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Earthquake fault zones are more complex, both
geometrically and rheologically, than an idealized
infinitely thin plane embedded in linear elastic
material. To incorporate nonlinear material behaviour,
natural complexities and multi-physics coupling
within and outside of fault zones, here we present
a first-order hyperbolic and thermodynamically
compatible mathematical model for a continuum
in a gravitational field which provides a unified
description of nonlinear elasto-plasticity, material
damage and of viscous Newtonian flows with phase
transition between solid and liquid phases. The fault
geometry and secondary cracks are described via a
scalar function ξ ∈ [0, 1] that indicates the local level
of material damage. The model also permits the
representation of arbitrarily complex geometries via a
diffuse interface approach based on the solid volume
fraction function α ∈ [0, 1]. Neither of the two scalar
fields ξ and α needs to be mesh-aligned, allowing
thus faults and cracks with complex topology and the
use of adaptive Cartesian meshes (AMR). The model
shares common features with phase-field approaches,
but substantially extends them. We show a wide
range of numerical applications that are relevant for
dynamic earthquake rupture in fault zones, including
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the co-seismic generation of secondary off-fault shear cracks, tensile rock fracture in the
Brazilian disc test, as well as a natural convection problem in molten rock-like material.

This article is part of the theme issue ‘Fracture dynamics of solid materials: from particles to
the globe’.

1. Introduction
Multiple scales, multi-physics interactions and nonlinearities govern earthquake source
processes, rendering the understanding of how faults slip a grand challenge of seismology
[1,2]. Over the last decades, earthquake rupture dynamics have been commonly modelled as
a sudden displacement discontinuity across a simplified (potentially heterogeneous) surface of
zero thickness in the framework of elastodynamics [3]. Such earthquake models are commonly
forced to distinguish artificially between on-fault frictional failure and the off-fault response of
rock. Here, we model natural fault damage zones [4,5] by adopting a diffuse crack representation.

In recent years, the core assumption that faults behave as infinitely thin planes has been
challenged [6]. Efforts collapsing the dynamics of earthquakes to single interfaces may miss
important physical aspects governing fault-system behaviour such as complex volumetric failure
patterns observed in recent well-recorded large and small earthquakes [7,8] as well as in
laboratory experiments [9]. However, the mechanics of fault and rupture dynamics in generalized
nonlinear visco-elasto-plastic materials are challenging to incorporate in earthquake modelling.
Earthquakes propagate as frictional shear fracture of brittle solids under compression along
pre-existing weak interfaces (fault zones), a problem which is mostly unsolvable analytically.
For numerical modelling, dynamic earthquake rupture is often treated as a nonlinear boundary
condition1 in terms of contact and friction, coupled to seismic wave propagation in linear elastic
material. The evolving displacement discontinuity across the fault is defined as the earthquake-
induced slip. Typically, the material surrounding the fault is assumed to be linear, isotropic and
elastic, with all nonlinear complexity collapsed into the boundary condition definition of fault
friction (e.g. [11]), which take the form of empirical laws describing shear traction bounded by
the fault strength. In an elastic framework, high-stress concentrations develop at the rupture
front. The corresponding inelastic off-fault energy dissipation (off-fault damage) and its feedback
on rupture propagation [12] can be modelled in the form of (visco-)plasticity of Mohr-Coulomb
or Drucker–Prager type [13,14], a continuum damage rheology which may account for high strain
rate effects [15–17], or explicit secondary tensile and shear fracturing [18–20].

Numerical modelling of crack propagation has been a long-standing problem not only in
seismology but also in computational mechanics. Emerging approaches in modelling fracture
and rupture dynamics include phase-field and varifold-based representations of cracks to tackle
the major difficulty of the introduction of strong discontinuities in the displacement field in
the vicinity of the crack. Current state-of-the-art methods in earthquake rupture dynamics [21]
require explicit fracture aligned meshing, thus, generally (with recent exceptions [22]) require
fractures to be predefined, and typically only permit small deformations. Using highly efficient
software implementations of this approach large-scale earthquake modelling is possible [23–25].
Alternative spatial discretizations which allow representing strong discontinuities at the sub-
element level, such as the eXtended finite element method (XFEM) [26], introduce singularities
when an interface intersects a cell, but are quite difficult to implement in an efficient manner.

In distinction, diffuse interface approaches ‘smear out’ sharp cracks via a smooth but rapid
transition between intact and fully damaged material states [27–29]. Within various diffuse
interface approaches, the most popular one is the phase-field approach, which allows us to model
complicated fracture processes, including spontaneous crack initiation, propagation, merging

1Faults are then idealized as two matching surfaces in unilateral contact not allowed to open or interpenetrate and typically
implemented by splitting the fault interface [10].
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and branching, in general situations and for 3D geometries. Critical ingredients of the phase-
field formulation are rooted in fracture mechanics, specifically by incorporating a critical fracture
energy (from Griffith’s theory [30]), which is translated into the regularized continuum gradient
damage mechanics [31]. Several theoretical methods have been recently proposed for shear
fracture (e.g. [32] for mode III) which is dominating earthquake processes. Phase-field models
have also been successfully applied for brittle fracture in rock-like materials [33] on small scales
(mm’s of slip).

The material failure model discussed in this paper also belongs to the class of diffuse
interface models in which the damaged material or a crack is considered as another phase of
the material and represented by a continuous scalar field ξ ∈ [0, 1], called the damage variable. As
in phase-field approaches, a crack or failure front is represented not as a discontinuity of zero
thickness but as a diffuse interface across which ξ changes continuously from 0 (intact material)
to 1 (fully damaged material) resulting in gradual but rapid degradation of material stiffness.
Despite this conceptual similarity, the model developed here is very different from the phase-
field models. An important feature of the phase-field models is the presence of the non-local
regularization term ∼ ‖∇φ‖2 in the free energy, with φ being the phase field. Without such
a regularization term, the numerical treatment of a phase-field model is problematic due to
numerical instabilities and mesh dependency of the numerical solution. This indicates the ill-
posedness of the underlying governing PDEs, e.g. see [34,35]. By contrast, the model developed
here originating from [36,37] does not require non-local regularization terms2 and is formulated
based on the thermodynamically compatible continuum mixture theory [40,41] which results in a
first-order symmetric hyperbolic governing PDE system and thus is intrinsically well-posed, at least
locally in time. Mathematical regularity of the model is supported by the stability of the hereafter
presented numerical results, including a mesh convergence analysis (see §3). More generally,
the developed model belongs to the class of Symmetric Hyperbolic and Thermodynamically
Compatible (SHTC) equations [42–45]. Apart from the PDE type used (the phase-field models are
formulated as second-order Allen-Cahn-type [46,47] or fourth-order Cahn-Hilliard-type [48–50]
parabolic PDEs), there is also an important conceptual difference between the developed mixture
type approach and the phase-field approaches. In the latter, the phase transformation is entirely
controlled by the free energy functional, which usually consists of three terms: Ψ (ε, φ, ∇φ) =
Ψ1(ε, φ) + Ψ2(φ) + Ψ3(∇φ), where ε is the small elastic strain tensor, Ψ1 is the elastic energy which
comprises a degradation function, Ψ2 is the damage potential (usually a double-well potential
but also single-well potentials are used [51]), and Ψ3 is the regularization term. In our approach,
only an energy equivalent to Ψ1(ε, φ) is used [37,52], while the phase-transition is described in
the context of irreversible thermodynamics and is controlled by a dissipation potential which is
usually a highly nonlinear function of state variables3 [44,53]. Yet, it is important to emphasize
that the irreversible terms controlling the damage are algebraic source terms (no space derivatives),
which do not affect the differential operator of the model. This greatly simplifies the discretization
of the differential terms in the governing PDE, but nevertheless requires an accurate and robust
stiff ordinary differential equation solver [52,54] for the source terms. Since the governing PDE
system of our theory contains only first-order derivatives in space and time, it is possible to use
explicit time-stepping in the numerical integration [52]. In contrast, the second- and fourth-order
phase-field PDEs require the use of an implicit time discretization [47], which is more difficult to
implement and may not have advantage over explicit methods if the time step is dictated by the
physical time scales, such as in strongly time-dependent processes, e.g. fracture dynamics and
wave propagation. We note that a hyperbolic reformulation of phase-field models is possible as
recently proposed in [55].

Alternatively, variational views on fracture mechanics can describe crack nucleation
intrinsically without a priori failure criteria [56,57]. Accounting for microscopic surface
irregularities or line defects can be achieved by combining a sharp interface approach with

2Non-local terms can be introduced in our theory if it is physically motivated, e.g. [38,39].

3For example, relaxation times may change over several orders of magnitude across the diffuse interface zone.
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advanced tools of differential geometry such as curvature varifolds [58]. These ideas can be seen as
a natural extension of the pioneering Griffith’s theory [30] with cracks being represented almost
everywhere by differentiable surfaces and evolving Griffith’s energies to account for curvature
effects. In this context, we remark that the model presented here is by no means a complete
fracture model. In specific situations requiring a very accurate prediction of the fracture process
the merely constitutive capabilities of the present model may not be sufficient. Instead, accounting
explicitly for the energy accumulating at the irregularities of the crack surface (e.g. at corners
and cusps) or the dynamics of microscopic defects near the crack tip might be required. In the
first-order hyperbolic diffuse interface framework presented here, this can be achieved by taking
into account higher gradients of the state variables such as curvature and torsion in the form of
independent state variables [38,39].

2. Mathematical model
The continuum model for damage of solids employed in this paper consists of two main
ingredients. The first ingredient is the damage model proposed by Resnyansky, Romenski and
co-authors [36,37] which is a continuous damage model with a chemical kinetics-type mechanism
controlling the damage field ξ ∈ [0, 1] (ξ = 0 corresponds to the intact and ξ = 1 to the fully
damaged state), which is interpreted as the concentration of the damaged phase. Being a
relaxation-type approach, it provides a rather universal framework for modelling brittle and
ductile fracture from a unified non-equilibrium thermodynamics viewpoint, according to which
these two types of fractures can be described by the same constitutive relations (relaxation
functions), but have different characteristic time scales, e.g. [52]. The second ingredient is the
Eulerian finite strain elastoplasticity model developed by Godunov and Romenski in the 1970s
[59–61]. It was recently realized by Peshkov & Romenski [62] that the same equations can
also be applied to modelling viscous fluid flow, as demonstrated by Dumbser et al. in [63]
and thus, this model represents a unified formulation of continuum fluid and solid mechanics.
In the following, we shall refer to it as the Godunov–Peshkov–Romenski (GPR) model. Being
essentially an inelasticity theory, the GPR model provides a unified framework for continuous
modelling of potentially arbitrary rheological responses of materials, and in particular of inelastic
properties of the damaged material. This, in turn, can be used for modelling of complex frictional
rheology in fault zones in geomaterials, see §3. For further details on the GPR model, the reader
is referred to [45,62–65]. Our diffuse interface formulation for moving nonlinear elasto-plastic
solids of arbitrary geometry and at large strain is given by the following PDE system in Eulerian
coordinates:

∂tα + vk∂kα = 0, ∂tρ̄ + ∂k(ρ̄vk) = 0, (2.1a)

∂t(ρ̄vi) + ∂k
(
ρ̄vivk + αpδik − ασik

) = ρ̄gi, (2.1b)

∂tAik + ∂k(Aimvm) + vm (∂mAik − ∂kAim) = −θ−1
1 (τ1)EAik , (2.1c)

∂tJk + ∂k (vmJm + T) + vm (∂mJk − ∂kJm) = −θ−1
2 (τ2)EJk , (2.1d)

∂tξ + vk∂kξ = −θEξ , (2.1e)

∂t(ρ̄S) + ∂k
(
ρ̄Svk + ρ̄EJk

) = ρ̄ (αT)−1
(
θ−1

1 EAik EAik + θ−1
2 EJk EJk + θEξ Eξ

)
≥ 0, (2.1f )

∂t(ρ̄E) + ∂k
(
vkρ̄E + vi(αpδik − ασik) + qk

) = ρ̄givi, (2.1g)

where we use the Einstein summation convention over repeated indices and ∂t = ∂/∂t, ∂k = ∂/∂xk.
Here, (2.1a)1 is the evolution equation for the colour function α that is needed in the diffuse
interface approach (DIM) as introduced in [64,66] for the description of solids of arbitrary
geometry (α = 1 inside of the solid body and α = 0 outside); ρ̄ = αρ and (2.1a)2 is the mass
conservation law with ρ being the material density; (2.1b) is the momentum conservation law
and vi is the velocity field; (2.1c) is the evolution equation for the distortion field A = [Aik], which is
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the main field in the GPR model and can be viewed as the field of local basis triads4 representing
the deformation and orientation of an infinitesimal material element [39,62,63]; (2.1d) is the
evolution equation for the specific thermal impulse Jk, describing the heat conduction in the
matter via a hyperbolic (non Fourier–type) model; (2.1e) is the evolution equation for the material
damage variable ξ ∈ [0, 1], where ξ = 0 indicates fully intact material and ξ = 1 fully damaged
material. Finally, (2.1f) is the entropy evolution equation with the positive source product on
the right-hand side (second law of thermodynamics) and (2.1g) is the energy conservation law
(first law of thermodynamics). Other thermodynamic parameters are defined via the total energy
potential E = E(ρ, S, v, A, J, ξ ): p = ρ2Eρ is the thermodynamic pressure, σ = [σik] = [σ e

ik + σ t
ik] is

the stress tensor with contributions to the mechanical stress due to tangential [σ e
ik = −ρAjiEAjk ]

and thermal stress [σ t
ik = ρJiEJk ] (note that σ e in not necessary trace-free), and T = ES is the

temperature. The total mechanical stress tensor is defined as Σ = [Σik] = [−pδik + σ e
ik], where δik

is the Kronecker delta. With a state variable in the subscript of the energy, we denote partial
derivatives, e.g. Eρ = ∂E/∂ρ, EAij = ∂E/∂Aij, etc. The heat flux is defined as qk, and gi is the
gravitational acceleration vector. Also, because we are working in an Eulerian frame of reference,
we need to add transport equations of the type ∂tλ + vk∂kλ = 0 to the above evolution equations
for all the material parameters (e.g. Lamé constants) in case of heterogeneous material properties,
see [52].

In order to close the system one must specify the total energy potential as a function of the
state variables, i.e. E = E(ρ, S, v, A, J, ξ ). This potential then generates the fluxes (reversible time
evolution) and source terms (irreversible time evolution) by means of its partial derivatives
(thermodynamic forces) with respect to the state variables. Here, we make the choice E = E1 +
E2 + E3, decomposing the energy into a contribution from the microscale E1, the mesoscale E2
and the macroscale E3. The individual contributions read as follows:

E1 = K
2ρ0

(1 − ρ/ρ0)
2 + cvT0

(
ρ

ρ0

)(
eS/cv − 1

)
+ H(T − Tc)hc, (2.2)

where ρ0 and T0 are the reference mass density and temperature, hc is the latent heat, Tc is the
critical temperature at which phase transition occurs, H(T) is the Heaviside step function, cv is
the heat capacity at constant volume. As a proof of concept, we added the last term in (2.2)
and present a demonstration example of the model’s capability to deal with solid-fluid phase
transition (melting/solidification) in electronic supplementary material, S5. Yet, this corresponds
to a simplified (time-independent) modelling of phase transition and will be improved in the
future. Also, K(ξ ) = λ(ξ ) + 2

3 μ(ξ ) is the bulk modulus, λ(ξ ) and μ(ξ ) are the two Lamé constants
that are functions of the damage variable ξ specified, following [36], as

λ(ξ ) = KIKD

K̃
− 2μIμD

3μ̃
, μ(ξ ) = μIμD

μ̃
, (2.3)

where the subscripts I and D denote intact and damaged, respectively, KI = λI + 2
3 μI, KD = λD +

2
3 μD, K̃ = ξKI + (1 − ξ )KD, μ̃ = ξμI + (1 − ξ )μD, and it is assumed that the elastic moduli of the
intact material λI, μI and of the fully damaged material λD, μD are known.

The macro-scale energy is the specific kinetic energy E3 = 1
2 vivi. Finally, E2 reads

E2 = 1
4 c2

s
◦
Gij

◦
Gij + 1

2 c2
hJiJi, (2.4)

where cs(ξ ) = √
μ(ξ )/ρ0 is the shear sound speed and ch is related to the speed of heat waves in

the medium (also called the second sound [67], or the speed of phonons).
◦
Gik = Gik − 1

3 Gjj δik is
the deviator of the Finger (or metric) tensor Gik = AjiAjk that characterizes the elastic deformation
of the medium.

The dissipation in the system includes three irreversible processes that raise the entropy: the
strain relaxation (or shear stress relaxation) characterized by the scalar function θ1(τ1) > 0 in
(2.1c) depending on the relaxation time τ1, the heat flux relaxation characterized by θ2(τ2) > 0

4Global deformation can not be restored from the local triad since they represent only local deformation and thus,
incompatible deformation.
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in (2.1d), depending on the relaxation time τ2, and the chemical kinetics like process governing
the transition from the intact to damaged state and controlled by the function θ in (2.1e).

The main idea of the diffuse interface approach to fracture is to consider the material element as
a mixture of the intact and the fully damaged phases. These two phases have their own independent
material parameters and closure relations, such as functions characterizing the rate of strain
relaxation. The strain relaxation approach in the framework of the unified hyperbolic continuum
mechanics model [62,63] represented by the evolution equation for the distortion field A allows
us to assign potentially arbitrary rheological properties to the damaged and intact states. In
particular, the intact material can be considered as an elastoplastic solid, while the damaged
phase can be a fluid, e.g. a Newtonian fluid (see §3c) or viscoplastic fluid, which can be used
for modelling of in-fault friction, for example. Yet, in this paper, we do not use an individual
distortion evolution equation for each phase, but employ the mixture approach [36,37], and use
a single distortion field representing the local deformation of the mixture element, while the
individual rheological properties of the phases are taken into account via the dependence of the
relaxation time τ1 on the damage variable ξ as follows:

τ1 =
(

(1 − ξ )
τI

+ ξ

τD

)−1
, (2.5)

where τI and τD are shear stress relaxation times for the intact and fully damaged materials,
respectively, which are usually highly nonlinear functions of the parameters of state. The
particular choice of τI and τD that is used in this paper reads

τI = τI0 exp(αI − βI(1 − ξ )Y), τD = τD0 exp(αD − βDξY), (2.6)

where Y is the equivalent stress, while τI0, αI, βI, τD0, αD, βD are material constants. In this work,
the stress norm Y is computed as

Y = A Ys + B Yp + C, (2.7)

where Ys = √
3 tr(devΣ devΣ)/2, with devΣ = Σ − (trΣ/3)I, is the von Mises stress and Yp =

trΣ/3 accounts for the spherical part of the stress tensor. The choice A = 1, B = C = 0, gives Y = Ys,
that is, the von Mises stress, while other choices of coefficients in equation (2.7) are intended to
describe a Drucker–Prager-type yield criterion.

Note that to treat the damaged state as a Newtonian fluid, it is sufficient to take τD = const � 1,
see §3c or [63]. Non-Newtonian rheologies can also be considered if the proper function for τD(Y)
is provided, e.g. see [65]. Thus, the function θ1 = τ1cs(ξ )2/3|A|−5/3 is taken in such a way as to
recover the Navier–Stokes stress tensor with the effective shear viscosity η = (1/6)ρ0τ1c2

s in the
limit τ1 � 1 [63] and is used for modelling of a natural convection problem in §3c. A pure elastic
response of the intact material, as used as fault host rock in §3a cases (i) and (ii), corresponds
to τI = ∞. By this means, all numerical examples presented throughout §3 follow the rheological
formulation given by θ1 with varying parametrization.

The transition from the intact to the fully damaged state is governed by the damage variable
ξ ∈ [0, 1] satisfying the kinetic-type equation (2.1e), ξ̇ = −θEξ , with the source term depending on
the state parameters of the medium (pressure, stress and temperature). In particular, the rate of
damage θ is defined as

θ = θ0(1 − ξ )(ξ + ξε)
[

(1 − ξ )
(

Y
Y0

)a
+ ξ

(
Y
Y1

)]
, (2.8)

where ξε , Y0 and Y1, a are constants. ξε is usually set to ξε = 10−16 in order to trigger the growth
of ξ with the initial data ξ = 0. We note that similar to the chemical kinetics, the constitutive
functions of the damage process drive the system towards an equilibrium that is not simply
defined as Eξ = 0, but as θEξ = 0, e.g. [53]. As a result, the overall response of the material
subject to damage (i.e. its stress–strain relation, see also [52]) is defined by the interplay of both
irreversible processes; (i) the degradation of the elastic moduli controlled by (2.8) and (ii) the
inelastic processes in the intact and damaged phases controlled by (2.5) and (2.6). In the numerical
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experiments carried out in §3b, the damage kinetics ξ also strongly couple with strain relaxation
effects, by means of equation (2.5). The function θ2, governing the rate of the heat flux relaxation, is
taken as θ2(τ2) = τ2(c2

h/ρT) that yields the classical Fourier law of heat conduction with the thermal
conductivity coefficient κ = τ2c2

h in the stiff relaxation limit (τ2 → 0), see [63]. For simplicity, the
thermal parameters of the intact and damaged phases are here assumed identical.

Finally, we remark that the problem of parameter selection for our unified model of continuum
mechanics is a non-trivial task. Due to the large amounts of parameters, the problem may need
to be solved monolithically via numerical optimization algorithms applied to data obtained from
observational benchmarks such as triaxial loading experiments. Nonetheless, in certain limiting
cases, some rationale can be developed in order to estimate parameters without empirically
considering several trial choices. For example, brittle materials can be constructed by choosing
a very high value for the exponent a in equation (2.6). By this means, the rate of growth θ of
the damage variable ξ will activate as a switch when Y reaches the Y0 threshold. In this specific
case, Y0 can be chosen equivalently to a yield stress. Also, the sensitivity to tensile stresses can be
modelled by resorting to techniques that are routinely used in science and engineering, e.g. using
the Drucker–Prager yield criterion to compute Y. In the Brazilian tensile fracture example in §3b,
βI,D are set to zero as the complex stress-dependent mechanisms they control are not necessary
for achieving the desired material behaviour. Controlling the relaxation time of the damaged state
(τD) can be useful for modelling friction within a natural fault zone: if a very low relaxation time
is chosen, which can be easily achieved by setting τD0 = 10−6s, αD = βD = 0, the fault will exert no
tangential stresses on the surrounding intact rock, as if it were filled with an inviscid fluid. Specific
frictional regimes and (time-dependent) plastic effects can be described by properly choosing the
relaxation times τI,D (via τI0,D0, αI,D, βI,D), which in general may require more complex automatic
optimization strategies.

3. Numerical examples
In this section, we present a variety of numerical applications of the GPR model relevant for
earthquake rupture and fault zones. The governing PDE system (2.1) is solved using the high
performance computing toolkit ExaHyPE [68], which employs an arbitrary high-order derivative
(ADER) discontinuous Galerkin (DG) finite-element method in combination with an a posteriori
subcell finite volume limiter on space time adaptive Cartesian meshes (AMR). For details, the
reader is referred to [52] and to [63,64,69–73] and references therein.

(a) Earthquake shear fracture across a diffuse fault zone
In the following, we explore the GPR diffuse fault zone approach extending the modelling
of dynamic earthquake rupture beyond treatment as a discontinuity in the framework of
elastodynamics. Figure 1 illustrates the model set-up corresponding to the geological structure of
a typical strike-slip fault zone. Dynamic rupture within the ‘fault core’ is governed by a friction-
like behaviour achieved by time-dependent modulation of the shear relaxation time τD of the
fault core’s fully damaged material. At the onset of frictional yielding, the shear relaxation time
(τD) decreases exponentially as in (2.6) with a time-dependent β ′

D. The temporal evolution of β ′
D is

modulated at a constant rate during rupture as β ′
D(t) = βD min (1, max (0, 1 − C1 t)) where C1 and

βD are constant. Visco-elastic slip accumulates across the diffuse fault core coupled to either fully
elastic wave propagation or Drucker–Prager type damage in the host rock.

(i) Kinematic self-similar Kostrov-like crack. We first model a kinematically driven non-
singular self-similar shear crack analog to Kostrov’s solution for a singular crack [74] to study the
relation between fault slip, slip rate and shear stress in comparison to traditional approaches,
while imposing tractions here avoids the full complexity of frictional rupture dynamics. The 2D
set-up (e.g. [75]) assumes a homogeneous isotropic elastic medium (electronic supplementary
material, table S2, cs = cp/

√
3), and a pre-assigned fault interface loaded by initial normal stress

σn = 40 MPa and shear stress τ = 20 MPa. An in-plane right-lateral shear crack is driven by
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Figure 1. (a) Typical strike-slip fault zone structure showing a multiple fault core with associated damage zone in a
quartzofeldspathic country rock (from [5]). (b) Sketch of the GPRmodel setup for 2D in-plane right-lateral shear fracture under
compression used throughout §3a. In light grey, we depict the prescribed fault core of length Lfc and widthWfc which is fully
damaged (ξ = 1) and embedded in intact host rock (ξ = 0). The material properties and rheology of the host rock and
fault core differ and are detailed in electronic supplementary material, tables S1 and S2. Grey lines illustrate the initial mesh
refinement, which can dynamically adapt as detailed in electronic supplementary material, table S3.

prescribing the (sliding) friction μf as linearly time-dependent weakening: μf (x, t) = max{fd, fs −
(fs − fd)(vrt − |x|)/Rc}, with process zone size Rc = 250 m, rupture speed vr = 2000 m s−1, static
friction fs = 0.5 and dynamic friction fd = 0.25. We empirically find that choosing C1 = 10
reproduces the propagating shear crack in the reference solution. Thus, β ′

D evolves linearly from
βD to 0 during rupture.

We assume a fully damaged fault core (ξ = 1) of prescribed length Lfc = 20 km and width
Wfc = 100 m embedded in a continuum material resembling intact elastic rock (ξ = 0) as illustrated
in figure 2a. Both, the fault core and the surrounding host rock are treated as the same continuum
material besides their differences in ξ . The GPR specific material parameters are detailed as
‘host rock 1’ (here, λD = λI, μD = μI) in electronic supplementary material, table S1. The model
domain is of size 70 × 70 km bounded by Dirichlet boundary conditions and employs a statically
refined mesh surrounding the fault core. The domain is discretized into hierarchical Cartesian
computational grids, spaced h = 2800 m at the coarsest level, and h = 311 m at the second
refinement level (electronic supplementary material, table S3). We use polynomial degree p = 6
and the subcell finite volume limiter counts 2 p + 1 = 13 subcells in each spatial dimension.
Figure 2a–c compares slip, slip rate and shear traction during diffuse crack propagation modelled
with the GPR model to a spectral element solution assuming a discrete fault interface spatially
discretized with h = 100 m with SEM2DPACK [76]. The GPR model analog captures the kinematics
(i.e. stress drop and fault slip) of the self-similar singular Kostrov crack as well as the emanated
seismic waves (figure 2d,e and Animation S1), while introducing dynamic differences on the scale
of the diffuse fault (zoom-in in figure 2d). Slip velocity (figure 2a) remains limited in peak, similar
to planar fault modelling with off-fault plastic deformation [77]. Fault slip (figure 2b) appears
smeared out at its onset, yet asymptotically approaches the classical Kostrov crack solution.
Similarly, shear stresses (figure 2c) appear limited in peak and more diffuse, specifically with
respect to the secondary peak associated with the passing rupture front. Importantly, (dynamic)
stress drops are comparable to the expectation from fracture mechanics for a plane shear crack
(even though peak and dynamic level appear shifted). At the crack tip, we observe an initial out-
of-plane rotation within the fault core leading to a localized mismatch in the hypocentral region
and at the onset of slip across the fault. The GPR model approaches the analytical solution, as
illustrated for increasing polynomial degree p in electronic supplementary material, figure S1.

(ii) Spontaneous dynamic rupture. We next model spontaneous dynamic earthquake rupture
in a 2D version [75] of the benchmark problem TPV3 [21] for elastic spontaneous rupture
propagation defined by the Southern California Earthquake Center. Our setup resembles the
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Figure 2. Comparison of the self-similar Kostrov-like crack of the diffuse GPR model (ADER-DG, p= 6, Wfc = 100 m, Lfc =
20 km, fault core andhost rockmaterial are ‘host rock 1’, static AMR)with the discrete fault spectral element SEM2DPACK (p= 6,
h= 100 m) solution; (a) slip rate, (b) slip and (c) shear stress time series at increasing hypocentral distances, (d,e) velocity
wavefield at t = 4 s (see also Animation S1), and zoom into the rupture tip. (Online version in colour.)

kinematic model (figure 1a) including the time-dependent choice of β ′
D(t) with C1 = 10 with an

important distinction: we assume a low-rigidity fault core (‘low velocity fault rock’ in electronic
supplementary material, table S1) by setting P-wave and S-wave velocity in the fault core 30%
lower, i.e. λ(ξ ) and μ(ξ ) are decreased by 50%, with respect to the intact rock. A 30% reduction of
seismic wave speeds matches natural fault zone observations. The thickness of the low velocity
fault rock unit equals the thickness of the fault core itself where ξ = 1. The surrounding country
rock is again parameterized as fully elastic with the ‘host rock 1’ GPR parametrization (electronic
supplementary material, table S1). The fault core is Lfc = 30 km long and Wfc = 100 m wide, the
domain size is 40 × 40 km, initial loading is σyy = −120 MPa and σxy = 70 MPa. The computational
grid is spaced h = 1600 m at the coarsest level, and h = 177 m at the second refinement level
(electronic supplementary material, table S3). Figure 3 compares, similar to the kinematic case,
the diffuse low-rigidity fault ADER-DG GPR results to an elastic discrete fault interface spectral
element solution. Fault slip rates (figure 3a) are limited in peak and are now clearly affected by
smaller scale dynamic complexity, e.g. out-of-plane crack rotation and wave reflections, within
the fault core. Fault slip (figure 3b) asymptotically resembles the discontinuous, elastic solution.
Shear stresses (figure 3c) are smeared out and shifted, but capture (dynamic) stress drops, similar
to the kinematic model in (i). We note that residual shear stress levels remain higher potentially
reflecting oblique shear developing within the diffuse fault core and/or viscous behaviour within
the fault core. The diffuse fault core slows down the emitted seismic waves, while amplifying
sharp velocity pulses (figure 3d,e and Animation S2) aligning with observational findings [78]. The
GPR model successfully resembles frictional linear-slip weakening behaviour [79] within the fault
core by defining: μf (x, t) = max{fd, fs − (fs − fd)δ(x, t)/Dc}, with slip-weakening distance Dc = 0.4
m, fs = 0.677 and fd = 0.525 similar to the discrete fault solution, δ(x, t) denotes here the diffuse slip
within the fault core and is measured as the difference of displacements at its adjacent boundaries.
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Figure 3. Computational results for the 2D TPV3 dynamic rupture problem. Comparison of the diffuse interface GPR model
(ADER-DG, p= 6,Wfc = 100 m, Lfc = 30 km, fault core of ‘low velocity fault rock’ embedded in ‘host rock 1’, static AMR) with
the discrete fault spectral element SEM2DPACK solution (p= 6, h= 100 m), with (a) slip rate, (b) slip and (c) shear stress time
series at increasing hypocentral distance. (d,e) Radiated seismic wavefield in terms of particle velocity at t = 3.1 s (see also
Animation S2). Zoom-in the crack tips highlights dynamic rupture complexity within the low-rigidity fault core. (Online version
in colour.)

Rupture is not initiated by an overstressed patch, which would be inconsistent with deforming
material, but as a kinematically driven Kostrov-like shear-crack with vr = 4000 m s−1 and within a
nucleation time of t = 0.5 s. In the diffuse model, introducing the low velocity fault rock material
within the fault core is required to limit rupture speed while resembling slip rate, slip and stress
evolution of the discrete reference model. We conclude that the rheological fault core properties,
and not the friction law, control important crack dynamics such as rupture speed in our diffuse
interface modelling, cf. [80]. A comparison of results assuming a further reduction of fault rock
wave speeds to 37% is discussed in the electronic supplementary material.

(iii) Dynamically generated off-fault shear cracks. Localized shear banding is observed in
the vicinity of natural faults spanning a wide spectrum of length scales [5], and contributes
to the energy balance of earthquakes. We model dynamically generated off-fault shear cracks
by combining the spontaneous dynamic rupture model embedded in ‘low velocity fault rock’
with ‘host rock 2’ outside the fault core (electronic supplementary material, table S1, μD =
0.8571 μI, λD = λI + 0.6667 (μI − μD) in (2.3)). ‘Host rock 2’ is governed by Drucker–Prager
yielding [14,81,82] as given by equation (2.7), with A = 1/

√
3, B = sin(π/18), and C = − cos(π/18) ·

95 MPa. The model domain size is 20 × 15 km spatially discretized with h = 800 m at the coarsest
mesh level (electronic supplementary material, table S3). We here use dynamic adaptive mesh
refinement (AMR) with two refinement levels and refinement factor r = 3 to adapt resolution
in regions where the material is close to yielding. The finest spatial discretization is h = 89 m.
Figure 4a illustrates spontaneous shear-cracking in the extensional quadrants of the main fault
core, where the passing rupture induces a dynamic bimaterial effect [83]. While previous models
[14] based on ideal plasticity without damage accumulation numerically capture the formation of
single sets of shear bands in Drucker–Prager type off-fault material induced by dynamic rupture
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Figure4. Off-fault shear cracks spontaneously generated in the extensional quadrants of dynamic earthquake rupture (TPV3) in
the GPRmodel (ADER-DG,p= 6,Wfc = 100 m, Lfc = 20 km, fault core of ‘low velocity fault rock’ embedded in Drucker-Prager
type ’host rock 2’, dynamic AMR). (a) Velocitywavefield at t = 5.0 s (see also Animation S3). Dark colours represent the damage
variable ξ illustrating the fault core initialized as fully damaged (cf. figure 2a) and the propagating secondary off-fault cracks.
(b) Polar diagram of the statistical orientation of off-fault shear cracks. The two dominant orientations are≈ 20◦ and≈ 120◦.
The maximum compressive stress (σ1) has an orientation angle of 65.3◦. (Online version in colour.)

propagation across a main fault, we here observe the formation of two conjugate sets of shear
fractures: cracks are distributed around two favourable orientations (figure 4b). Spacing and
length of these shear deformation bands [19,84] may depend on GPR material parametrization
(Y0, βD, cohesion, internal friction angle, etc. see electronic supplementary material, table S1
and [52]) as well as on the computational mesh and will motivate future analysis, as in §3b.
High particle velocity is associated with the strong growth of off-fault shear stresses near the
fault tip shifting from the propagation direction of the main rupture [85]. We observe the
dynamic development of interlaced conjugate shear faulting (Animation S3) resembling recent
high-resolution imaging of earthquakes [8].

(b) Crack formation in a rock-like disc
The GPR framework can be applied to capture tensile fracture, important for earthquake
nucleation processes and the microscale of fault zone fracture and damage. We now show that
our model is able to correctly describe the fracture mechanisms observed in laboratory settings.
Specifically, we reproduce the experimental results of [86] which involve the compression of a
rock disc along its diameter (a so-called Brazilian test). In this case, the disc presents a central
slit with a given orientation, which influences the early stages of the failure of the rock sample.
The test is carried out in two space dimensions on a square computational domain centred at the
origin and with side length 2.2 units. The interface of the disc is defined by setting α = 0 outside
of the unit-radius circle, without requiring a boundary-fitted mesh. The material used in this test
has been derived as a weakened variant of a granite-like brittle rock. In particular, it replicates
the strong difference in shear resistance found under compression or tensile loads. The material
is characterized by the following choice of parameters: ρ = 2620 kg m−3, μI = λI = 21.44 GPa,
μD = λD = 150.08 MPa, θ0 = 1, Y0 = 10 MPa, Y1 = 1 Pa, a = 60, τI0 = 105 s, τD0 = 10−3 s, βI = βD = 0.
For |y| > 1, the material is modified by setting Y0 = Y1 = 100 TPa to model unbreakable clamps.
Thermal effects are neglected. For this test, the coefficients of the Drucker–Prager equivalent stress
formula (2.7) are A = 1.0, B = 1.5 and C = −2.0 MPa. In figure 5 we report the computational
results from an ADER-DG (p = 3) scheme on a uniform Cartesian mesh of 192 by 192 cells,
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Figure 5. Crack formation in a rock-like disc under vertical load (Brazilian test) for different angles of the pre-damaged area.
Comparison of the contour colours of the damage variable ξ obtained in the numerical simulations of the GPR model with the
cracks observed in experiments. The simulation results are overlaid on top of the photographs from [86]. From left to right: 45◦,
60◦ and 90◦. Only the regions of the disc whereα > 0.5 are shown. (Online version in colour.)

showing good agreement with the experimental data. For a detailed mesh refinement study, see
the electronic supplementary material.

(c) Phase transition and natural convection in molten rock-like material
Seismic fault slip velocities and low thermal conductivity of rock can lead to the formation of
veins of molten rock (pseudotachylytes), which are thought of as an unambiguous indicator of
earthquake deformation, however, they are not common features of active faults [87]. In our
model, the phase transition between solid and liquid occurs simply via the definition of the total
energy by adding the contribution of the latent heat for T > Tc, see (2.2), and by modifying the
relaxation time for T > Tc. More precisely, in this example, the relaxation time τ1 is not computed
according to (2.5) and (2.6) but is considered constant (time-independent) in the solid state and is
computed in terms of the dynamic viscosity η as τ1 = 6η/ρ0c2

s for the molten state (T > Tc) treated
as a Newtonian fluid. Also, in this example, θ1 has to be taken as θ1 = τ1cs(ξ )2/3|A|−5/3, see the
result of the asymptotic analysis presented in [63]. In the electronic supplementary material of
this paper, we validate our simple approach for phase transition for a well-known benchmark
problem with exact solution, namely the Stefan problem, see [88]. The obtained results clearly
show that the proposed model can properly deal with heat conduction and phase transition
between liquid and solid phases.

Next, we show the capability of the GPR model to describe also the motion of viscous
fluids under the influence of gravity. The stresses acting on faults are key initial conditions for
earthquakes and seismic fault dynamics, but are poorly known. At very long time scales, these
initial conditions are governed by plate tectonics and mantle convection, which is included in the
GPR model as a special case, see [89] and references therein for numerical simulations of rising
bubbles in 2D and 3D. We therefore simulate a rising bubble in molten rock-like material. In the
following, we use SI units. The critical temperature is set to Tc = 1000, the latent heat is hc = 1000,
the gravity vector is g = (0, −9.81) and the dynamic viscosity of the molten material is η = 20.
We furthermore set the remaining parameters to ρ0 = 2000, γ = 2, p0 = 2 × 105, cv = 0.1, cs = 5,
α = 5 and λ = 0.2. Initially we set T = 1500, vi = 0, A = I, J = 0, p = 105 − ‖g‖ρ0y and a hot circular
bubble of radius R = 0.2 is initially centred at xc = (0, 0) with a temperature increase of �T = 200
for ‖x − xc‖ ≤ R. The domain is Ω = [−2, 2] × [−1, 3] and simulations are carried out until t = 4
with an ADER-DG (p = 3) scheme on a mesh of 200 × 200 elements. For comparison, we run two
simulations, one with the GPR model presented in this paper and another simulation with the
compressible Navier–Stokes equations, which serves as a reference solution for the GPR model in
the viscous fluid limit. The computational results are depicted in figure 6, where we can observe
an excellent agreement. This demonstrates that the model presented in this paper is also able to
correctly describe natural convection in molten material when T > Tc.
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Figure 6. Temperature contours for the rising bubble problem in molten rock-like material at time t = 4. Solution obtained
with the GPRmodel (a) and Navier–Stokes reference solution (b). The melting temperature is set to Tc = 1000. (Online version
in colour.)

4. Summary and outlook
We have presented a unified hyperbolic model of inelasticity that incorporates finite strain
elastoviscoplasticity and viscous fluids in a single PDE system, coupled with a hyperbolic
model for continuous modelling of damage, including brittle and ductile fracture as particular
cases. The governing equations are formulated in the Eulerian frame and via a diffuse interface
approach permit arbitrary geometries of fractures and material boundaries without the necessity
of generating interface-aligned meshes. We emphasize that the presented diffuse interface approach
is not merely a way to regularize otherwise singular problems as posed by earthquake shear
crack nucleation and propagation along zero-thickness interfaces, but potentially allows us
to fully model volumetric fault zone shearing during earthquake rupture, which includes
spontaneous partition of fault slip into intensely localized shear deformation within weaker
(possibly cohesionless/ultracataclastic) fault-core gouge and more distributed damage within
fault rocks and foliated gouges. The model capabilities were demonstrated in several 2D examples
related to rupture processes in earthquake fault zones. We compare kinematic, fully dynamic
and off-fault damage GPR diffuse rupture to models employing the traditional elasto-dynamic
viewpoint of a fault, namely a planar surface across which slip occurs. We show that the
continuum model can reproduce and extend classical solutions, while introducing dynamic
differences (i) on the scale of pre-damaged/low-rigidity fault zone, such as out-of-plane rupture
rotation, limiting peak slip rates, non-frictional control of rupture speed; and (ii) on the scale of
the intact host rock, such as conjugate shear cracking in tensile lobes and amplification of velocity
pulses in the emitted wavefield. A natural next step is to combine the successful micro fracture
laboratory-scale Brazilian tests with dynamic rupture to span the entire scales of fault zone
fracture. The GPR parameters for the host rock and fault zone rock material can also be calibrated
to resemble natural rock, as e.g. Westerly granite [90]. Also, using the computational capabilities
of the model’s ExaHyPE implementation, one can study related effects on ground shaking (see
[52,66] for GPR modelling of 3D seismic wave propagation with complex topography) and
detailed 3D fault zone models (cf. [91–93]) including trapped/head waves interacting with
dynamic rupture [80]. Inelastic bulk processes are important during earthquake rupture (e.g.
[94]), but also in between seismic events, including off-fault damage and its healing, dynamic
shear localization and interseismic delocalization, and visco-elasto-plastic relaxation. Since the
unified mathematical formulation proposed in this paper is able to describe elasto-plastic solids
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as well as viscous fluids, future work will also concern the study of fully coupled models of
dynamic rupture processes triggered by mantle convection and plate tectonics. Extensions to non-
Newtonian fluids will be considered, as well as to elasto-plastic saturated porous media, see e.g.
the recent work presented in [65,95]. We also plan more detailed investigations concerning the
onset of melting processes in shear cracks. Finally, we note that the material failure is due to the
accumulation of microscopic defects (micro-cracks in rocks or dislocations in crystalline solids).
It is thus interesting to remark that the distortion field being the field of non-holonomic basis
triads provides a natural basis for further development of the model towards a micro-defects-
based damage theory. This can be achieved via concepts of the Riemann-Cartan geometry, such
as torsion discussed in [39].

Data accessibility. ExaHyPE is free software hosted at www.exahype.org. The presented numerical examples will
be accessible and reproducible at https://gitlab.lrz.de/exahype/ExaHyPE-Engine and https://github.com/
TEAR-ERC/GPR2DR.
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