Brain responsiveness to stimulation fluctuates with rapidly shifting cortical excitability state, as reflected by oscillations in the electroencephalogram (EEG). For example, the amplitude of motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) of motor cortex changes from trial to trial. To date, individual estimation of the cortical processes leading to this excitability fluctuation has not been possible. Here, we propose a data-driven method to derive individually optimized EEG classifiers in healthy humans using a supervised learning approach that relates pre-TMS EEG activity dynamics to MEP amplitude. Our approach enables considering multiple brain regions and frequency bands, without defining them a priori, whose compound phase-pattern information determines the excitability. The individualized classifier leads to an increased classification accuracy of cortical excitability states from 57% to 67% when compared to μ-oscillation phase extracted by standard fixed spatial filters. Results show that, for the used TMS protocol, excitability fluctuates predominantly in the μ-oscillation range, and relevant cortical areas cluster around the stimulated motor cortex, but between subjects there is variability in relevant power spectra, phases, and cortical regions. This novel decoding method allows causal investigation of the cortical excitability state, which is critical also for individualizing therapeutic brain stimulation.
Causal decoding of individual cortical excitability states / Metsomaa, J.; Belardinelli, P.; Ermolova, M.; Ziemann, U.; Zrenner, C.. - In: NEUROIMAGE. - ISSN 1053-8119. - ELETTRONICO. - 245:(2021), p. 118652. [10.1016/j.neuroimage.2021.118652]
Causal decoding of individual cortical excitability states
Belardinelli P.;
2021-01-01
Abstract
Brain responsiveness to stimulation fluctuates with rapidly shifting cortical excitability state, as reflected by oscillations in the electroencephalogram (EEG). For example, the amplitude of motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) of motor cortex changes from trial to trial. To date, individual estimation of the cortical processes leading to this excitability fluctuation has not been possible. Here, we propose a data-driven method to derive individually optimized EEG classifiers in healthy humans using a supervised learning approach that relates pre-TMS EEG activity dynamics to MEP amplitude. Our approach enables considering multiple brain regions and frequency bands, without defining them a priori, whose compound phase-pattern information determines the excitability. The individualized classifier leads to an increased classification accuracy of cortical excitability states from 57% to 67% when compared to μ-oscillation phase extracted by standard fixed spatial filters. Results show that, for the used TMS protocol, excitability fluctuates predominantly in the μ-oscillation range, and relevant cortical areas cluster around the stimulated motor cortex, but between subjects there is variability in relevant power spectra, phases, and cortical regions. This novel decoding method allows causal investigation of the cortical excitability state, which is critical also for individualizing therapeutic brain stimulation.File | Dimensione | Formato | |
---|---|---|---|
Metsomaa_NI_2021.pdf
accesso aperto
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Creative commons
Dimensione
3.8 MB
Formato
Adobe PDF
|
3.8 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione