Earthquake fault zones are more complex, both geometrically and rheologically, than an idealized infinitely thin plane embedded in linear elastic material. To incorporate nonlinear material behaviour, natural complexities and multi-physics coupling within and outside of fault zones, here we present a first-order hyperbolic and thermodynamically compatible mathematical model for a continuum in a gravitational field which provides a unified description of nonlinear elasto-plasticity, material damage and of viscous Newtonian flows with phase transition between solid and liquid phases. The fault geometry and secondary cracks are described via a scalar function ξ ∈ [0, 1] that indicates the local level of material damage. The model also permits the representation of arbitrarily complex geometries via a diffuse interface approach based on the solid volume fraction function α ∈ [0, 1]. Neither of the two scalar fields ξ and α needs to be mesh-aligned, allowing thus faults and cracks with complex topology and the use of adaptive Cartesian meshes (AMR). The model shares common features with phase-field approaches, but substantially extends them. We show a wide range of numerical applications that are relevant for dynamic earthquake rupture in fault zones, including the co-seismic generation of secondary off-fault shear cracks, tensile rock fracture in the Brazilian disc test, as well as a natural convection problem in molten rock-like material. This article is part of the theme issue 'Fracture dynamics of solid materials: from particles to the globe'.

A unified first-order hyperbolic model for nonlinear dynamic rupture processes in diffuse fracture zones / Gabriel, A. -A.; Li, D.; Chiocchetti, S.; Tavelli, M.; Peshkov, I.; Romenski, E.; Dumbser, M.. - In: PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A: MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES. - ISSN 1364-503X. - 379:2196(2021), p. 20200130. [10.1098/rsta.2020.0130]

A unified first-order hyperbolic model for nonlinear dynamic rupture processes in diffuse fracture zones

Chiocchetti S.;Tavelli M.;Peshkov I.;Dumbser M.
2021-01-01

Abstract

Earthquake fault zones are more complex, both geometrically and rheologically, than an idealized infinitely thin plane embedded in linear elastic material. To incorporate nonlinear material behaviour, natural complexities and multi-physics coupling within and outside of fault zones, here we present a first-order hyperbolic and thermodynamically compatible mathematical model for a continuum in a gravitational field which provides a unified description of nonlinear elasto-plasticity, material damage and of viscous Newtonian flows with phase transition between solid and liquid phases. The fault geometry and secondary cracks are described via a scalar function ξ ∈ [0, 1] that indicates the local level of material damage. The model also permits the representation of arbitrarily complex geometries via a diffuse interface approach based on the solid volume fraction function α ∈ [0, 1]. Neither of the two scalar fields ξ and α needs to be mesh-aligned, allowing thus faults and cracks with complex topology and the use of adaptive Cartesian meshes (AMR). The model shares common features with phase-field approaches, but substantially extends them. We show a wide range of numerical applications that are relevant for dynamic earthquake rupture in fault zones, including the co-seismic generation of secondary off-fault shear cracks, tensile rock fracture in the Brazilian disc test, as well as a natural convection problem in molten rock-like material. This article is part of the theme issue 'Fracture dynamics of solid materials: from particles to the globe'.
2021
2196
Gabriel, A. -A.; Li, D.; Chiocchetti, S.; Tavelli, M.; Peshkov, I.; Romenski, E.; Dumbser, M.
A unified first-order hyperbolic model for nonlinear dynamic rupture processes in diffuse fracture zones / Gabriel, A. -A.; Li, D.; Chiocchetti, S.; Tavelli, M.; Peshkov, I.; Romenski, E.; Dumbser, M.. - In: PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A: MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES. - ISSN 1364-503X. - 379:2196(2021), p. 20200130. [10.1098/rsta.2020.0130]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/328232
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 21
social impact