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a b s t r a c t 

Brain responsiveness to stimulation fluctuates with rapidly shifting cortical excitability state, as reflected by 

oscillations in the electroencephalogram (EEG). For example, the amplitude of motor-evoked potentials (MEPs) 

elicited by transcranial magnetic stimulation (TMS) of motor cortex changes from trial to trial. To date, individual 

estimation of the cortical processes leading to this excitability fluctuation has not been possible. 

Here, we propose a data-driven method to derive individually optimized EEG classifiers in healthy humans 

using a supervised learning approach that relates pre-TMS EEG activity dynamics to MEP amplitude. Our approach 

enables considering multiple brain regions and frequency bands, without defining them a priori, whose compound 

phase-pattern information determines the excitability. 

The individualized classifier leads to an increased classification accuracy of cortical excitability states from 

57% to 67% when compared to 𝜇-oscillation phase extracted by standard fixed spatial filters. Results show that, 

for the used TMS protocol, excitability fluctuates predominantly in the 𝜇-oscillation range, and relevant cortical 

areas cluster around the stimulated motor cortex, but between subjects there is variability in relevant power 

spectra, phases, and cortical regions. This novel decoding method allows causal investigation of the cortical 

excitability state, which is critical also for individualizing therapeutic brain stimulation. 
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. Introduction 

A ubiquitous property of the brain, apparent in non-invasive brain-

timulation with transcranial magnetic stimulation (TMS) ( Hallett 2007 ;

arker and Jalinous, 1985 ), is the large variability in the response

voked by the identical repeated stimulus ( Kiers et al., 1993 ). To the

egree that such variability is explained by the dynamics of ongoing

eural activity ( Arieli et al., 1996 ), the distribution of evoked response

mplitudes reflects the distribution of fluctuating cortical excitability

tates. In this view, variability is not a “bug ” but a “feature ” in that it al-

ows us to probe different instantaneous brain states. In TMS of primary

otor cortex (M1), the amplitude of the motor-evoked potential (MEP)

s an indicator of corticospinal excitability at the time that the TMS

ulse was applied. By combining TMS of M1 with electroencephalogra-

hy (EEG), we can group trials post-hoc into high- and low-excitability

rials (classes) based on MEP amplitude and ask whether a feature of

he EEG signal immediately preceding the respective stimulus can pre-

ict between the two classes for an individual subject. This approach is
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nown as “decoding ” and it allows a causal investigation of the brain

tate relevant to the evoked response. 

In the primate, the phase of distally recorded local field potentials

as shown to predict local spike rates ( Canolty et al., 2010 ), and the

hase of invasively recorded sensorimotor μ-rhythm correlates with neu-

onal spiking ( Haegens et al., 2011 ). EEG oscillations reflect the synchro-

ized activity of different neuronal populations, similar to intracranial

nvasive extracellular recordings ( Buzsaki et al., 2012 ). Thus, the identi-

cation of fluctuating cortical excitability states from ongoing EEG data

s a mapping from macroscopic bioelectric phenomena to the depolar-

zation state of specific neuronal cell populations. 

It is however not clear how to best extract this information from a

indow of EEG data for a specific cortical location and subject. Previous

ttempts to find a relationship between pre-stimulus EEG and MEP am-

litude were based on pre-specified assumptions on the locations and/or

emporal filters which were expected to yield the relevant predictive

EG features ( Schaworonkow et al., 2019 ; Torrecillos et al. 2020; Maki

nd Ilmoniemi 2010; Zrenner et al., 2018 ). These studies have reported
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ariable results on how MEP amplitude was found to be linked with the

hase of the pre-stimulus EEG data on average. Absence of phase rela-

ion with the MEP amplitude or very small effect size have also been

eported ( Mitchell et al., 2007 ; Madsen et al. 2019; van Elswijk et al.

010). 

It is an open question whether the predictive power of the EEG sig-

al to detect cortical excitability states is inherently limited, or whether

ndividualized modeling with fewer a priori assumptions could improve

he MEP prediction accuracy. In practice, spatial and temporal filters can

erve to extract relevant phase patterns from EEG. Previous attempts to

ndividualize these filters based on the properties of the pre-stimulus

EG signal were moderately successful ( Schaworonkow et al., 2018 ),

hereby signal-to-noise ratio (SNR) in the μ-alpha range was optimized

n order to increase the accuracy of phase estimation ( Zrenner et al.,

020 ). Here, we utilize the post-stimulus MEP that was “caused ”

y an interaction between the pre-stimulus EEG signal and the TMS

ulse to decode cortical excitability states from pre-stimulus EEG

sing supervised machine learning approaches: MEP amplitudes are

sed to label the trials post-hoc as either high or low excitability

nd the pre-stimulus EEG data is then used to train and to test the

lassifier. 

Specifically, we use logistic regression to compute an optimal linear

patio-temporal pre-stimulus EEG filter extracting the excitability score,

eparately for each individual subject. Our model assumes that the am-

litudes of the underlying cortical activations at specific latencies within

 window prior to the TMS pulse are predictive of cortical excitability at

he time of the stimulus. This assumption corresponds to instantaneous

hase being predictive of instantaneous cortical excitability. 

The proposed methodology is highly suitable for studying the ex-

itability state encoding under different measurement settings and con-

itions since no prior assumptions regarding relevant locations, frequen-

ies, or optimal oscillation phases are required. We tested the classifi-

ation approach with measured EEG − TMS − MEP datasets to evaluate

he classification accuracy of the individually estimated model, and this

as compared to a non-individualized model where the same predefined

patial filter was used across all subjects. 

Supervised machine learning approaches have previously been used

n brain − computer interfaces (BCI), to distinguish between different

ask-related brain states, such as motor imagery, based on the am-

litude of different brain oscillations estimated over several seconds

 Blankertz et al., 2011 ; Blankertz et al., 2007 ). Our scenario differs in

hat we seek to estimate rapidly fluctuating instantaneous states, that

re encoded by the phase of oscillations, from ongoing EEG preceding a

timulus event. Furthermore, we lack true knowledge of each trial’s class

embership, as the mapping from cortical excitability state to MEP am-

litude is noisy and fluctuates on different time scales. Finally, resting-

tate is not a single stationary process, but comprises a wide range of

patio-temporal EEG patterns, which can emerge and vanish over the

ourse of the measurement ( Betzel et al., 2016 ). 

An important aspect of our decoding approach is that the resulting

lassifiers are physiologically interpretable: Each decoding filter corre-

ponds to a cortical activity cascade preceding the individual optimal

igh-excitability state, and the conversion into such a spatio-temporal

EG pattern has been shown to be unique ( Haufe et al., 2014 ). The in-

ividual cortical source activity underlying the resulting EEG patterns

an be estimated using MRI-guided inverse modeling to localize and

haracterize the dynamics of cortical activity reflecting instantaneous

xcitability states. Source modeling also enables verification of neu-

ophysiological plausibility of the machine learning results and allows

s to assess the variability of cortical dynamics underlying excitability

tates across study participants. 

To address the experimental uncertainty of labeling individual trials

s belonging to either a high-or low-excitability class based on MEP

mplitude, we simulated different scenarios with synthetic data (EEG

nd MEPs) to test how errors in the labeling affect the classification

ccuracy. The simulation also allowed us to vary EEG signal-to-noise
2 
atio and the sample size to test how sensitive the model is to changes

n these parameters. 

One motivation for this study is that the accurate identification of

ortical excitability states is relevant for improving the efficacy of brain-

tate-dependent therapeutic brain stimulation. Because the induction

f synaptic plasticity depends on excitability of the stimulated circuits,

uctuating excitability states present temporal windows that determine

he direction and magnitude of plastic changes induced by stimulation

 Zrenner et al., 2018 ; Baur et al., 2020 ). To explore the potential of the

roposed methodology for online usage, we tested how stable the brain

tates appear during one experiment and across separate experiments

y testing the classifier accuracy over time and subjects. 

. Methods 

.1. Experimental methods 

.1.1. Participants 

The study was approved by the local ethics committee at the medi-

al faculty of the University of Tübingen (protocol 716/2014BO2) and

onducted in accordance with the Declaration of Helsinki. Eight right-

anded adults (5 female, 3 male; age 23.5 ± 3.3 years) with no history

f neurological and/or psychiatric pathologies were enrolled and com-

leted the study. All participants provided written informed consent be-

ore participation. 

.1.2. Neuroimaging 

Anatomical T1-weighted MRI data was acquired on a separate ses-

ion for the generation of realistic head models (3T Siemens Prisma with

 32-channel head coil, GRE pulse sequence, TE 2.22 ms, TR 2400 ms,

A 8°, FoV 256, Phase FoV 93.8%). 

.1.3. Experimental setup 

A concurrent EEG − TMS setup was employed for the experiment.

 TMS stimulator (PowerMAG Research 100, MAG & More, Munich,

ermany) was configured to deliver biphasic pulses through a pas-

ively cooled figure-of-eight coil (PMD70-pCool, 70 mm winding di-

meter, MAG & More, Munich, Germany). EEG and electromyography

EMG) were recorded simultaneously at a sampling rate of 5 kHz us-

ng a 24-bit biosignal amplifier in DC mode (NeurOne, Bittium, Oulu,

inland). MEPs were recorded from the abductor pollicis brevis (APB)

nd first dorsal interosseous (FDI) muscles of the right hand in a bipo-

ar belly-tendon montage using adhesive hydrogel electrodes (Kendall,

ovidien, Dublin, Ireland). EEG was recorded using a TMS-compatible

28-channel cap with Ag/AgCl sintered ring electrodes (EasyCap BC-

MS-128, EasyCap, Herrsching, Germany), placed according to the In-

ernational 10–5 system. 

Head position was maintained using a vacuum pillow (Vacuform,

alzbergen, Germany), the TMS coil was positioned using a mechanical

rm (Fisso, Baitella, Zürich, Switzerland). A stereoscopic neuronaviga-

ion system (Localite, Bonn, Germany) was used to co-register the partic-

pant’s head to an individual MR image, to pinpoint the locations of the

EG electrodes on the scalp, and to real-time monitor coil positioning

hroughout the experiment. 

.1.4. Experimental procedures 

The hand representation of left M1 was targeted orienting the coil

uch that the strongest field was induced in a posterior-lateral to

nterior-medial direction. The motor hotspot was defined as a position

nd orientation of the coil resulting in the largest MEP amplitudes in the

ight APB or FDI. Resting Motor Threshold (RMT) was defined as the

inimum stimulation intensity eliciting MEPs with peak-to-peak ampli-

udes > 50 μV in 50% of test stimulation pulses ( Groppa et al., 2012 ). 
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.1.5. Experimental session 

The study consisted of a single experimental session for each partic-

pant, lasting about 3 h. After preparation of EEG, EMG, and neuron-

vigation and pinpointing the EEG electrodes, the hotspot location was

etermined. Participants were seated comfortably and instructed to fix-

te a visual target (fixation cross approximately 1 m in front of them).

000 single TMS pulses were then applied in one run with an interstim-

lus interval of 2 ± 0.25 s at a stimulation intensity of 110% RMT. An

dditional 5 min resting-state EEG recording was obtained immediately

efore and after the stimulation. 

.1.6. Head model generation and computing the EEG forward model 

Individual realistic head models were generated to estimate the

natomical locations of the sources of EEG activity recorded at the scalp.

ource estimation was not employed for computing EEG filters used in

he decoding algorithm itself, but for the localization and interpretation

f the resulting spatio-temporal EEG patterns, to address the question

hich brain areas are involved in which temporal order in the high-

xcitability brain state. 

Head models were used for both forward and inverse solutions. For

he cortical mesh representing the source space, the T1-weighted MRI

olume was realigned and resliced to “anterior commissure − posterior

ommissure ” (ACPC) space, the skull was stripped and a source model

ased on a cortical sheet was created with FreeSurfer ( Dale et al., 1999 ),

nd the HCP-workbench ( Van Essen et al. 2013 ). The resulting cortical

esh was downsampled and registered to a common spherical template,

llowing for one-to-one comparisons of activations on the same vertex

cross subjects. For each subject, a mesh with 15,684 vertices was cre-

ted. 

A 3-shell boundary element model (BEM) was then created to com-

ute the forward model between source mesh and the EEG sensors:

he T1-weighted MRI volume was segmented using the SPM toolbox

 https://www.fil.ion.ucl.ac.uk/spm/ ), resulting in surfaces for the scalp,

s well as the outer and inner skull. Standard conductivity values (skin,

one, brain: 0.33 S/m, 0.0041 S/m, 0.33 S/m) were used for the lead-

eld computation. EEG electrode alignment was performed manually

ased on anatomical fiducials using Fieldtrip ( Oostenveld et al., 2011 ).

.2. Preprocessing the electrophysiological data 

.2.1. Toolboxes 

Preprocessing and data analysis were performed using Matlab

The Mathworks, Inc., Natick, MA, USA), the EEGLAB toolbox (Ver-

ion 14.1.2b) ( Delorme and Makeig, 2004 ), the FastICA toolbox

 Hyvarinen, 1999 ), as well as custom scripts. The analysis pipeline was

esigned to run automatized with minimal user input to make the pre-

rocessing systematic and consistent across all datasets. 

.2.2. EMG preprocessing 

The goal of the EMG preprocessing was to clean the signal such that

he peak-to-peak MEP amplitudes at the APB and FDI right hand muscles

ould be accurately extracted in each trial also for small responses: EMG

ata was epoched using EEGLAB in time windows of [ − 0.5 s, 0.5 s] rela-

ive to the TMS pulse. Slow drifts were eliminated by Laplacian trendline

tting and 50 Hz noise was removed in each trial individually by pro-

ecting out two 50 Hz sinusoidal fixed-amplitude waveforms with 90°

hase difference (see Appendix A.1 for details). 

Trials containing EMG activity in the period of [ − 300 ms, − 5 ms] be-

ore the TMS pulse indicative of pre-innervation or other EMG artifacts

ere removed by visually inspecting all trials, with a range exceeding

0 𝜇V. The TMS-related decay artifact was then removed from the EMG

ignal by fitting an exponential curve to the signal in each EMG channel

nd trial separately (see Appendix A.2 for details). Finally, the peak-to-

eak MEP amplitude was determined in each trial and channel as the

ange of the EMG signal within the manually defined data interval con-

aining the MEPs. Each MEP was individually inspected. 
3 
.2.3. EEG preprocessing 

EEG data was extracted from the pre-stimulus window between

 − 1000 ms, − 4 ms] and downsampled to a sampling frequency of 1 kHz

sing the EEGLAB toolbox. Slow trends were then removed by applying

 Laplacian-based trend detection (see Appendix A.1 for details). 

To identify noisy channels and trials, we estimated the channel-wise

ncorrelated noise signals using the DDWiener method ( Mutanen et al.,

018 ). The standard deviation of the noise in each channel and trial was

omputed to estimate the respective noise level. To avoid biased noise-

evel estimates, we normalized them by dividing by the noise-level es-

imates obtained using the spherical-head-model lead-field matrix (see

ppendix A.3) as input data for DDWiener. The median of these stan-

ard deviations was computed excluding the values above the 98th per-

entile. If the noise level in a channel exceeded 10 times the median in

ver 10% of the trials, the channel was considered poor and removed

rom further analysis. On average, 30 channels were excluded per sub-

ect, with the standard deviation of 5, the minimum of 17, and maximum

f 34. We also computed the range of the noise signal in each channel

nd trial and took the maximum range across all channels in each trial

o detect high-amplitude baseline changes in the signal. Trials were ex-

luded if this measure exceeded two times the median (computed ex-

luding values above the 98th percentile). On average, 176 trials were

emoved from each data set. After rejecting poor channels and trials,

he average reference was applied over all channels using the remain-

ng channels. 

Independent component analysis (ICA) was then applied using the

astICA algorithm in its symmetric mode and with the ‘tanh’ con-

rast function to estimate 35 independent components within the sub-

pace spanned by the 35 largest principal vectors ( Hyvarinen, 1999 ).

e visually identified the eye movement components and other out-

ier components and removed them from the data (median 3.5 com-

onents, range [2, 6]). Epochs were then low-pass filtered at 35 Hz

ith zero-phase response using a Hamming window-based FIR filter of

rder 20. 

An alternative parallel run of ICA was performed with strict cleaning

o study the generalizability of the classification over time and subjects

ssuming stationary subject-wise noise. To mimic the stationarity, we

emoved all noisy (spiky) components whose power was distributed un-

venly across the trials. Such components, representing non-stationary

oise, would deteriorate the classification even if excitability encoding

atterns were unchanged. On average, 20 components (range, 17–23)

ere rejected. Downsampling to 200 Hz was applied after low-pass fil-

ering at 35 Hz to reduce the computational times of the forthcoming

nalyses. 

For cross-subject analysis, only the channels accepted for all sub-

ects were preserved. This choice was made after discovering that even

 greatly reduced number of channels was enough for the classification

t individual level. The power level of the data from each subject, es-

imated as the variance of the EEG over all channels and samples, was

ormalized to unit size to prevent the estimation from biasing due to

ifferent individual EEG power levels. 

Lastly, EEG and EMG data were brought into correspondence and

rials where either part was affected by artifacts were removed, resulting

n a set of clean pre-stimulus EEG data windows with corresponding

ost-stimulus MEP amplitudes. 

.3. Description of the decoding algorithm 

.3.1. Goal 

We aimed at predicting cortical excitability level based on a period

f pre-stimulus EEG data, optimized on an individual basis. Our hypoth-

sis was that a linear spatio-temporal filter could capture the essential

nformation of the underlying cortical excitability state from an epoch

f resting-state EEG. This filter is able to approximate the brain state

efined by the instantaneous phases or shapes of the underlying corti-

al source waveforms. The entire EEG/EMG analysis pipeline from the

https://www.fil.ion.ucl.ac.uk/spm/
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Fig. 1. A. Analysis pipeline. First (1.a and 1.b), EEG and EMG preprocessing protocols are separately run, after which the corresponding EEG and EMG trials are 

matched, and the leftover data trials are removed in step 2. MEP amplitudes are corrected by detrending over successive trials by step 3. The trials are labeled, and 

the test data and training data sets are defined according to the detrended MEP amplitudes to high and low excitability states. Logistic regression was used to train a 

classifier in two parallel analysis paths (4.a and b): To evaluate the classification accuracy, in step 4.a, the nested cross-validation scheme is adapted for choosing the 

features and testing the data in nested iterations. In step, 4.b, all the data is used in a cross-validation process to define the features. Thereafter, all the data is used 

to train the model with the chosen features in step 5, which yields a spatiotemporal filter. The filter can be transferred into the respective spatio-temporal pattern 

to reveal the pattern which most likely represents the high-excitability state for the given data in step 6.a. In step 7.a, source localization is used to estimate the 

corresponding cortical activation cascade. After applying the spatio-temporal filter to the resting-state EEG (step 6.b), the power spectrum of the fluctuating brain 

state can also be estimated (step 7.b). B. The trend of the MEPs (black) is estimated by median filtering. Subtracting the trend from the individual MEP amplitudes 

(gray) yields the variation signal 𝚫𝑴 𝑬 𝑷 . The labels are assigned to high- or low-excitability states according to positive and negative variations, respectively. C. 

Matrix filtering in a sliding window yields the excitability score as a function of time. 
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reprocessing, through the filter estimation, up until the model inter-

retation is illustrated in Fig. 1 A. 

With a linear model, it is possible to highlight the spatio-temporal

EG pattern representing the highest excitability in an individual data

et. This particular EEG pattern represents the data with the underly-

ng collection of sources at optimal phases with respect to the high-

xcitability state. Furthermore, the opposite phase information (180°

hifted phases of the underlying sources) represents the lowest excitabil-

ty. The filter measures the similarity of a measured EEG data epoch and

he optimal spatio-temporal pattern, while simultaneously suppressing

he irrelevant parts of the data. 

Here, MEP amplitudes were used as a read-out of the instantaneous

orticospinal excitability state, and we used this knowledge to train the

redictive filter in a supervised way. Because MEP amplitudes have mul-

iple modulators along the motor tracts up until the EMG recording set-

ing, we did not aim at predicting the exact amplitude itself, but rather

t predicting whether a measured amplitude is higher or lower than

ts expected value based on the preceding and following MEP sizes in

he measurement. Therefore, we trained a binary classifier which would
4 
llocate pre-stimulus EEG epochs into either high- or low-excitability

tates (classes). 

We first evaluated the benchmarking classification results when us-

ng minimal cleaning of the data and including the most reliably labeled

rials in the classifier training and testing. These results were compared

gainst those obtained from the fixed-spatial-filter paradigm. We then

roceeded to study the generalizability of the classification from three

erspectives, which would be relevant for online usage , i.e., to what ex-

ent the ML-trained classifier could be generalized 1) across different

ubjects, 2) over time of individual measurement sessions, and 3) when

ecreasing the number of channels. 

.3.2. Defining excitability states based on EMG 

We classified EEG epochs (trials) into two classes: 0 represents low

ortical excitability state, and 1 represents high cortical excitability

tate. To use a supervised learning algorithm to train a classifier and to

est its predictive power, we assigned the trials into these states by EEG-

ndependent means. MEP amplitudes were used as the read-out of the

nstantaneous excitability state. Basically, large and small MEPs were
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nterpreted to represent high and low corticospinal excitability states,

espectively. It is noteworthy that this labeling could not be considered

ntirely accurate but still informative of the actual excitability states. 

During a long measurement, slow fluctuations were observed in the

EP amplitudes in the course of the trials. This phenomenon has been

bserved previously with low-frequency single-pulse TMS, and might be

ttributed to cumulative effects of low-frequency TMS on corticospinal

xcitability ( Pellicciari et al., 2016 ), or infraslow fluctuation of cortical

ctivity ( de Goede and van Putten, 2019 ). The slowly changing MEP

rendline was estimated with a median filter of order 20, and this trend

as subtracted from the individual amplitudes ( Fig. 1 B). The resulting

ositive and negative difference MEPs ( ΔMEP ) were interpreted to rep-

esent high and low corticospinal excitability states, respectively. Before

ltering, on both edges of the signal, the signal was mirrored to provide

nough samples for the median filter. 

Because the labeling could not be considered fully accurate, we

icked a subset of the trials, which were considered most accurately

abeled, for training and testing the classifier. The detrended MEPs,

ME P 𝑖 , were computed for both measured EMG (i.e ., APB, FDI) channels

 = 1 , 2 , after which the trials, where the signs of the detrended MEPs

ere opposite for the two channels, were rejected from further model-

ng. We further calculated the joint amplitude of both EMG channels as

ign ( ΔME P 1 ) 
√ 

( ΔME P 1 ) 2 + ( ΔME P 2 ) 2 , after which the epochs with 150

mallest and 150 largest joint amplitudes were preserved for further

nalysis. 

For the brain-state stability evaluation, we picked 200 largest and

mallest joint amplitudes which were picked as evenly as possible

hroughout the recording. To this end, normalization of the joint am-

litudes was performed to keep their variance steady: In a sliding win-

ow of 50 consecutive trials, and moving forward one trial at a time,

he MEP amplitudes were normalized by dividing them by their stan-

ard deviation. To prevent very high outlier amplitudes from biasing

he normalization, MEPs, whose amplitudes exceeded three times the

tandard deviation of all MEPs were excluded from the normalization. 

.3.3. Spatial and temporal filtering of EEG epochs 

We aimed to decode the cortical excitability state at a given time

nstant based on the EEG epoch recorded from 𝑀 channels and 𝑇 time

oints preceding the time instant. The following linear model was as-

umed to give rise to the ( M x T ) EEG epoch 𝐗 : 

 = 

∑
𝑖 

𝐚 𝑖 𝐬 T 𝑖 , (1)

here ( M x 1) 𝐚 𝑖 is the topography of the 𝑖 th underlying source, and ( T

 1) 𝐬 𝑖 is the respective waveform (time course). Here, the summation in

q. (1) goes over all neural, artefactual, and noise sources. Furthermore,

he physical or the statistical properties of the sources are not restricted,

nd the topographies/waveforms in Eq. (1) can be either the true or the

stimated ones. 

When applying a spatial filter 𝐰 s to the measured EEG epoch, we get

 T x 1 waveform vector 𝐬 representing the time series of the extracted

henomenon: 

 

T = 𝐰 s 
T 𝐗 . (2)

Optimally, the spatial filter has zero inner product with all irrelevant

EG signals as described by their topographies, i.e., 𝐰 s 
T 𝐚 𝑖 = 0 for all

rrelevant sources 𝑖 in Eq. (1) . 

Applying then a ( T x 1) temporal filter 𝐰 t to the waveform means

omputing the inner product 𝐬 T 𝐰 t . This filtering can reveal temporal

ynamics of the time course, e.g., phase or shape information of the

ource waveform. 

We used the spatial and temporal filters to get a value which is max-

mal at the highest excitability state, while the minimum is reached at

he lowest excitability state. We refer to this value as the excitability

ndex. If a single known source, whose waveform is captured by 𝐰 s , is

ncoding the excitability state based on its instantaneous phase/shape
5 
nformation, highlighted by filter 𝐰 t , we can measure the excitability

ndex 𝐼 BS by 

 BS = 𝐰 s 
T 𝐗 𝐰 t . (3)

Normalizing 𝐼 BS with respect to the power of the waveform ‖𝐬 ‖ =
𝐰 

𝑇 
𝑆 
𝐗 ‖ yields ‖𝐼 BS ‖ = 𝐰 

𝑇 
𝑠 
𝐗 𝐰 t ∕ ‖𝐰 

𝑇 
𝑠 
𝐗 ‖, which is needed if the power is

arying over the epochs, but it is not predictive of the excitability. To

ummarize, the spatial filter can reveal the source waveform, while the

emporal filter can decode the relevant instantaneous phase information

n the signal. In the following, we assume that each data epoch has been

ormalized with respect to power. How to perform normalization in

ractice is discussed later. 

A spatio-temporal matrix filter is obtained by combining the spatial

nd temporal filters into a matrix filter 𝐖 = 𝐰 s 𝐰 t 
T , after which the brain

tate index in Eq. (3) is obtained by 

 BS = 

∑
𝑖,𝑗 

W 𝑖,𝑗 X 𝑖,𝑗 = 𝐖 , 𝐗 F = vec ( 𝐖 ) T vec ( 𝐗 ) , (4)

here ⋅, ⋅F denotes the Frobenius inner matrix product, i.e., summation

ver all matrix elements after entry-wise product, and vec ( ⋅) denotes vec-

orization of the matrix by concatenating all of its columns. For brevity,

e use the Frobenius inner matrix product notation when applying such

 spatio-temporal filter. 

If the sign of the waveform is reversed in Eqs. (2) and (3) , 𝐼 BS gets

pposite sign. Changing the sign corresponds to flipping the phase con-

ent by 180°, which according to our hypothesis, represents the opposite

xcitability state. Maximal and minimal excitability indices thus encode

aximal and minimal excitability states, respectively. 

.3.4. Spatio-temporal filtering of the EEG epochs 

We expect that multiple spatio-temporal filters describing a multi-

ource model are needed for excitability state prediction. Thus, we ex-

end the single-source model in Eqs. (3) and (4) by applying additional

lter pairs to measure the excitability index of the EEG epoch as 

 BS = 

∑
𝑖 

(
𝐰 s ,𝑖 

)T 𝐗 𝐰 t,𝑖 . (5)

ince the data epoch 𝐗 is fixed in the summation of Eq. (5) , we may

rite the summation of the filtered signals more compactly as 

 BS = 

∑
𝑖 

𝐰 s ,𝑖 
(
𝐰 t,𝑖 

)T 
, 𝐗 F = 𝐖 , 𝐗 F , (6)

here the filter pairs have been summated into the spatio-temporal filter

 = 

∑
𝑖 

𝐰 s ,𝑖 ( 𝐰 t,𝑖 ) T before applying them to the EEG epoch. 

Not knowing how many relevant patterns there are, we establish a

eal-valued ( 𝑀 × 𝑇 ) matrix filter 𝐖 , which can be applied to the EEG

poch as 𝐼 BS = 𝐖 , 𝐗 F . The goal is to estimate 𝐖 such that 𝐼 BS is pre-

ictive of the excitability (MEP amplitude) without constraining the

mount of filters a priori. 

The spatio-temporal filter can be applied to the resting-state EEG

t any given time instant by simply extracting an ( 𝑀 × 𝑇 ) epoch from

he measured data preceding the time of interest. Applying the filter by

q. (6) to the epoch yields the excitability index at the chosen time.

he sliding-window approach, where the extracted epoch is shifted for-

ard one time instant at a time, can be used to follow the instantaneous

xcitability as a function of time ( Fig. 1 C). 

.3.5. Logistic regression classifier 

Logistic regression estimates the probability of a data sample to be-

ong to class 1 in a binary classification problem, with classes 0 and 1

 Kleinbaum et al., 2002 ). This probability is assumed to follow a sigmoid

urve as a function of the sum of linearly weighted input variables: 

 ( 𝑦 = 1 |𝝋 , 𝒛 ) = 

1 
1 + exp( − 𝝋 

T 𝒛 + 𝑏 ) 
= 

1 
1 + exp( − score + 𝑏 ) 

, (7)

here 𝒛 is an ( 𝑁 × 1 ) input data vector to be classified, 𝝋 is the ( 𝑁 × 1 )
eight vector describing the model, and 𝑏 sets the probability of the
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odel when the score, 𝝋 

T 𝒛 , equals zero. When the weights and 𝑏 are

nown, the classification of input data 𝒛 is performed based on the prob-

bility given by Eq. (7) . We classify the trials into class 1 if the proba-

ility exceeds 0.5, i.e., score > 𝑏 , and into class 0 otherwise. The logistic

egression model expects a monotonic growth of the probability as the

core in Eq. (7) increases. 

The weights and 𝑏 in the logistic regression classifier are estimated

ith 𝑅 samples of training data 𝐳 ( 𝑖 ) and their known classes y ( 𝑖 ) , 𝑖 =
 , … , 𝑅 . Using the probability model of Eq. (7) , the likelihood function

f the training data can be formulated as 

 

(
y ( 1 ) , … , y ( 𝑅 ) |𝝋 , 𝐳 ( 1 ) , … , 𝐳 ( 𝑅 ) 

)
= 

∏
𝑖 ∈ class 1 

( 

1 
1 + exp( − 𝝋 

T 𝒛 ( 𝑖 ) + 𝑏 ) 

) 

∏
𝑖 ∈ class 0 

( 

1 
1 + exp( 𝝋 

T 𝐳 ( 𝑖 ) + 𝑏 ) 

) 

. (8) 

he model parameters are chosen such that they maximize Eq. (8) . For

his purpose, we used the Matlab inbuilt function ‘lassoglm’; the details

re described below. 

In our application, the input data were EEG data matrix entries. To

se EEG epoch as an input to the logistic regression in Eq. (7) , we set

 = vec ( 𝑿 ). Furthermore, writing for the classifier weights 𝝋 = vec ( 𝑾 )
nd comparing to Eq. (4) , we see that score in Eq. (7) has the same

efinition as the brain excitability index 𝐼 BS . Therefore, we used logistic

egression to estimate the spatio-temporal filter 𝑾 for extracting the

xcitability state. 

We used the logistic regression paradigm with the lasso regulariza-

ion, which minimizes the 𝐿 

1 - norm of the weights simultaneously with

ptimizing the model ( Tibshirani, 1996 ). To set the regularization con-

tant, which defines the balance between minimizing the norm and fit-

ing the model weights to the training data, 5-fold cross-validation was

pplied. In practice, the ‘lassoglm’ function was used with options: ‘dis-

ribution’: ‘binomial’, ‘alpha’: 1, ‘CV’: 5, ‘lambda’: [ 10 −2 , 10 −1 , … , 10 2 ] ,
standardize’: 1. The last parameter means that all the input variables

ere set to zero mean and unit variance before model estimation to

void biased modeling. 

.3.6. Dimensionality reduction for classification 

Optimizing a weight for every channel and time entry within an EEG

poch requires estimating channels x time points of unknowns, equaling

o 30,000 optimizable parameters if 100 channels and 300 time points

re used. This number of unknowns greatly exceeds the number of train-

ng data trials, which leads to inaccurate estimates. However, the indi-

idual entries in an EEG epoch are highly correlated, which means that

e can reduce the dimensionality of the data and the optimized param-

ters. 

We used linear feature extraction such that each feature 𝑧 𝑖 was ob-

ained by 𝑧 𝑖 = 𝑫 𝑖 , 𝑿 F , where 𝑫 𝑖 is the 𝑖 th feature extraction matrix. The

enefit of such linear feature extraction is that the score obtained from

he logistic regression can still be interpreted as the brain excitability

ndex ( Eq. (6) ): Setting the features as input into Eq. (7) , the score is

btained by 

core = 

∑
𝑖 

𝜑 𝑖 𝑧 𝑖 = 

∑
𝑖 

𝜑 𝑖 𝑫 𝑖 , 𝑿 F = 

∑
𝑖 

𝜑 𝑖 𝑫 𝑖 , 𝑿 F = 

∑
i 
φ i 𝐃 i , 

𝐗 F = 𝑾 , 𝑿 F = 𝐼 BS . (9) 

e identify the spatio-temporal filter in Eq. (9) as 𝑾 = 

∑
𝑖 

𝜑 𝑖 𝑫 𝑖 , which

elation can be used to convert the feature weights and the feature ex-

raction matrices into the spatio-temporal filter applicable to the original

EG epochs. 

The common spatial pattern (CSP) approach was used to find spatial

lters that highlight the relevant activity whose phase-locked pattern is

redictive of the brain state. CSP can be used to estimate spatial filters

hich pick up high-power waveform in data set 1 while the power in

ata set 2 is low ( Blankertz et al., 2007 ). More specifically, the spatial
6 
lters 𝒘 can be found at the extrema of 

elative power = 𝒘 

T 𝐂 1 𝒘 ∕ 𝒘 

T 𝐂 2 𝒘 , (10)

here 𝑪 1 and 𝑪 2 are the covariance matrices of the data sets 1 and 2,

espectively. In practice, the solution is based on computing the covari-

nce matrix of the two data sets, and solving the generalized eigenvalue

ecomposition of these matrices: The spatial filters, chosen among the

igenvectors, extract CSP waveforms corresponding to specific spatial

atterns 𝒂 as in Eqs. (1) –(2) . 

To reveal the phase-locked signal with respect to the TMS onset, we

omputed the mean over 25 randomly chosen high-excitability pre-TMS

EG epochs and the mean of 25 random low-excitability epochs. Com-

uting the means suppresses the ongoing EEG signals whose phases are

rrelevant to the excitability, which increases the SNR of the relevant

hase-locked activity. The means were then subtracted from each other.

s we assume that these two states are presented in opposite phases,

he high-excitability pattern is highlighted by the subtraction. The sub-

raction was repeated 400 times, always randomizing new epochs to be

veraged within each state among the training data. 𝐂 1 was computed

s the sample covariance matrix over these 400 surrogate epochs repre-

enting high-excitability data. 

The other covariance matrix 𝐂 2 was estimated using all of the

raining data, representing various phase patterns and other ongoing

rain activity. To prevent overfitting in the CSP solution, ridge reg-

larization was used by adding a stabilizing scaled identity matrix

o the second covariance matrix by 𝑪 2 ← 𝑪 2 + 𝑰 𝛾 tr ( 𝑪 2 )∕ 𝑀 , where

r ( ⋅) denotes the trace operation, and 𝑀 is the number of channels

 Lotte and Guan, 2011 ). Using these covariance matrices as input

o Matlab’s ‘eig’ function, CSP was used to find three spatial filters

 𝒘 spat , 1 , 𝒘 spat , 2 , 𝒘 spat , 3 } , which most effectively captured the signal in

he averaged epochs as compared to non-averaged epochs, i.e., which

ielded highest relative power values according to Eq. (10) . 

The waveforms corresponding to the three filters still had altogether

03 correlated samples in each epoch. To further decrease the dimen-

ionality, we organized the three waveforms in each epoch 𝑖 into a

ong vector by 𝒔 3 
( 𝑖 ) = vec ( [ 𝒘 spat , 1 , 𝒘 spat , 2 , 𝒘 spat , 3 ] T 𝑿 

( 𝑖 ) ) and ran principal

omponent analysis (PCA) using these vectors from 𝑅 training epochs

 𝒔 3 
(1) , … , 𝒔 3 

( 𝑅 ) ] . The first 𝑁 principal vectors { 𝒖 1 , 𝒖 2 , … , 𝒖 𝑁 

} , as ob-

ained by Matlab’s ‘svd’ function, were chosen for dimensionality re-

uction: In each trial, the combined waveforms of the three spatial

lters were projected onto the principal vectors, yielding 𝑁 features

apturing the phase information of the trial in a the feature vector

 = [ 𝒖 1 , … , 𝒖 𝑁 

] T 𝒔 3 ( 𝑖 ) . This feature vector was taken as input data into

ogistic regression Eq. (7) . 

To combine the above CSP and PCA steps, the 𝑖 th spatio-temporal

eature extraction matrix in Eq. (9) was obtained by 

 𝑖 = 𝑾 spat 𝑼̃ 𝑖 = 

[
𝒘 spat , 1 , 𝒘 spat , 2 , 𝒘 spat , 3 

]⎡ ⎢ ⎢ ⎣ 
𝒖 𝑖, 1∶ 𝑇 

𝒖 𝑖,𝑇+1∶2 𝑇 
𝒖 𝑖, 2 𝑇+1∶3 𝑇 

⎤ ⎥ ⎥ ⎦ , (11)

here 𝒖 𝑖,𝑛 ∶ 𝑚 is the subvector of principal vector 𝑖 extracted from index 𝑛

ntil 𝑚 . Before training the classifier, the feature vectors 𝒛 were normal-

zed such that their 𝐿 

2 -norms were set to 1. The normalization aims to

revent the classifier from learning based on the power of the training

ata epochs. 

The model had two hyperparameters describing dimensionality re-

uction, the CSP regularization factor and the number of features, which

ad to be determined before computing the features for training the lo-

istic regression classification model. We used cross-validation to de-

ide these hyperparameters as explained in detail in Section ‘Testing

nd Cross-validating the Classifier’. 

.3.7. Reducing the number of channels 

It was further investigated how the accuracy changes if the number

f channels is reduced. The accuracy was evaluated for six sets of elec-

rodes including 20, 30, 40, 50, 60, and 80 channels. The channels were
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elected individually in an iterative process of removing channels one at

 time by the following procedure: In each iteration, the channel which

ad least contribution in the CSP step was removed: 

emoved channel = arg min 
𝑖 ∈channels 

[ 
max 

𝑘 ∈{ 1 , 2 , 3 } 
|( 𝑤 spat , 𝑘 ) 𝑖 ⋅ ( 𝑎 spat , 𝑘 ) 𝑖 |

] 
, (12)

here 𝑤 spat , 𝑘 and 𝑎 spat , 𝑘 are the 𝑘 th spatial filter and pattern from CSP

see previous Section), respectively, and subscript 𝑖 denotes picking the

espective entry. The heuristically chosen measure to be minimized in

q. (12) is small if either the CSP filter weight or the topography am-

litude is small (in comparison to the other one) across the spatial fil-

ers/patterns for channel 𝑖 . 

By Eq. (12) , the channel with the smallest ‘importance’ was removed,

SP was rerun with the remaining channels, and the next channel was

liminated for the subsequent CSP round until the chosen number of

hannels was reached. Finally, the features were computed by Eqs. (9) ,

11) , and the classifier training was completed. 

.3.8. Testing and cross-validating the classifier 

Nested cross-validation (CV) process was used to train, test, and val-

date the model in two nested iteration loops. The inner loop was used

o test the model with several hyperparameters to choose the optimal

nes, while the outer loop was used to validate the model with the cho-

en hyperparameters. See, e.g., ( Varoquaux et al., 2017 ) for details of

he nested CV protocol. For both tuning the hyperparameters and vali-

ating the model, we used accuracy to measure the model performance.

ccuracy was computed as the number of correctly classified samples

ivided by the total number of classified samples. 

Since labeling the excitability states based on MEP amplitudes was

ot accurate, we selected the most reliably labeled trials for testing and

alidating the model. A subset of 50 out of the 300 trials with the 25

mallest and 25 largest MEP difference values were used as the pool of

rials for testing and validating. The outer validation loop was performed

n a 5-fold manner, meaning that 10 out of the total of 50 trials were

ept apart for validating the trained model, while the remaining trials

ere utilized in the training/testing. The inner test loop was performed

n a 4-fold manner, again holding 10 samples at once for testing with

arious hyperparameter values. 

In the test iterations, to select the hyperparameters, we first fixed

he number of features 𝑁 to eight (in Eqs. (9) and (11) ), trained the

lassifier in each round using each of the CSP regularization factors

 𝛾 = { 10 −4 , 10 −3 , … , 10 2 } ), and checked the accuracy with the test

ata. After running through the CV process with all the lambda values,

e chose that 𝛾 which yielded the maximal average accuracy. Then, us-

ng this optimized 𝛾, the number of features was set to 𝑁 = { 2 , 4 , 8 , 20 } .
est data were again used to pick 𝑁 with the maximal average accuracy.

The hyperparameters were determined in the inner test loop for each

ound of the outer validation loop. Final model accuracy was evaluated

n the validation loop by computing the average classification accuracy

f the validation data over the five iterations. 

We also analyzed what the individually estimated spatio-temporal

lters could tell us about the neurophysiological processes encoding the

rain excitability. This analysis was performed separately from the ac-

uracy evaluation. For this purpose, we omitted the outer loop in the

ested CV process and implemented a simple 5-fold CV process to esti-

ate the hyperparameters using the pool of 50 most reliable trials for

ccuracy estimation in a similar setting as explained above. The final

lter was estimated using all data and the chosen hyperparameters. 

.3.9. Testing and cross-validating the stability of the classification 

For individual brain-state stability evaluation, the training set was

hosen among the first half of recorded data and the test data among

he latter half. Training set size was set at 200 because only half of the

rials were available. To have a balanced training set, it comprised the

rst 100 high-excitability and 100 low-excitability state trials from the

et of 400 largest and smallest normalized joint amplitudes, respectively.
7 
The test set comprised 50 trials, with the 25 largest and 25 small-

st normalized joint-MEP amplitudes among the latter half of the 400

rials and non-overlapping with the training set. A simple two-fold CV-

trategy was used, such that the total test set was divided into equal-

ized subsets for CV and testing, where the first subset was used to de-

ne the hyperparameters yielding the best prediction accuracy, while

he latter one was then used for evaluating the prediction accuracy. The

V and test subset roles were then switched to complete the accuracy

stimation over the whole test set. 

We also tested the applicability of the classifier to a new measure-

ent when training on previously recorded data from other subjects.

00 trials were selected from each subject based on the normalized MEP

mplitudes, and nested CV was applied such that the data from one sub-

ect at a time was held apart for the accuracy testing. With the remaining

ata, a 7-fold CV process was run, such that the data from one subject

t a time was kept apart for cross-validation, and the data from the rest

ere used in training the classifier. After selecting the hyperparameters

roviding the best average accuracy in this inner CV loop, the outer loop

teration was completed by evaluating the accuracy for the test subject

ata. Having completed the outer loop iterations, the final classification

ccuracy was obtained as the average test accuracy over all subjects. 

.4. Predicting cortical excitability state using prior information 

It has been previously reported that the phase of the 𝜇-rhythm as ex-

racted by the Hjorth-C3 spatial filter is predictive of the MEP amplitude

 Schaworonkow et al., 2019 ; Zrenner et al., 2018 ). Thus, for comparison,

e also set up a classification pipeline using this prior knowledge. The

eights of the spatial filter 𝐰 s , C3 were 1 for electrode C3, and − 1/4 for

lectrodes FC1, FC5, CP1, and CP5 (otherwise 0). We used this spatial

lter together with an individualized temporal filter for decoding the

xcitability state as explained below. This decoding approach is termed

ere as the fixed-spatial-filter decoding . 

In case of missing channels, they were interpolated using the inter-

ediate step of source-localization by applying minimum-norm estima-

ion to the remaining channels, after which the source estimates were

rojected to the missing channels via the forward model as suggested in

 Burnes et al., 1998 ). We used singular-value truncation at the 35 high-

st values as the regularization method ( Lawson and Hanson, 1995 ). 

The power spectrum of the signal retrieved from spatial filtering was

stimated using the 300 pre-stimulus EEG epochs of length 1 s. We used

atlab’s spectrogram function with a Hamming window, the window

ength being the epoch width, and the frequencies of {7 Hz, 7.5 Hz,…,

3 Hz}. Then, the power spectrum was estimated as the average of the

quared absolute values of the spectrograms over the epochs. After ap-

lying log 10 -conversion to the power spectrum values, pink noise was

liminated by linearly detrending the power spectrum. Robust detrend-

ng, described in detail in ( de Cheveigne and Arzounian 2018 ), was used

uch that the power spectrum samples were iteratively excluded from

he fitting process if their detrended values exceeded 1 x the standard

eviation of the detrended spectrum. 

The frequency which had the maximal power within the spectrum

as identified. Two temporal filters, 𝐰 t, cos and 𝐰 t, sin , were set as Mor-

et wavelets that included four cycles of sinusoidal signal at the selected

eak frequency and had the phase difference of 90° After applying the

patial and temporal filters to each of the EEG epochs, we normalized

he two obtained features by setting their norms to unit size accord-

ng to the principles of circular-to-linear regression ( Zoefel et al., 2019 ;

empter et al., 2012 ), yielding the two-element feature vectors 

 = 

[
𝐰 s , C3 

T 𝐗 𝐰 t, cos , 𝐰 𝐰 s , C3 
T 𝐗 𝐰 t, sin 

]T 
‖‖‖‖
[
𝐰 𝐰 s , C3 

T 𝐗 𝐰 t, cos , 𝐰 𝐰 s , C3 
T 𝐗 𝐰 t, sin 

]‖‖‖‖
. (13)

These vectors were given as an input to the logistic regression model

q. (7) . Matlab’s ‘lassoglm’ function to train the model with the same
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Fig. 2. Simulating data. The simulated data consist of the summation of simulated oscillatory dipolar activity and ongoing noise derived from resting-state EEG 

measurement. The topographies as well as the frequencies for each source were fixed over the simulated trials, but the phase and amplitude of the waveforms were 

randomized. Solid line is the simulated waveform s and dashed line is the waveform with optimal phase w. MEP amplitude in each trial resulted from the summation 

of the normalized inner products between the optimum-phase waveforms and the randomly generated waveforms and a noise term 𝜖. 
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t  
arameters as in the individualized decoding. The model was validated

gainst the same set of 50 data epochs as the individualized model and

n a 5-fold CV process. The average accuracy over validation set was

sed to measure the model performance. In practice, the ‘lassoglm’ func-

ion was used with options: ‘distribution’: ‘binomial’, ‘alpha’: 1, ‘CV’: 5,

lambda’: logspace( − 3, − 1,15), ‘standardize’: 1. 

.5. Data simulation and testing the decoding with simulations 

To test how well our machine learning approach is able to decode

xcitability states based on phase-pattern information of EEG data with

artly incorrect labeling based on MEPs, we simulated resting-state EEG

pochs and respective MEP amplitudes. The data were generated with

arious levels of added EEG and MEP noise to mimic uncertainty in the

ata. 

The simulation set-up is illustrated in Fig. 2 . For each simulation,

ix cortical dipoles were randomly generated and their topographies

 𝑖 were computed according to a three-layer concentric spherical-head

odel (see Appendix A.3 for the details of the model). The excitability-

ncoding source waveforms 𝐬 𝑖 were following sinusoidal curves as a

unction of time. The frequencies of the six waveforms were equidis-

ant in the frequency interval of [7 Hz, 30 Hz]. 200–400 trials with 301

amples and the sampling frequency of 1 kHz were generated. Across

rials, the topography and the frequency of each source was fixed, but

he phases and amplitudes were randomized. The amplitudes and the

hases were distributed evenly in the intervals of [10 nAm, 200 nAm]

nd [ 0 , 2 𝜋) , respectively. 

These clean simulated data 𝐗 sim were superimposed with measured

ata epochs of one subject, which mimicked the background noise 𝑵 as

hown in Fig. 2 . To control the SNR, we multiplied the noise with factor

 to satisfy 

NR = 

√ √ √ √ 

tr 
(
𝑿 sim 𝑿 sim 

T )
𝑘 2 tr 

(
𝑵 𝑵 

T ) × 100% , (14)

.e., SNR = 100% if the powers of the simulated phase-pattern data and

he noise were equal. 

The MEP amplitudes were simulated such that large MEPs arose

hen the trial-wise phase of the simulated source was close to optimal,

nd small MEPs resulted at the opposite phase. Each source had an indi-

idual optimal phase, which was randomized in the interval of [ 0 , 2 𝜋)
8 
nd kept fixed over the simulation trials. In each trial 𝑖 , the noiseless

EP amplitude deviation from the trendline was generated as 

ME P ( 𝑖 ) ∝
∑
𝑛 

𝝎 𝑛 
T 𝒔 ( 𝑖 ) 𝑛 ‖‖‖𝒔 ( 𝑖 ) 𝑛 
‖‖‖ + 𝜖( 𝑖 ) , (15)

here 𝝎 𝑛 is the waveform of the optimally phased waveform of source

 , 𝒔 
( 𝑖 ) 
𝑛 is the waveform of source 𝑛 in trial 𝑖 , and 𝜖( 𝑖 ) is Gaussian noise

ith zero mean and the variance of 𝜎2 . 

We were specifically interested in whether the MEP amplitude is

arger or smaller than the trendline, reflecting high- or low-excitability

tate, respectively, as explained in Section 2.4 . We interpreted ΔMEP s
s the detrended MEP amplitudes in Fig. 1 B. Thus, a label was set 1

hen the respective ΔMEP was positive and 0 otherwise. We kept track

f both the true labels and empirical labels which were set based on noise-

ess and noisy ΔMEP s, respectively. Increasing the variance of the MEP

oise, 𝜖( 𝑖 ) , makes the empirical labeling more inaccurate. 

The accuracies with respect to the estimated labels were evaluated

sing the validation set of 25 largest and 25 smallest noisy ΔMEPs , while

he rest of the data were used for training the individualized decoding

odel. For simplicity, without testing, the regularization constant for

SP was chosen to be 10 −2 and the number of principal components,

in Eqs. (9) and (11) , was set to 4. SNR ( Eq. (14) was systematically

aried over the values of {10%, 30%, 50%, 75%, 100%}, and the stan-

ard deviation 𝜎 of 𝜖( 𝑖 ) ( Eq. (15) ) was set to {0, 0.5, 0.75, 1, 1.25, 1.5}

standard deviation of noiseless ΔMEPs . With each parameter combi-

ation, the simulation and decoding were run 20 times, each time with

andomly generated source locations and optimal phases. 

.5.1. Decoding with perfect prior knowledge 

Assuming the ideal case where the source locations, frequencies, and

ptimal phases for brain state decoding would be known, we built an

ptimal classifier for the simulated data. We tested how accurate results

uch a prior knowledge –guided classifier could provide at best. First,

eamforming was used to estimate a spatial filter: 

 s ,𝑖 = 𝐂 

−1 𝐚 𝑖 
(
𝐚 𝑖 T 𝐂 

−1 𝐚 𝑖 
)−1 

, (16)

here 𝐚 𝑖 is the topography of source 𝑖 , and 𝐂 is the sample covariance

atrix. Here, we deliberately used the exact knowledge of the topogra-

hy although it is one of the so-called ‘inverse crimes’. 

After spatial filtering by 𝐬 𝑖 T = 𝐰 s ,𝑖 
T 𝐗 , for temporal filtering, we used

wo sinusoidal waveforms 𝒘 sin ,𝑖 and 𝒘 cos ,𝑖 with a 90° phase difference
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nd the frequency exactly at the encoding frequency of each source 𝑖 .

he spatially and temporally filtered EEG epochs were then normalized

o unit-norm for each source separately to yield the optimal feature vec-

or for source 𝑖 as 

 

OPT 
𝑖 

= 

[ 
𝒔 𝑖 

T 𝒘 sin ,𝑖 
𝒔 𝑖 

T 𝒘 cos ,𝑖 

] 
∕ 
‖‖‖‖‖
[ 
𝒔 𝑖 

T 𝒘 sin ,𝑖 
𝒔 𝑖 

T 𝒘 cos ,𝑖 

] ‖‖‖‖‖ (17)

ccording to circular-to-linear modeling (see ( Kempter et al., 2012 ;

oefel et al., 2019 )). Finally, to get the optimal brain-state index, we

atched the normalized features with the known optimal phases by

alculating the inner product between the filtered EEG signal and the

ptimally phased sinusoids by 

 

OPT 
BS = 

∑
𝑖 

(
𝒛 OPT 
𝑖 

)T [ sin 𝛼𝑖 
cos 𝛼𝑖 

] 
, (18)

here 𝛼𝑖 is the optimal phase of the 𝑖 th source. If the inner product score

xceeded 0, the trial was assigned to class 1 (high-excitability state), and

o 0 (low excitability) otherwise. 

.6. Statistical thresholding and statistical comparisons 

By classifying randomly several times, the distribution of the random

lassification results can be simulated. To mimic the classification of a

ingle subject test set, we randomly classified 50 trials into high- and

ow-excitability states, repeating the process 10 6 times. We determined

n accuracy threshold to describe how high accuracy would unlikely be

btained in a randomized setting. We set the threshold at the signifi-

ance level of 0.05, which means that 95% of the random classification

ccuracies fell below the threshold accuracy. 

We also tested the overall classification results using both the indi-

idualized and the fixed-spatial-filter decoding against random classifi-

ation. To this end, we randomly classified 50 trials into high- and low-

xcitability states eight times (the number of subjects) and repeated the

rocess 10 6 times. The p-value was computed as the number of times

hen the average accuracy over the eight subjects exceeded the ob-

ained overall accuracy divided by 10 6 . 
In addition, using a resampling strategy, we made a statistical com-

arison of the data-driven decoding against the fixed-spatial-filter de-

oding. In this comparison, we randomly shuffled between the accura-

ies of the two decoding methods for each subject. This process was

epeated 10 6 times, and each time, the average change of the accuracy

f the data-driven decoding relative to that of the fixed-spatial-filter de-

oding was computed. We then checked how many times the absolute

alue of the difference resulting from the shuffling exceeded the actual

ifference and divided this number by the total number of randomiza-

ions to get the p-value. The significance level of 0.05 was used in the

tatistical tests. 

.7. Physiological interpretation of spatio-temporal filters 

.7.1. Converting the spatio-temporal filters into EEG patterns 

It is worth noting that, optimally, the spatio-temporal filters do not

imply mimic the pattern of EEG that would predict high-excitability

tate. The filters should rather cancel out the uninteresting parts of

he signals ( Blankertz et al., 2007 ). The estimated filter weights can

e converted into the EEG epoch that would most likely predict high-

xcitability state, given the measured data set. We used the relation

iven in ( Haufe et al., 2014 ) to convert the matrix filter into the re-

pective EEG epoch representing the highest excitability. 

In order to convert an estimated filter into the corresponding pattern,

oth the spatio-temporal filter 𝐖 and the EEG epochs 𝐗 

( 𝑖 ) ( 𝑖 = 1 , … , 𝑅 )

ere converted into vector form simply by concatenating the matrix

olumns vertically into ( 𝑀 ⋅ 𝑇 × 1 ) vectors by 𝐱 ( 𝑖 ) ST = vec ( 𝑿 

( 𝑖 ) ) , and 𝐰 ST =
ec ( 𝐖 ) . The corresponding vector-form spatiotemporal pattern, 𝐯 , was

etrieved by 

 = cov 
(
𝐱 ( 𝑖 ) ST 

)
𝐰 ST 

(
𝐰 ST 

T cov 
(
𝐱 ( 𝑖 ) ST 

)
𝐰 ST 

)
, (19)
9 
here cov ( ⋅) denotes computing the sample covariance matrix over

amples indexed by 𝑖 . For interpretations and visualization, we con-

erted the vector-form pattern back into an 𝑀 × T EEG pattern as 𝐕 =
 𝐯 1 ∶ 𝑀 

, 𝐯 𝑀+1 ∶ 2 𝑀 

, … , 𝐯 ( 𝑇−1 ) 𝑀 ∶ 𝑇 ⋅𝑀 

] . The spatio-temporal pattern

btained by Eq. (19) would be most predictive of the high-excitability

rain state according to the estimated model and for the individual

ubject. According to the model ( Eq. (6) ), if the polarity (sign) of this

attern is reversed, the prediction of the brain state would also be

eversed. 

.7.2. Source localization of the spatio-temporal patterns 

The high-excitability EEG patterns can be used to estimate where

he state-encoding source activity arises on the cortex. For each cortical

ocation 𝑖 , the spatial filter 𝐰 𝑖 was obtained by the beamforming formu-

ation of Eq. (16) using each of the lead-field matrix columns as topogra-

hies. We used the beamforming ZER localizer ( Moiseev et al., 2011 ) to

stimate the power 𝜇𝑖,𝑡 of the source amplitudes at each location 𝑖 and

ime index 𝑡 as 

𝑖,𝑡 = 

𝐰 𝑖 
T 𝐕 ∶ ,𝑡 𝐕 ∶ ,𝑡 

T 𝐰 𝑖 

𝐰 𝑖 
T cov ( 𝐍 ) T 𝐰 𝑖 

, (20)

here 𝐍 is the noise data, and 𝐕 ∶ ,𝑡 is the 𝑡 th column of the spatiotempo-

al pattern matrix, i.e. , the topography of the EEG pattern at time index

 . As noise data, we used all the EEG data over the 300 epochs. The scan-

ing function value is contrasting the power of the interesting signal in

ortical location 𝑖 against the power (mean squared amplitude) of the

verall ongoing resting-state activity in the same location. 

Beamforming scanning was performed for the high-excitability pat-

ern of each subject separately using their individual lead-field matrices.

o define the excitability encoding sources in each individual subject,

e identified the sources whose localizer values exceeded a threshold.

he threshold was set three times the mean of all the scanning function

alues over time and source locations. 

In order to find common state-encoding sources and time points

cross subjects, the instantaneous relevancy of the given source at the

iven time was computed as the proportion of subjects for whom the

espective source amplitude exceeded the individual threshold: 

elevanc y 𝑖,𝑡 = 

||||
{ 

𝑠 ∈ subjects |||𝜇( 𝑠 ) 
𝑖,𝑡 

⟩ 
threshol d ( 𝑠 ) 

} ||||∕ |{ 𝑠 ∈ subjects } |, (21)

here 𝑠 denotes the subject index, and | ⋅ | denotes the number of ele-

ents in the set. Furthermore, the overall relevancy at a given source

ocation was computed as the proportion of subjects for whom the am-

litude in the source location exceeded the threshold at any time instant,

.e. , omitting index 𝑡 in Eq. (21) . 

.7.3. Fluctuating brain states in the resting-state EEG 

We may use an estimated spatio-temporal filter to examine how

he brain state changes as a function of time by applying the filter to

esting-state EEG as depicted in Fig. 1 C: If running the filter in a slid-

ng window over the EEG recording moving forward one sample at

 time, the resulting score reflects changes in the cortical excitability

tate. From the time-course of the score, we can evaluate its frequency

ontent. 

Using the sliding window scheme, we computed the score signal

ver all the 300 EEG trials. We then used the ‘spectrogram’ function

f Matlab to compute the single-trial spectrograms using the Hamming

indow of length 250 and zero overlap. The power spectrum was esti-

ated by averaging the squared absolute values of all the spectrograms.

e applied log 10 conversion of the power spectra and detrended them

y eliminating the linear trend (pink noise) using robust detrending. In

he robust detrending, the line was fitted to the spectrum in an iterative

ashion always discarding from the fit the samples whose detrended val-

es exceeded their standard deviation. See ( de Cheveigne and Arzounian

018 ) for details of the robust detrending process. 
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Fig. 3. Final optimized spatio-temporal filter and the respective EEG pattern from one example subject. A. Estimated spatio-temporal filter as a butterfly plot, i.e. , 

each line represents the time-evolving weights for the respective channel. Time is given relative to the TMS pulse at 0 ms. B. The spatial filters at five selected 

time instant (red dashed vertical lines in A) are shown as topographies. C. The source estimates for the topographies in D in the respective order. The estimates 

reflect power of the source and are thus always positive. D. The topographies which the spatial filters in B are optimally detecting in the respective order. E. The 

spatio-temporal pattern (EEG epoch) to which the spatio-temporal filter (in A) is most sensitive to is shown as a butterfly plot. B-D. Color scales are individually set 

to span the range of values in each subfigure separately. 
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. Results 

.1. Results from measured EEG–TMS–MEP data 

.1.1. Example case of estimated spatio-temporal filters, patterns, and 

ource estimates 

For each subject, the spatio-temporal filter was individually esti-

ated using the optimized hyperparameters by the CV scheme as ex-

lained in Section 2.4 . The computational time to run the 5-fold CV

rocess was less than 30 second on a current standard PC hardware. Run-

ing the nested CV process for accuracy estimation took about 24 min.

n example of the estimated spatio-temporal filter is shown in Fig. 3 A.

ive time instants from the ST filter near to the onset of the TMS pulse

ere picked for inspection ( Fig. 3 B) in this example case. The distri-
10 
ution of the weights over the channels at these time instants can be

nterpreted as spatial filters. By visual inspection, the topographies of

hese spatial filters are difficult to interpret. 

We used the conversion by Eq. (19) from the filter into the spatio-

emporal pattern representing the optimal high-excitability state. The

btained spatio-temporal pattern shows a periodic signal and is clearly

ifferent from the filter as seen by the butterfly plot ( Fig. 3 E). Further-

ore, the topographies extracted from the spatio-temporal pattern at

he same time instants as the spatial filters show greatest values over

he sensorimotor area of the stimulated left hemisphere, where posi-

ive and negative voltages are alternating and moving gradually over

ime ( Fig. 3 D). The source estimates for each topography are shown

n Fig. 3 C, and they show a repeated activation pattern moving in a

osterior-anterior direction around the central sulcus of the left hemi-
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Fig. 4. Decoding results from the measured EEG − TMS − EMG data. A. Accuracies of the two classification methods. The bars indicate the mean accuracies, while 

the red error boundaries show the standard errors. Individual accuracies are represented by the black dots. The mean accuracy significantly increases when using 

individualized decoding as compared to fixed-spatial-filter decoding. The individual significance level is the accuracy which is exceeded with a probability of less 

than 0.05 by a random classifier. B. Power spectra (normalized to the maximum of 1 dB for each subject) of the brain state fluctuations for each subject are shown 

in blue. The red vertical lines indicate the positions of the maxima. Light blue shadowing shows the frequency range across subjects where the maxima lie. 
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phere. Similar illustrations of the estimated filters and patterns for the

est of the subjects can be found in the Supplementary Material. For

revity, in the following, we use the term EEG pattern when referring to

he spatio-temporal patterns representing the optimal high-excitability

tate. 

We used the conversion by Eq. (19) from the filter into the spatio-

emporal pattern representing the optimal high-excitability state. The

btained spatio-temporal pattern shows a periodic signal and is clearly

ifferent from the filter as seen by the butterfly plot ( Fig. 3 E). Further-

ore, the topographies extracted from the spatio-temporal pattern at

he same time instants as the spatial filters show greatest values over

he sensorimotor area of the stimulated left hemisphere, where posi-

ive and negative voltages are alternating and moving gradually over

ime ( Fig. 3 D). The source estimates for each topography are shown

n Fig. 3 C, and they show a repeated activation pattern moving in a

osterior-anterior direction around the central sulcus of the left hemi-

phere. For brevity, in the following, we use the term EEG pattern when

eferring to the spatio-temporal patterns representing the optimal high-

xcitability state. 

.1.2. Prediction accuracies 

Using the nested CV protocol, the classification accuracy of the in-

ividualized decoding was estimated for each subject. In addition, the

lassification was computed for the fixed-spatial-filter decoding using

jorth-C3 as the spatial filter (see Section 2.5 ). The classification accu-

acies of these filters for the test data are depicted in Fig. 4 A. Individu-

lized decoding is superior to the classification by the fixed-spatial-filter

ecoding. On average, for the individual decoding, the accuracy is 67%,

ith the minimum of 56% and maximum of 92%. The fixed-spatial-filter

lassification gives accuracies in the interval of [48%, 76%], with the

ean 57%. 

Statistical comparison of the average accuracies to the random clas-

ification yielded p-values of < 10 −6 and 0.0005 for the individual and

xed-spatial-filter classifications, respectively. Thus, at the group level,

oth classifiers gave significantly more accurate results compared to ran-

om classification. Comparing between the averaged accuracies from

he individualized and fixed-spatial-filter decoding retrieves a p-value

f 0.012, indicating a significant improvement in excitability estima-

ion when using the individualized model. The random permutations

ave a threshold of 59% for the individual accuracy at the significance

evel of 0.05. Six out of eight subjects had an accuracy over this 59%
11 
hreshold when using individualized decoding, while this was the case

or only four out of eight subjects for the fixed-spatial-filter decoding. 

.1.3. Neurophysiological interpretations 

We computed the power spectrum for the excitability state fluctua-

ions for each subject. The peak frequency of the power spectra has the

ean of 10.25 Hz and the range of [8.0 Hz, 11.5 Hz] across subjects.

he power spectra are shown in Fig. 4 B. By visual inspection, three sub-

ects also had additional smaller local maxima in their spectra at higher

requencies, but these did not show consistent patterns across subjects. 

The source localization was individually performed with each sub-

ect’s EEG pattern using beamforming as the source reconstruction

ethod as explained in Section 2.8. Relevancy ( i.e., the proportion of

ubjects where a source is participating in encoding the excitability

tate) over all time instants on the cortex is depicted in Fig. 5 A. The

ighest relevancy values were found around the sensorimotor region of

he stimulated left hemisphere, the highest ones reaching 0.8. These

ources are encoding excitability in most subjects. At the individual

evel, as shown by all relevancy values exceeding 0, relevant cortical

egions spanned also over areas on both ipsi- and contralateral parieto-

ccipital and also temporal regions with respect to the stimulation tar-

et. Notably, contralateral pre- and postcentral gyri were not relevant

n encoding the excitability state in any of the subjects. 

When computed at each time instant separately, the relevancy

as 0.5 at highest. These time-domain relevancies are depicted in

ig. 5 B for the subset of 72 sources which had higher than 0.5 over-

ll relevancy. Most sources have low relevancy values in time domain

 Fig. 5 B − C), which indicates that the temporal activity leading to the

igh-excitability state is highly heterogeneous over subjects. The high-

st relevancy values as well as the largest amount of relevant sources

end to appear less than 100 ms before the TMS onset ( Fig. 5 B − C). 

The distribution of hyperparameter values, given by cross-validation,

o obtain the patterns were as follows: The median number of features

 𝑁 in Eqs. (9) and (11) ) was 4, with the 1st and 3rd interquartiles of

2, 8], and the minimum and maximum of 2, and 20, respectively. The

edian CSP regularization coefficient 𝛾 was 10–2, with the 1st and 3rd

nterquartiles of [10–2, 10–1], and the minimum and maximum of 10–4,

nd 1, respectively. 

Due to the long measurements and to the stimulation frequency of

round 0.5 Hz, gradual changes in MEP sizes could arise, e.g., due to

lastic effects, which were removed by detrending of the MEPs in our
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Fig. 5. A. Relevancy (of a source) describes 

the proportion of the subjects which have high- 

amplitude activity encoding the high-excitability 

state in each source location. Here, relevancy was 

estimated across the eight subjects and over all 

time points. B. Relevancies as a function of time 

with respect to TMS. The subset of 72 sources with 

the overall relevancy (in panel A) of over 0.5 are 

depicted. Note that the color scale is different from 

A. for visibility. C. The number of active sources, 

having higher-than-threshold relevancy in B. as a 

function of time. 
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nalysis. We tested whether there was a systematic change in the MEP

mplitudes across the trials, in case detrending is not applied, by aggre-

ating all MEP amplitudes (two channels from all subjects) across the

easurements. The results indicate that there was a rising trend: The

ean average difference of the MEP amplitudes between the second

nd first halves of each session was 71 μV, with the p-value of 0.0017

iven by permutation testing. After detrending, no significant change

ppears. Further EEG estimator stability tests were also performed, as

xplained in the following section. 

.1.4. Generalizability of the classification 

Stability tests were performed both over experiments and within

ach subject over the course of individual experiments to see how gener-

lizable the estimated filters were across individuals and across the mea-

urement time. For cross-subject stability, leave-one-subject-out nested

V gave an average accuracy of 54% with the standard error of 1.6%,

nd range [47%, 60%]. Testing the stability over the individual mea-

urements, where the latter half of data were decoded after training the

lassifier with the first half, gave an average accuracy of 64% with the

tandard error of 3.2%, and range [46%, 78%]; see Fig. 6. A with ‘ALL’

lectrodes for the accuracy distribution. This average accuracy is close
12 
o the benchmarking decoding accuracy in Fig. 4. A, and significantly

igher than random classification accuracy (p-value < 10 − 6 ). 

We further continued with stability testing, to see how the accuracy

hanges when reducing the number of electrodes. Electrodes were elim-

nated in each subject by Eq. (12) , yielding the results in Fig. 6. A where

t shows that the decoding accuracy stays rather intact with all tested

umbers of electrodes, down to as few as 20 electrodes. In Fig 6. B, the

istribution of 30 chosen electrodes is depicted over the subjects. There

re no evident most important confined regions of electrode locations;

he chosen electrodes are scattered sparsely around the EEG cap, but

lectrodes ipsilateral to the TMS target are more often chosen to be used

n the classification. 

.2. Simulation results 

Artificial data were generated with the simulation protocol explained

n Section 2.6 . The instantaneous phases of the underlying sources were

redictive of the MEP size (excitability) (see Fig. 2 for the simulation

etup). Using the perfect knowledge of the topographies, the frequen-

ies, and the high-excitability phases, we built the optimal spatial and

emporal filters to predict the excitability state according to Eq. (18) .

t the SNRs of 100% and 10%, the prediction accuracies were 98% and

6%, respectively, see Fig. 7 B. 
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Fig. 6. Effect of the number of EEG channels used and distribution of the chosen electrodes. A. Accuracy as a function of number channels. ALL stands for individual 

maximum number of channels. gray dots are individual accuracies. The black line shows the mean accuracy, and the error bars indicate the standard error of 

accuracies for each number of channels separately. B. For each electrode, the%-value indicates the proportion of subjects where the electrode was included among 

the 30 most important ones. The labels are displayed for electrodes included within at least 50% of the subjects. 

Fig. 7. Results from simulated data. A. Accuracy of the trained spatio-temporal decoding as a function of SNR of the EEG data and proportion of correctly labeled 

trials based on MEP amplitudes. B. Classification accuracies measured with true and empirical labels. SNRs of 10% and 100% are shown as a function of correctly 

labeled trials. If the source properties encoding the excitability are known exactly, the accuracies exceed 95% (‘Classification by prior knowledge’), and there is no 

dependency on labeling because training is not required. There is a minor difference when computing the accuracies with respect to true labels vs . empirical labels 

(based on noisy MEPs). C. Classification accuracies with fixed SNR = 30% and different numbers of samples. Both empirical and true accuracies are shown here. In 

B-C, the shadowed areas span the standard error of the accuracy around the ‘true labels’ curves. 
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In reality, perfect prior knowledge is not available, and we rely on

he training data to build the predictive model. We tested the proposed

ndividualized spatio-temporal decoding approach using the simulated

ata. The results are illustrated in Fig. 7 . When the SNR was high ( i.e.,

00% with equal clean signal and noise powers) and the labeling fully

orrect, we could reach a high prediction accuracy of 94% ( Fig. 7 A − B ).

raining was clearly sensitive to incorrect labels due to MEP noise; the

ccuracy decreased rapidly when the proportion of correct labels fell be-

ow 85%. On the contrary, the approach could better tolerate decreasing

NR in EEG; the accuracy stayed above 90% when SNR was above 30%

nd the labels were correct ( Fig. 7 A). 

The above-described accuracies were given with respect to the true

abels obtained from noiseless MEPs. However, with measured data, we
13 
an only check empirical accuracies with respect to the labels estimated

rom noisy MEPs. Thus, we also checked how large a difference there

s between these two accuracy measures. According to the results in

ig. 7 B, the true and the empirical accuracies were very similar on aver-

ge. There was a tendency for the true accuracy of being slightly above

o the empirical accuracy when the labeling got more incorrect. 

Finally, we also tested the classification accuracy against increasing

r decreasing the amount of training data trials by 100 when compared

o 300 trials at SNR = 30% ( Fig. 7 C). The decrease in the number of

rials clearly worsened the results: the maximal accuracy reached 74%

ith 200 trials. In addition, to exceed the 59% accuracy (the individual

ignificance level), at least 80% of the labels needed to be correct. In-

reasing the number of trials from 300 to 400 had a positive effect on
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he accuracy, but the improvement was not as large as the negative ef-

ect when decreasing the number of trials. Furthermore, at low labeling

ccuracies, the accuracy was almost the same irrespective of the number

f trials. 

. Discussion 

.1. Implications 

The results indicate that prediction by the individualized classifica-

ion is more accurate than the Hjorth-C3 fixed-spatial-filter decoding

 Fig. 4 A). The odds that individually predicted EEG excitability state

atches vs . mismatches with that given by the MEP amplitude are 2:1

67% accuracy). This can be regarded reasonably high given the high

ncertainties in the EEG and EMG data discussed below. It is note-

orthy that the compared spatial and temporal filters, C3-Hjorth and

avelet within 𝜇-rhythm frequency, are actually targeting the cortical

reas and frequencies which were shown to be relevant in excitabil-

ty decoding, but these filters still yield lower accuracies in the classi-

cation. This highlights the need for individualized filters to minimize

he leakage signals from irrelevant cortical activity to the classification

eatures. 

Excitability-state-dependent personalized repetitive TMS (rTMS) has

een applied synchronized to the phase of sensorimotor μ-rhythm

 Zrenner et al., 2018 ; Baur et al., 2020 ) oscillations in the dorsolateral

refrontal cortex ( Zrenner et al., 2020 ), and theta oscillations in the

orsomedial prefrontal cortex, with the goal of reducing the substantial

nterindividual variability of neuromodulatory effects of rTMS ( Lopez-

lonso et al., 2014 ; Kar 2019 ; Hordacre et al., 2017 ; Hamada et al.,

013 ). However, the efficacy of brain-state-dependent TMS is limited

y the accuracy by which brain-states are estimated from EEG, which

s limited even in the case of extracting phase from a single oscillation

 Zrenner et al., 2020 ). The present approach goes beyond the phase of a

ingle oscillation and seeks to classify the relevant excitatory state from

 dynamic spatio-temporal EEG pattern. Individually optimized brain-

tate extraction achieved by supervised learning could improve the ther-

peutic potential of EEG-triggered brain stimulation in the future. 

Decoding the measured EEG − TMS data with the proposed algorithm

esults in neurophysiologically plausible patterns, without a priori hy-

otheses regarding the locations or frequencies of the relevant source

ctivity: Left primary motor cortex (the target location of TMS) and

djacent parts of the sensorimotor network emerge as relevant corti-

al regions whose activity encodes the high-excitability state ( Fig. 5 A),

nd this state fluctuates most prominently at a frequency within the 𝜇-

hythm range (8 − 11.5 Hz) ( Fig. 4 B). This result, based on the group

verage, is consistent with previous findings ( Haegens et al., 2011 ;

renner et al., 2018 ; Schaworonkow et al., 2019 ), substantiating the

pplicability of the decoding method. 

At the individual level, informative sources are found across large

reas of cortex ( Fig. 5 A), indicating that distributed networks take part

n encoding the excitability state. However, while there is a clear over-

ap across participants of individually relevant cortical activity spatially

when aggregating across the whole time window, Fig. 5 A), the tem-

oral waveforms that reflect the optimal high-excitability state show a

igh variability across subjects (there is little overlap in relevant sources

t any given time point in Fig. 5 B). 

The presented methodology can be applied to study excitability en-

oding patterns under various conditions and TMS paradigms without

mposing strict prior hypotheses. For example, it could be useful to apply

he same approach to patients after stroke, and to compare the resulting

atterns that predict excitability in healthy persons vs . stroke patients.

hanges in the state-encoding patterns within individual patients, as

mmediate response to therapy ( e.g. , by TMS) or in a longer time span,

an give insight into cortical changes reflecting individual recovery. The

atterns or their changes could serve as biomarkers to track recovery or

o tailor more efficient, individualized therapy protocols. 
14 
.2. Accuracy of excitability state labeling 

From the simulated data, we can draw the conclusion that individ-

al data-driven modeling is able to detect brain states defined by the

ynamic spatio-temporal pattern of the EEG sources. The accuracy of

he model seems to be most sensitive to the accuracy of labeling the

pochs into high- and low-excitability classes. SNR of the EEG data is

ess important. When the data are accurately labeled, and the SNR is

t least 30%, the model performs at a very high accuracy of over 90%,

hich is close to the accuracy obtained by using the perfect knowledge

f the source properties encoding the excitability ( Fig. 7 C). Increasing

he number of trials improved the decoding accuracy, but this improve-

ent was not remarkable, especially if the labels were noisy. 

Given the importance of accurate labeling, we need to take a criti-

al look at how the classes were assigned based on the EMG data. As

e labeled the data epochs based on the MEP amplitudes, we made

everal heuristic decisions (see Methods for details). The labels could

ave turned out differently if choosing a different strategy. Moreover,

he stimulation intensity may play an important role. Here, the TMS

ntensity of 110% of the RMT was used, for which reason MEP sizes

ended to exceed 50 𝜇V irrespective of the instantaneous brain state.

ore accurate labeling could result when using an intensity closer to

he RMT, making it more straight forward to draw a line between ‘re-

ponse’ and ‘no response’ trials ( de Goede and van Putten 2019 ). In fact,

t has been previously reported that low TMS intensities lead to im-

roved predictive power of the MEP amplitude based on the 𝜇-rhythm

hase ( Schaworonkow et al., 2019 ). 

Despite the arbitrary choices related to MEP detrending and label-

ng, these steps are important as highlighted by the systematic rise of

EPs during the sessions across subjects, but also to compensate for in-

ividual non-systematic time-effects. If such slow changes of baseline

EP amplitude are not corrected, the MEP prediction, based on rapidly

uctuating EEG phase, would inevitably be hampered. Low-frequency

TMS protocols, such as the one used in this study, are typically ex-

ected to induce a long-term depression (LTD)-like effect. Previously,

.5-Hz rTMS has been used to induce decrease of cortical excitability

n epilepsy ( Sun et al., 2012 ), whereas in healthy participants, also ab-

ence of significant changes has been reported ( Schrader et al., 2016 ).

ote that the LTD-like effect is quantified by test pulses before and after

he rTMS protocol when rTMS is used as a neuromodulatory interven-

ion. Our study, however, is designed to investigate the trial-by-trial

EP fluctuations during the stimulation, and therefore, ISI included a

ignificant jitter. The fact that this protocol resembles a jittered 0.5-Hz

TMS protocol is a consequence of the need to maximize the number of

rials and to minimize the slow fluctuations that occur during long or

plit sessions. 

.3. Limitations 

The trial-to-trial variability of the MEP amplitudes within an exper-

mental session is attributed to a multitude of extrinsic and intrinsic

actors. Extrinsic factors include all changes affecting the electric field

t the target cortical area; most evidently even small changes in the coil

argeting can lead to a remarkable change in the MEP ( Kallioniemi et al.,

015 ; Koponen et al., 2018 ; Miranda et al., 1997 ). Intrinsically, individ-

al person’s neurophysiological excitability state can fluctuate at mul-

iple levels of the motor tracts from the cortical, to the spinal and pe-

ipheral circuits ( Funase et al., 1999 ; Kiers et al., 1993 ; Magistris et al.,

999 ). Previously, the MEP amplitudes have also been modelled by the

roperties of pre-stimulus EMG ( Keil et al., 2014 ; Mitchell et al., 2007 ).

t the cortical level, there can be local variations, affecting the excitabil-

ty of a small cortical region, or more global ones affecting larger areas,

.g. , the primary motor cortices bilaterally ( Ellaway et al., 1998 ). In ad-

ition to phase, power of the underlying oscillations has been used in de-

ermining the cortical excitability state ( Sauseng et al., 2009 ; Thies et al.,

018 ). 
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While excitability undoubtedly changes in a graded fashion, here

e used binary modeling. The rationale of choosing such binary clas-

ification instead of regressing to the exact MEP amplitude is due to

hallenges of estimating an unknown mapping function among highly

oisy samples. As discussed above, MEP amplitudes are affected by sev-

ral factors, in addition to the cortical excitability state, which, from

he perspective of our modeling framework, represent noise in the sys-

em. With the classification approach, we bypass the need of specifying

 function, e.g. , linear regression, or scaling (linear or logarithmic) to be

sed in mapping the relationship between an EEG feature and the MEP

mplitude. 

When reducing the dimensionality of the data, with each subject, we

sed different regularization parameters and degrees of freedom. These

arameters were decided using cross-validation, which was automatized

ut nevertheless time-consuming. It is commonly a trade-off between

uning the modeling parameters for getting an individually optimized

odel or pre-setting parameters to get a less accurate estimate faster.

or the decoding presented in this work, more model parameters could

ave been added, such as the width of the decoding window. 

Our matrix filter was established in time-domain since, based on pre-

iminary experimenting, we found this way the most straightforward to

se with least prior assumptions. If one is most interested in retrieving

he phases (of the source waveforms or the channel signals) encoding

he high excitability in the frequency domain, these would have to be

urther estimated from the spatio-temporal patterns, which would con-

ain estimation error. Alternatively, one can create a predictive filter in

he frequency domain: The model is then set up using chosen frequen-

ies, and the resulting high-excitability pattern would show the optimal

hase/amplitude combination for each of the frequencies. 

The average obtained accuracy is rather low compared to those ob-

ained from BCI applications ( Blankertz et al., 2008 ). In BCI applica-

ions, however, the experiments are designed such that the SNR of the

elevant EEG signal is rather high, and the trial labeling is fully accurate,

hich is not the case here, and we are rather dealing with probabilities

han clear binary predictions. As outlined in the Introduction, highly

iverse findings starting from a similar research question as here have

een published. Thus, high accuracies of the MEP amplitude prediction

ere not expected, and indeed, a large variability remains in how effec-

ively high-excitability states can be predicted for a given participant:

he prediction accuracies were ranging from 56% to 92% ( Fig. 4 A), re-

ecting the noisy prediction scheme. 

Our primary goal with the measured data was to validate and test

he modeling pipeline. From this small sample size, we do not make

trong neurophysiological conclusions. The neurophysiological results

resented here are also not to be generalized to other cortical regions

r different TMS parameters such as different stimulation intensities, or

nterstimulus intervals. On the other hand, the presented methods are

ighly suited for studying how the excitability state encoding changes

hen TMS parameters are changed or the subject is performing a task,

.g. , motor imagery. 

Here, ISI was chosen to be around 2 s to minimize the measure-

ent duration and to keep the EEG as stationary as possible. Previous

MS pulses in the session might have gradually changed the brain-state

ncoding via plasticity, but according to our tests, classification gave

he accuracy of on average 64% even when predicting the excitability

ithin the latter half of the experimental trials using the first half of

hem for training, which is close to the benchmarking accuracy, sug-

esting that the excitability encoding stays rather stable throughout the

easurement. 

.4. Outlook for individualized online classification 

An important potential application of the predictable brain excitabil-

ty states is closed-loop TMS to induce therapeutic changes in brain net-

orks. To enhance a therapy protocol, the prediction accuracy may not

eed to be very high: If, say, 65% of the stimuli are delivered during the
15 
ime windows of high excitability (and thus high plasticity), this would

ake the therapy 30% more effective as compared to the random stim-

lation, provided that the effectiveness is directly proportional to the

umber of times when high-excitability state is reached. 

For successful classification in a closed-loop experiment, two critical

ethodological steps need to be implemented and tested: 1) online EEG

reprocessing, and 2) training filters for upcoming trials within an ex-

eriment, or even training filters for future experiments based on data

ecorded from different individuals. Here, we explored the prerequisites

or the latter task. 

The test accuracy for predicting the brain-state with the first half of

he data to be used within the latter half of the data was slightly less

han from the benchmarking test. The difference is rather small, sug-

esting that the excitability encoding patterns are relatively stable in

ime. It is known from previous BCI studies that the classification ac-

uracy tends to decrease over time, and the estimated filters should be

e-adapted to the changes in EEG ( Blankertz et al., 2008 ; Shenoy et al.,

006 ; Zhao et al., 2008 ). In an online setting, the training could be en-

anced by estimating an initial filter estimate with few trials and adap-

ively optimize the classifier to the changing data ( Blankertz et al., 2007 ;

ill et al., 2006 ; Shenoy et al., 2006 ; Zhao et al., 2008 ). 

We also discovered that the number of EEG channels could be

reatly decreased while still keeping the accuracy unchanged, which

ould be useful for online, and especially for clinical usage. A small

umber of electrodes has been reported sufficient for CSP also earlier

 Farquhar et al., 2006 ). The results indicate that, e.g. , 30 channels lo-

ated sparsely around the relevant cortical region could suffice provided

hat the SNR of the data is good. Depending on the data quality, effective

leaning of the data online may still require more channels. 

The applicability of same ML-optimized filters over different sub-

ects did not show promising because the obtained accuracy was just

lightly above 50%. This is not surprising because the SNR of the rele-

ant spatio-temporal patterns among EEG are rather low in the resting-

tate condition, and the estimated filters are individually adapted to

ancel out irrelevant heterogeneous and variable ongoing EEG oscilla-

ions. Even though this straightforward attempt of training filters across

ubjects did not seem profitable, there may be more efficient ways of us-

ng the prior information of the spatio-temporal patterns at the sensor-

r source-level to enhance filter optimization for individual recordings:

f consistent population-level patterns exist, they could be used to guide

ndividualized modeling as prior information to stabilize and speed up

he training ( Cheng et al., 2017 ; Lu et al., 2010 ). 

.5. Conclusion 

Cortical excitability states can be modelled in an individual way

sing supervised learning of the spatio-temporal filter applied to the

esting-state EEG epoch preceding a TMS pulse. When applied to the

ata recorded from healthy subjects, the cortical excitability state could

e predicted more accurately than using a fixed-spatial-filter model. The

stimated spatio-temporal filter could be used to study how the corti-

al excitability states are encoded by cortical activity at an individual

evel and under different conditions. Excitability prediction with indi-

idualized EEG filters also pertains to personalized TMS therapy with

he potential to increase therapeutic effect sizes. 
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tudy participants to make the data publicly available. 
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ppendices 

. Laplacian trendline fitting and line noise removal 

Before detrending, in EMG data, the time window of the MEPs and

he artifacts was manually identified and linear interpolation was ap-

lied in this interval. The remaining stationary part of the data are con-

ained in the set of indices 𝜏stat = { 1 , … , 𝑡 1 , 𝑡 2 , … , 𝑇 } , where the time

ndices 𝑡 1 and 𝑡 2 define the start and the end points of the interpolation,

espectively. The trendline was estimated for each channel in each data

poch of EEG and EMG by: 

 trend = ( 𝑰 + 𝑪 𝛿) −1 𝐱 interp , (A1)

here ( 𝑇 × 1 ) 𝐱 trend is the estimated trend, ( 𝑇 × 1 ) 𝐱 interp , is the inter-

olated signal, 𝛿 is a regularization factor, and ( 𝑇 × 𝑇 ) 𝑪 is the (auto-

covariance matrix of the detrended signal. We set 𝑪 = 𝑷 T 𝑷 , where 𝑷 

he Laplacian matrix operator: 

 = 

⎡ ⎢ ⎢ ⎣ 
1 − 2 1 ⋯ 0 0 0 

⋮ ⋱ ⋮ 
0 0 0 ⋯ 1 −2 1 

⎤ ⎥ ⎥ ⎦ . (A2)

Eq. (A.1) corresponds to trendline computation by minimum mean-

quared error estimator assuming that 𝑰 and 𝐂 are the (auto-)covariance

atrices of the trendline and the detrended signals, respectively, and

hat they are uncorrelated with each other. The regularization factor

as set to 𝛿 = 10 5 and 10 4 for the sampling frequencies of 1 kHz (EEG)

nd 5 kHz (EMG), respectively. Detrended signal ̃𝐱 was obtained by sub-

racting the trendline from the original data (before interpolation). 

After trendline rejection, 50 Hz noise was identified and eliminated.

irst, we defined the time-domain subspace of the line noise spanned by

he columns of 

 = 

⎡ ⎢ ⎢ ⎣ 
sin 

(
50 ⋅ 2 𝜋 ⋅ 𝑡 1 ∕ 𝑓 s 

)
cos 

(
50 ⋅ 2 𝜋 ⋅ 𝑡 1 ∕ 𝑓 s 

)
⋮ ⋮ 

sin 
(
50 ⋅ 2 𝜋 ⋅ 𝑡 𝑁 

∕ 𝑓 s 
)

cos 
(
50 ⋅ 2 𝜋 ⋅ 𝑡 𝑁 

∕ 𝑓 s 
)
⎤ ⎥ ⎥ ⎦ , (A3)
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here 𝑡 𝑖 runs over 𝑁 selected time indices, and 𝑓 s is the sampling fre-

uency. When the time indices run over the stationary interval 𝜏stat only,

e denote 𝑼 ← 𝑼 stat , and when the indices run over the whole epoch,

e denote 𝑼 ← 𝑼 all . 

The coefficients in ( 2 × 1 ) vector 𝐦 , describing the 50 Hz –noise con-

ent in the signal, were fitted using the stationary data: 

 = 𝑼 

T 
stat ̃𝐱 stat , (A4)

fter which line noise was removed from the original signal assuming

tationarity of the line noise: 

̂
 = 𝐱̃ − − 𝑼 all 𝐦 . (A5)

. Exponential-curve fitting 

In each EMG trial and channel, the fitting of the exponential decay is

erformed separately to the signal samples x( 𝑡 ) , where 𝑡 indices time over

he fitting interval. These intervals were manually chosen representative

ime windows before and after the MEP response, where the exponential

rtifact dominated. 

Matlab’s ‘fminunc’ function was used to fit the exponential function

 𝑒 − k ⋅( 𝑡 − 𝑡 0 ) , where 𝑡 is the running time index, 𝑡 0 the earliest time of

he fitting window, and A and k are parameters to be fitted. Fitting was

erformed such that the mean squared error between the original and

he signal and the fitted exponential signal is minimized, i.e., 

 A , k } = arg min 
A , k 

⟨ ‖‖‖( 𝑡 ) − A 𝑒 −k ⋅( 𝑡 − 𝑡 0 ) ‖‖‖
⟩ 
𝑡 
, (B1)

here ⋅𝑡 denotes mean operation over the fitting intervals. The initial

uesses for the parameters were set as follows: A = x ( 𝑡 = 𝑡 0 ), i.e., the

ignal value at the start of the fitting window, and k = 

1 ∕ 𝑡 ′ − 𝑡 0 
, where 𝑡 ′

s set the smallest time index for which x( 𝑡 ) < A 𝑒 −1 . 

. Spherical-head model 

The spherical head model consisted of three concentric layers: the

rain, the skull, and the scalp with the radii of 81, 85, and 88 mm, and

he relative conductivities of 1, 0.8, and 1, respectively. The standard

lectrode positions were set as obtained from EEGLAB. Current dipoles

nside the brain 76 mm away from the origin were used as the source

pace. The equations needed to compute the spherical-model lead fields

an be found in [31]. 
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