We present a splitting method for the one-dimensional Saint-Venant-Exner equations used for describing the bed evolution in shallow water systems. We adapt the flux vector splitting approach of Toro and Vazquez-Cend ´ on ´ (2012) and identify one subsystem of conservative equations (advection system) and one of non-conservative equations (pressure system), both having a very simple eigenstructure compared to the full system. The final numerical scheme is constructed using a Godunov-type path-conservative scheme for the pressure system and a simple conservative Godunov method for the advection system and solved following a coupled solution strategy. The resulting first-order accurate method is extended to second order of accuracy in space and time via the ADER approach together with an AENO reconstruction technique. Accuracy, robustness and well-balanced properties of the resulting scheme are assessed through a carefully selected suite of testcases. The scheme is exceedingly simple, accurate and robust as the sophisticated Godunov methods. A distinctive feature of the novel scheme is its flexibility in the choice of the sediment transport closure formula, which makes it particularly attractive for scientific and engineering applications.
A splitting scheme for the coupled Saint-Venant-Exner model / Siviglia, A.; Vanzo, D.; Toro, E. F.. - In: ADVANCES IN WATER RESOURCES. - ISSN 0309-1708. - 159:(2022), pp. 10406201-10406216. [10.1016/j.advwatres.2021.104062]
A splitting scheme for the coupled Saint-Venant-Exner model
Siviglia, A.;Vanzo, D.;Toro, E. F.
2022-01-01
Abstract
We present a splitting method for the one-dimensional Saint-Venant-Exner equations used for describing the bed evolution in shallow water systems. We adapt the flux vector splitting approach of Toro and Vazquez-Cend ´ on ´ (2012) and identify one subsystem of conservative equations (advection system) and one of non-conservative equations (pressure system), both having a very simple eigenstructure compared to the full system. The final numerical scheme is constructed using a Godunov-type path-conservative scheme for the pressure system and a simple conservative Godunov method for the advection system and solved following a coupled solution strategy. The resulting first-order accurate method is extended to second order of accuracy in space and time via the ADER approach together with an AENO reconstruction technique. Accuracy, robustness and well-balanced properties of the resulting scheme are assessed through a carefully selected suite of testcases. The scheme is exceedingly simple, accurate and robust as the sophisticated Godunov methods. A distinctive feature of the novel scheme is its flexibility in the choice of the sediment transport closure formula, which makes it particularly attractive for scientific and engineering applications.File | Dimensione | Formato | |
---|---|---|---|
Splitting_SVE-AWR-Siviglia_et_al.pdf
accesso aperto
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Creative commons
Dimensione
1.96 MB
Formato
Adobe PDF
|
1.96 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione