same methods to address a similar computation for the non-equilibrium steady state (NESS) Ruelle (J Stat Phys 98:57–75, 2000) recently constructed in Drago et al. (Commun Math Phys 357:267, 2018).

Thermal State with Quadratic Interaction / Drago, Nicolò. - In: ANNALES HENRI POINCARE'. - ISSN 1424-0637. - 20:3(2019), pp. 905-927. [10.1007/s00023-018-0739-6]

Thermal State with Quadratic Interaction

Drago, Nicolò
2019-01-01

Abstract

We consider the perturbative construction, proposed in Fredenhagen and Lindner (Commun Math Phys 332:895, 2014), for a thermal state Ω β,λV{f} for the theory of a real scalar Klein–Gordon field ϕ with interacting potential V{ f}. Here, f is a space-time cut-off of the interaction V, and λ is a perturbative parameter. We assume that V is quadratic in the field ϕ and we compute the adiabatic limit f→ 1 of the state Ω β,λV{f} . The limit is shown to exist; moreover, the perturbative series in λ sums up to the thermal state for the corresponding (free) theory with potential V. In addition, we exploit the same methods to address a similar computation for the non-equilibrium steady state (NESS) Ruelle (J Stat Phys 98:57–75, 2000) recently constructed in Drago et al. (Commun Math Phys 357:267, 2018).
2019
3
Drago, Nicolò
Thermal State with Quadratic Interaction / Drago, Nicolò. - In: ANNALES HENRI POINCARE'. - ISSN 1424-0637. - 20:3(2019), pp. 905-927. [10.1007/s00023-018-0739-6]
File in questo prodotto:
File Dimensione Formato  
D.pdf

Open Access dal 06/03/2020

Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 321.49 kB
Formato Adobe PDF
321.49 kB Adobe PDF Visualizza/Apri
s00023-018-0739-6.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 646.4 kB
Formato Adobe PDF
646.4 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/330345
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact