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A B S T R A C T   

We present a splitting method for the one-dimensional Saint-Venant-Exner equations used for describing the bed 
evolution in shallow water systems. We adapt the flux vector splitting approach of Toro and Vázquez-Cendón 
(2012) and identify one subsystem of conservative equations (advection system) and one of non-conservative 
equations (pressure system), both having a very simple eigenstructure compared to the full system. The final 
numerical scheme is constructed using a Godunov-type path-conservative scheme for the pressure system and a 
simple conservative Godunov method for the advection system and solved following a coupled solution strategy. 
The resulting first-order accurate method is extended to second order of accuracy in space and time via the ADER 
approach together with an AENO reconstruction technique. Accuracy, robustness and well-balanced properties of 
the resulting scheme are assessed through a carefully selected suite of testcases. The scheme is exceedingly 
simple, accurate and robust as the sophisticated Godunov methods. A distinctive feature of the novel scheme is its 
flexibility in the choice of the sediment transport closure formula, which makes it particularly attractive for 
scientific and engineering applications.   

1. Introduction 

Nowadays numerical morphodynamic models are used for different 
purposes, from answering questions about basic morphodynamic 
research to tackling complex engineering problems (Shimizu et al. 2020; 
Siviglia and Crosato 2016). A wide variety of river (Siviglia et al. 2008; 
Duró et al. 2016; Le et al. 2018) and near-shore engineering problems 
(Kelly and Dodd 2010; Postacchini et al. 2012) are modelled using the 
shallow-water approach. In this context morphodynamic investigations 
are often conducted using the shallow-water equations for hydrody-
namics (Saint-Venant equations (de Saint-Venant 1871)) coupled to the 
equation for the bed-evolution (Exner equation (Exner 1925)). Both 
components define a coupled system of partial differential equations 
(PDEs) for which a conservative form does not exist, i.e. the 
Saint-Venant-Exner (SVE) model. 

The numerical solution of the SVE model can be obtained following 
two different strategies, namely decoupled and coupled. In the decou-
pled approach the solution is obtained assuming a fixed bed configu-
ration. First are solved the hydrodynamic equations and then the Exner 
equation by using the new hydrodynamic variables (Cunge and Per-
dreau, 1973; Defina, 2003; Krishnappan, 1985; Wu et al., 2004). A clear 
advantage of this approach is that the governing equations are 

hyperbolic and can be expressed in conservative form. Despite its 
simplicity the decoupled approach has some numerical shortcomings. 
Kelly and Dodd (2010) demonstrated that using a decoupled approach, 
when simulating bore-driven sediment transport, may lead to a large 
overestimation of the net off-shore transport in the swash zone and 
Postacchini et al. (2012) show that the erosion of the bed can be 
significantly larger when a swash forced by a dam-break is considered. 
Cordier et al. (2011) conducted numerical experiments demonstrating 
that the decoupled approach may fail, producing unphysical in-
stabilities, even using a robust and well-balanced numerical scheme for 
shallow-water system. From a physical point of view the decoupled 
approach is justified when the bed weakly interacts with the hydrody-
namic waves, a condition that holds only for situations far from critical 
conditions Carraro et al. (2018); De Vries (1965); Lyn and Altinakar 
(2002), i.e. when the Froude number (Fr)≪1 or ≫1. On the contrary, the 
coupled approach can be applied in all conditions at the price of having a 
governing system of PDEs written in non-conservative form (e.g. Hudson 
and Sweby, 2005), which requires a special numerical treatment. 

In the context of systems in conservative form the Riemann in-
variants and the Rankine-Hugoniot conditions provide all the necessary 
information to derive exact or approximate solutions of the associated 
Riemann problem. When dealing with system containing non- 
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conservative products the classical Rankine-Hugoniot conditions across 
shock waves must be replaced by integral shock conditions. In this case 
the problem is often solved using the theory developed by Dal Maso et al. 
(1995) that allows one to set the jump conditions (and thus the concept 
of weak solution) in terms of a given family of paths. The degree of 
freedom in the choice of the family of paths is eliminated following the 
approach proposed by Parés (2006) who introduced the family of 
path-conservative (or path-consistent) methods to properly handle 
non-conservative PDEs. These approaches have experienced a great in-
crease of popularity in the last decade and many path-conservative 
finite-volume methods have been proposed for solving the SVE model 
following either a centred approach (thus not using the eigenstructure of 
the problem) (Caleffi et al., 2007; Canestrelli et al., 2009; Hudson and 
Sweby, 2005) or an upwind approach (which requires a detailed 
knowledge of the eigenstructure) (e.g. Carraro et al., 2018; Castro et al., 
2008). 

In this paper we present a splitting scheme for the non-conservative 
SVE system of equations which is solved following a coupled solution 
strategy. Our starting point is the flux vector splitting approach of (Toro 
and Vázquez-Cendón 2012) (TV), first put forward for the conservative 
one-dimensional Euler equations. Recently the TV splitting has been 
successfully applied to the three-dimensional Euler equations with 
general equation of state (Toro et al. 2015), to the equations of mag-
netohydrodynamics (Balsara et al. 2016) and to the BaerNunziato 
equations of compressible two-phase flow Tokareva and Toro (2017). 
Our splitting identifies two separate subsystem of PDEs, the advection 
and the pressure systems. It differs from the original TV splitting in two 
respects, namely (i) the advection contained in the continuity equation 
of the Saint-Venant equations is placed in the pressure system and (ii) 
the pressure system is non-conservative. The wave pattern of the pres-
sure system is always subcritical and the solution of the associated 
Riemann problem can be easily found using Riemann invariants. This 
provides all the items required for the evaluation of the fluctuations to 
be used in the update formula using the Godunov-type path-conserva-
tive method theoretically introduced in Muñoz-Ruiz and Parés (2007). 
This method is here used for the first time in numerical applications. The 
advection system is hyperbolic and the numerical fluxes are obtained 
using a simple advection method. An attractive feature of the present 
method is that the sediment fluxes are contained in the advection system 
and are evaluated as they are described by the sediment transport for-
mula. This means that there is no need of any differentiation as is 
required when the entire coefficient matrix of the SVE equations is 
employed for the numerical simulations Carraro et al. (2018); Canes-
trelli et al. (2009); Castro et al. (2008). Extension to second order is 
obtained through application of the ADER methodology, first introduced 
in Toro et al. (2001) and further developed in Toro and Titarev (2002); 
Titarev and Toro (2002); Dumbser et al. (2008). ADER has also been 
applied to problems governed by the non-conservative SVE equations 
Canestrelli et al. (2009, 2010); Siviglia et al. (2013). Polynomial 
reconstruction is performed employing the AENO reconstruction pro-
cedure, an averaged variant of the popular ENO method Harten et al. 

(1987), recently proposed by (Toro et al. 2021). 
The paper is structured as follows: Section 2 briefly reviews the 

governing equations and the closure relationship for the sediment 
transport and in Section 3 we apply the flux splitting framework to the 
SVE equations and introduce the corresponding advection and pressure 
systems. In Section 4 we present our splitting numerical method in first 
order mode and in Section 5 we extend it to second order of accuracy. In 
Section 6 we present numerical results for a range of carefully selected 
test problems to assess both the robustness and accuracy of the schemes 
proposed in this paper. Conclusions are drawn in Section 7. 

2. The Saint-Venant-Exner model 

We consider the one-dimensional morphodynamic Saint-Venant- 
Exner model which describes the flow evolution over an erodible bed. 
The bed is composed of uniform sediments which are transported by the 
flow as bedload. In this section we recall the governing equations, 
introduce the closure relationship adopted for its solution and then we 
write the system in quasi-linear form. 

2.1. The governing equations and bedload closure relationship 

The governing equations are obtained under shallow water condi-
tions and includes equations for the conservation of water mass (conti-
nuity equation) 

∂th + ∂xq = 0 (1)  

and momentum of the water phase 

∂tq + ∂x

(
q2

h
+

1
2

gh2
)

+ gh∂xzb = − ghSf . (2)  

The bed evolution is described by the sediment continuity (or Exner) 
equation 

∂tzb + ∂xqb = 0 , (3)  

where, t [s] is time, x [m] is the streamwise coordinate and g=9.806 
[ms− 2] is the acceleration due to gravity. The quantities involved are 
illustrated in Fig. 1. Here h [m] is the flow depth, zb [m] is the bed level, 
and u [ms− 1] is depth-averaged flow velocity. The flow discharge per 
unit width is defined as q = uh [m2s− 1]. qb [m2s− 1] is the bedload 
sediment flux per unit width divided by (1 − λp) where λp is the bed 
porosity and Sf [-] is the friction slope, both to be specified by an 
appropriate closure relationship. 

For the sake of simplicity, we model bedload sediment flux per unit 
width qb in a simple form in which qb = qb(u) only, such that (Grass, 
1981) 

qb = Ag um , (4)  

where Ag [m(2− m)s(m− 1)] and m [-] > 1 are two constant parameters. We 
remark that the proposed framework can work with any closure rela-
tionship for the bedload flux. 

2.2. Quasi-linear form of the governing equations 

The SVE model (1–3) is a non-conservative system (Canestrelli et al. 
2009; Castro et al. 2008) and can be written as follows 

∂tQ + ∂xF(Q) + B(Q)∂xQ = S(Q) , (5)  

where 

Fig. 1. Schematic of the water surface and erodible bottom showing notation.  
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Q =

⎡

⎢
⎢
⎣

h

q

zb

⎤

⎥
⎥
⎦; F =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

q

1
2

gh2 + q2
/

h

qb

⎤

⎥
⎥
⎥
⎥
⎥
⎦

; B =

⎡

⎢
⎢
⎣

0 0 0

0 0 gh

0 0 0

⎤

⎥
⎥
⎦;

S =

⎡

⎢
⎢
⎣

0

− ghSf

0

⎤

⎥
⎥
⎦ .

(6)  

The SVE model can also be written in quasi-linear form as 

∂Q
∂t

+ A(Q)
∂Q
∂x

= S , (7)  

where A is the coefficient matrix given as 

A(Q) =

⎡

⎣
0 1 0(

c2 − u2) 2u c2

− uψ ψ 0

⎤

⎦ . (8)  

In the coefficient matrix c =
̅̅̅̅̅
gh

√
is the celerity and 

ψ =
∂qb

∂q
(9)  

is a measure of the intensity of total bedload in the flow usually in the 
range 0 < ψ < ξ of order O (10− 2) (De Vries 1965; Lyn and Altinakar 
2002). ψ is obtained from differentiating the sediment transport formula 
and thus depends on the bedload closure relationship adopted. In this 
work, from equation  (4) we obtain 

ψ = m
qb

q
. (10)  

The characteristic polynomial of the coefficient matrix A is obtained by 
setting |A − λI| = 0, where I is the 3 × 3-identity matrix: 

λ3 − 2uλ2 +

(
u2

gh
− ψ − 1

)

ghλ + ughψ = 0 . (11)  

If a power law formula for the solid transport is used, as that adopted in 
(4), the three eigenvalues λ1, λ2, λ3 are always real, thus the governing 
system is always hyperbolic (Cordier et al. 2011). It is worth remarking 
that, under different flow conditions, either subcritical (Fr < 1, Fr = u 
/
̅̅̅̅̅
gh

√
) or supercritical (Fr > 1), there are always two positive and one 

negative eigenvalues. From a physical point of view, under sub- or 

supercritical conditions (Fr < 1 or Fr > 1) the bed interacts only weakly 
with the water surface and small bottom perturbations propagate at a 
slower pace compared with the hydrodynamic waves, whereas under 
near-critical conditions (Fr ≃ 1) the interactions between the bed and 
hydrodynamic waves are quite strong. For background on the hyper-
bolicity of the SVE, the eigenvalues behavior and the physical behavior 
of small bed perturbations see (Cordier et al. 2011; Lyn and Altinakar 
2002), for example. 

In this paper, we are primarily interested in the principal part of  (5) 
and therefore we restrict ourselves to the homogeneous case S(Q) = 0. 

3. Splitting framework 

In this section, we propose a splitting method for systems written in 
non-conservative form following the framework of (Toro and 
Vázquez-Cendón 2012). We remark that this novel formulation is valid 
either under sub- or supercritical conditions (Fr < 1 or Fr > 1) or under 
near-critical conditions (Fr ≃ 1). 

3.1. The framework 

Consider now the homogeneous SVE equations 

∂tQ + ∂xF(Q) + B(Q)∂xQ = 0 , (12)  

with 

Q =

⎡

⎣
h
q
zb

⎤

⎦; F(Q) =

⎡

⎢
⎢
⎢
⎣

q

1
2

gh2 + q2
/

h

qb

⎤

⎥
⎥
⎥
⎦
; B(Q) =

⎡

⎣
0 0 0
0 0 gh
0 0 0

⎤

⎦ . (13)  

First, we identify the conservative part and express the conservative flux 
as the sum of advection and pressure fluxes as follows 

F(Q) =

⎡

⎣
0

q2/h
qb

⎤

⎦+

⎡

⎢
⎢
⎢
⎣

q
1
2

gh2

0

⎤

⎥
⎥
⎥
⎦

(14)  

with the corresponding advection and pressure fluxes defined as 

F(a)(Q) = q

⎡

⎣
0

q/h
qb/q

⎤

⎦ and F(p)(Q) =

⎡

⎢
⎢
⎢
⎣

q
1
2

gh2

0

⎤

⎥
⎥
⎥
⎦
. (15)  

Then we consider two subsystems: 
⎧
⎨

⎩

∂tQ + ∂xF(a)(Q) = 0 (16)

∂tQ + ∂xF(p)(Q) + B(Q)∂xQ = 0 (17)

called respectively the advection system (16) and the pressure system (17). 
We note however that here the pressure system would be augmented by 
the non-conservative term present in the SVE equations. The final goal of 
this procedure is to obtain the numerical solution of the full SVE system 
of equations. The TV flux splitting approach consists of approximating 
the numerical fluxes for the pressure system and advection system 
separately and constructing the numerical fluctuations for the full sys-
tem based on these. To this end, the analysis of the eigenstructure and 
the study of the Riemann problem for the pressure system are necessary. 

3.1.1. The pressure system 
The pressure system (17) is non-conservative because of the presence 

of the non-conservative term gh∂xzb appearing in the momentum 
equation (2). It can be written in quasi-linear form as 

Fig. 2. Structure of the solution in local coordinates of the Riemann 
problem for the pressure system resulting from the flux splitting. There are 
two non-linear wave families and a stationary contact discontinuity coinciding 
with the t-axis. The wave pattern is always subcritical therefore determining the 
Godunov state for flux evaluation does not require sampling, being always the 
star state. The sought values in the star region are h∗L, h∗R, q∗ and zb∗L, zb∗R. 
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∂tQ + P(Q)∂xQ = 0 (18)  

with 

P = J(p) + B =

⎡

⎣
0 1 0
c2 0 0
0 0 0

⎤

⎦+

⎡

⎣
0 0 0
0 0 c2

0 0 0

⎤

⎦ =

⎡

⎣
0 1 0
c2 0 c2

0 0 0

⎤

⎦ (19)  

where J(p) is the Jacobian matrix of the pressure fluxes F(p) in (15). The 
eigenvalues of matrix P are 

λ(p)1 = − c, λ(p)2 = 0, λ(p)3 = c . (20)  

The eigenvalues are always real and λ(p)1 < λ(p)2 = 0 < λ(p)3 and thus the 
system is always subcritical as illustrated in Fig. 2. The right eigenvec-
tors corresponding to the three eigenvalues (20) are 

R(p)
1 =

⎡

⎣
1

− c
0

⎤

⎦, R(p)
2 =

⎡

⎣
− 1

0
1

⎤

⎦, R(p)
3 =

⎡

⎣
1
c
0

⎤

⎦. (21)  

3.1.2. The advection system 
The advection system in conservative form is 

∂tQ + ∂xF(a)(Q) = 0, (22)  

where Q = [h, q, zb]
T and F(a) as in (15). The quasi-linear form is given by 

∂tQ + J(a)(Q)∂xQ = 0, (23)  

where 

J(a) =

⎡

⎣
0 0 0

− u2 2u 0
− uψ ψ 0

⎤

⎦ (24)  

is the Jacobian of matrix F(a). Simple analysis shows that the eigenvalues 
of matrix (24) are λ(a)1 = 0 and λ(a)2 = λ(a)3 = u and that there are only two 
linearly independent right eigenvectors given by 

R(a)
1 = α1

⎡

⎣
0
0
1

⎤

⎦, R(a)
2 = α2

⎡

⎣
1
u
0

⎤

⎦, (25)  

thus the advection system is weakly hyperbolic. It is easy to show that 
the λ(a)1 -field is linearly degenerate while the λ(a)2 and λ(a)3 are genuinely 
non-linear if α2 ∕= 0 and u ∕= 0. We note that the weakly hyperbolic na-
ture of the advection system does not have a bearing on its numerical 
approximation. 

4. Numerical solution 

Direct integration of (12) in the space-time control volume Vi =

⎡

⎢
⎣xi− 1

2
; xi+1

2

⎤

⎥
⎦× [tn; tn+1] gives the following update numerical formula to 

solve (12): 

Qn+1
i = Qn

i −
Δt
Δx

⎡

⎢
⎣

⎛

⎜
⎝D−

i+1
2
+D+

i− 1
2

⎞

⎟
⎠+

⎛

⎜
⎝F(a)

i+1
2
− F(a)

i− 1
2

⎞

⎟
⎠

⎤

⎥
⎦. (26)  

Qn+1
i and Qn

i are the cell-averaged values of the vector Q at time tn+1 and 
tn, Δt is the time step derived from the standard CFL stability condition 
and Δx is the grid size (here, for simplicity, assumed having a constant 
size). D−

i+1
2 

and D+

i− 1
2 

are fluctuations, or increments associated to the 

pressure system, which are obtained using path-conservative schemes 
(Parés 2006), while F(a)

i+1
2 

and F(a)
i− 1

2 
are the numerical fluxes of the 

advection system obtained using simple advection methods. In order to 
compute the fluctuations D−

i+1
2 
and D+

i− 1
2 
and the advection fluxes F(a)

i+1
2 
and 

F(a)
i− 1

2 
to be used in (26) we consider the Riemann problem for each sys-

tem. We start with the pressure system. 

4.1. The pressure system 

In order to calculate the fluctuations D−
i+1

2 
and D+

i+1
2 

at the interface 

xi+1
2
we consider the Riemann problem for the pressure system in con-

servative variables 

∂tQ + P(Q)∂xQ = 0 , x ∈ R , t > 0 ,

Q(x, 0) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

QL ≡ Qn
i if x < 0 ,

QR ≡ Qn
i+1 if x > 0 .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(27)  

The structure of the solution of (27) at the fixed interface position xi+1
2
, or 

x = 0 in local coordinates, is illustrated in Fig. 2. 
The wave pattern is always subcritical and composed by three wave 

families. The left family is associated with the eigenvalue λ(p)1 , the middle 
family is superimposed onto the t-axis, and is associated with λ(p)2 and the 
right family is associated with λ(p)3 . The waves associated with the 
genuinely non-linear characteristic fields λ(p)1 and λ(p)3 are either shocks 
(discontinuous solutions) or rarefactions (smooth solutions), while the 
wave associated with the linearly degenerate characteristic field λ(p)2 is a 
stationary contact discontinuity. The entire solution consists of four 
constant states, namely QL = [hL, qL, zbL]

T (data), QL
∗ = [h∗L, q∗L, zb∗L]

T, 
QR

∗ = [h∗R, q∗R, zb∗R]
T and QR = [hR, qR, zbR]

T (data), separated by the 
three distinct waves. The unknown states to be found in the star region 
are QL

∗ (left of x = 0) and QR
∗ (right of x = 0). We apply Riemann in-

variants to find these solutions. Across the stationary contact disconti-
nuity with right eigenvectors (21) the generalized Riemann invariants 
are solutions of the following two ordinary differential equations (ODEs) 

Stationary contact⇒
dh
− 1

=
dq
0

=
dzb

1
(28)  

which can be obviously rewritten as a system of ODEs 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dh
− 1

=
dq
0

(29)

dh
− 1

=
dzb

1
. (30)

Integration of the (29) in the phase space gives q = const across the wave 
and thus q∗L = q∗R = q∗, while integration of (30) gives 

h∗L + zb∗L = h∗R + zb∗R = H∗ . (31)  

This latter equation states that the free surface remain constant across 
the stationary contact. Across the left and right waves we have: 

Left wave⇒
dh
1

=
dq
− c

=
dzb

0
(32)  

Right wave⇒
dh
1

=
dq
c
=

dzb

0
. (33)  
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The third ODEs in Eqs.  (32) and (33) imply that zb remains constant 
across the left (i.e. zb∗L = zbL) and right wave (i.e. zb∗R = zbR). Exact 
integration of the first ODEs in Eqs.  (32) and (33) respectively gives that 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2
3
̅̅̅
g

√
h3/2 + q = const across the left wave (34)

2
3
̅̅̅
g

√
h3/2 − q = const across the right wave . (35)

After simple algebraic manipulations of Eqs.  (31), (34) and (35), we 
obtain the following non-linear system 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h3/2
∗L + h3/2

∗R = K (36)

h∗L − h∗R = Δzb (37)

q∗ =
1
2
(qL + qR) +

̅̅̅g√

3

(
h3/2

L − h3/2
R − h3/2

∗L + h3/2
∗R

)
(38)

where 

K =
3

2 ̅̅̅g√ (qL − qR) + h3/2
L + h3/2

R and Δzb = zbR − zbL . (39) 

Fig. 3. Solution of GRP by HEOC method.Top panel: initial condition for a 
single component (h̃ in this example) of the vector of the evolved boundary 
values. Bottom panel: the structure of the solution of the GRP is represented by 
the curved characteristics; the evolution step for half a time step is represented 
by the straight vertical arrows either side of the interface, and the structure of 
the solution of the conventional Riemann problem placed at the half time is 
represented by straight red characteristics. The sought solution at the fixed 

interface position xi+1
2
, or x = 0 in local coordinates, are Q̃

R
∗ right at the inter-

face and Q̃
L
∗ on the left. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 

Table 1 
Convergence-rate study for the sediment transport problem. Splitting-ADER scheme for the 2nd order of accuracy with the AENO reconstruction. Rates are 
calculated for the discharge per unit width q and bed level zb. Sediment transport is quantified by using the sediment transport formula (4) with Ag = 0.01m1/2s1/2 and 
m = 1.5. Computational parameters are: Tfinal=10s, domain length L=500m, CFL=0.9, c0=0.01m, h0=5m, Tp=10s, Lw=250m. AENO reconstruction is performed with 
TOL = 10− 4 and ϵ=1.   

variable q  variable zb   

M L1  O (L1) L∞  O (L∞) L1  O (L1) L∞  O (L∞) CPU [s]  

20 2.15E-04 - 4.01E-04 - 2.45E-05 - 4.82E-05 - 0.05 
40 5.31E-05 2.02 7.21E-05 2.48 6.57E-06 1.90 1.85E-05 1.38 0.07 
80 1.24E-05 2.10 1.56E-05 2.21 1.65E-06 1.99 5.55E-06 1.73 0.14 
160 3.03E-06 2.03 3.67E-06 2.09 3.99E-06 2.05 1.89E-06 1.56 0.45 
320 7.48E-07 2.01 8.91E-07 2.04 9.93E-08 2.01 6.51E-07 1.54 2.04 
640 1.86E-07 2.01 2.20E-07 2.02 2.47E-08 2.00 2.31E-07 1.49 7.20 
1280 4.65E-08 2.00 5.46E-08 2.01 6.23E-09 1.99 8.10E-08 1.51 29.37  

Table 2 
Convergence-rate study for the sediment transport problem. Splitting-ADER scheme for the 2nd order of accuracy with the ENO reconstruction. Rates are 
calculated for the discharge per unit width q and bed level zb. Sediment transport is quantified by using the sediment transport formula (4) with Ag = 0.01m1/2s1/2 and 
m = 1.5. Computational parameters are: Tfinal=10s, domain length L=500m, CFL=0.9, c0=0.01m, h0=5m, Tp=10s, Lw=250m.   

variable q  variable zb   

M L1  O (L1) L∞  O (L∞) L1  O (L1) L∞  O (L∞) CPU [s]  

20 2.89E-04 - 6.26E-04 - 7.62E-05 - 1.32E-04 - 0.04 
40 1.05E-04 1.46 2.66E-04 1.24 4.91E-05 0.64 8.00E-05 0.73 0.07 
80 3.44E-05 1.61 1.12E-04 1.25 1.70E-05 1.52 5.40E-05 0.57 0.13 
160 9.89E-06 1.80 4.49E-05 1.31 6.43E-06 1.41 3.56E-05 0.60 0.47 
320 2.70E-06 1.87 1.90E-05 1.24 2.66E-06 1.27 2.46E-05 0.54 1.81 
640 7.92E-07 1.77 8.04E-06 1.24 1.18E-06 1.18 1.82E-05 0.44 7.09 
1280 2.63E-07 1.59 3.42E-06 1.23 6.34E-07 0.89 1.46E-05 0.30 29.47  

Table 3 
Initial conditions for Riemann problem tests.  

test hL [m]  qL [m2s− 1]  zbL [m]  hR [m]  qR [m2s− 1]  zbR [m]  

Test 1 2.0 0.5 3.0 2.0 4.34297 2.84751 
Test 2 1.0 2.5 ̅̅̅g√ 0.0 0.1 0.0 0.0 
Test 3 1.0 0.0 0.0 0.1 0.0 -0.2 
fixed bed 1.0 0.0 0.0 0.1 0.0 0.0  
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Iterative solution of (36) and (37) gives the sought values h∗L and h∗R. 
Substitution of such values in (38) provides q∗. 

We can improve the efficiency of our method by finding an 
approximate solution of (36) in closed form. A possible way to avoid the 
iterations is the following. We assume that Δzb = 0 and solve (37), that 
gives h∗L = h∗R = ĥ. Then solving (36) we obtain a closed form solution 
for ĥ, i.e. 

ĥ =

[
3

4 ̅̅̅g√ (qL − qR) +
1
2

(
h3/2

L + h3/2
R

)]2/3

. (40)  

At this stage we linearize (36), which, together with (37) gives the 
following linear system 
{

h∗L

̅̅̅

ĥ
√

+ h∗R

̅̅̅

ĥ
√

= K
h∗L − h∗R = Δzb

(41)  

that gives 

h∗L =
1
2

(
K
̅̅̅
ĥ

√ +Δzb

)

. (42)  

Finally we obtain the following system that can be directly solved: 

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

h∗L =
1
2

(
K
̅̅̅
ĥ

√ + Δzb

)

h∗R = h∗L − Δzb

q∗ =
1
2
(qL + qR) +

̅̅̅g√

3

(
h3/2

L − h3/2
R − h3/2

∗L + h3/2
∗R

)
.

(43) 

Once the solution in the star region is known, the fluctuations D−

i+1
2 

and D+

i+1
2 

are obtained using a Godunov-type path-conservative method 

as in (Muñoz-Ruiz and Parés 2007): 

D−

i+1
2
=

1
Δt

∫ Δt

0

∫ 1

0
P
(
Ψ
(
s;Qn

i ,Q
R
∗

)) ∂
∂s

Ψ
(
s;Qn

i ,Q
R
∗

)
)ds dt

D+

i+1
2
=

1
Δt

∫ Δt

0

∫ 1

0
P
(
Ψ
(
s;QL

∗ ,Qn
i+1

)) ∂
∂s

Ψ
(
s;QL

∗ ,Q
n
i+1

)
)ds dt .

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(44)  

We remark that, in the Riemann problem associated with the pressure 
system, we have two star regions, one on the left of x = 0 (whose so-
lution is QL

∗) and one on the right (whose solution is QR
∗ ). The presence of 

these two regions is taken into account integrating the left fluctuation 
D−

i+1
2 

between Qn
i and QR

∗ and the right fluctuation D+

i+1
2 

between QL
∗ and 

Qn
i+1. We verified numerically that the fluctuations calculated as in (44) 

satisfy the compatibility condition 

D−

i+1
2
+ D+

i+1
2
=

1
Δt

∫ Δt

0

∫ 1

0
P(Ψ

(
s;Qn

i ,Qn
i+1

) ∂
∂s

Ψ
(
s;Qn

i ,Qn
i+1

)
ds. (45) 

Fig. 4. Results for the Riemann problem Test 1 (1st order of accuracy). Sediment transport is quantified by using the sediment transport formula (4) with Ag =

0.01s2/m and m=3.0. Computational parameters are: M=200, domain length L=30m, Tfinal=2s and CFL=0.9. 
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For all numerical test cases presented in this paper, we always use the 
simple segment paths, given by 

Ψ
(
s;Qn

i ,Q
R
∗

)
= Qn

i +s
(
QR

∗ − Qn
i

)

Ψ
(
s;QL

∗ ,Q
n
i+1

)
= QL

∗ +s
(
Qn

i+1 − QL
∗

)
.

}

(46)  

Then, from  (44) we have 

D−

i+1
2
= P̂

−

i+1
2

[
QR

∗ − Qn
i

]
; D+

i+1
2
= P̂

+

i+1
2

[
Qn

i+1 − QL
∗

]
(47)  

where 

P̂
−

i+1
2

≈
1

Δt

∫ Δt

0

∫ 1

0
P
(
Ψ
(
s;Qn

i ,Q
R
∗

))
ds dt ;

P̂
+

i+1
2

≈
1

Δt

∫ Δt

0

∫ 1

0
P
(
Ψ
(
s;QL

∗ ,Qn
i+1

))
ds dt .

(48) 

Given a nGP-point Gaussian quadrature rule with weights ωj and 
positions sj distributed in the unit interval [0;1], a very accurate nu-

merical approximation of the matrices P̂
−

i+1
2 

and P̂
+

i+1
2 

is given by 

P̂
−

i+1
2
=
∑nGP

j=1
ωjP
(
Ψ
(
sj,Qi,QR

∗

))
; P̂

+

i+1
2
=
∑nGP

j=1
ωjP
(
Ψ
(
sj,QL

∗ ,Qi+1
))

.

(49)  

All simulations employing our splitting method in this work are per-
formed using nGP=1. This is enough to ensure the achievement of sec-
ond order of accuracy. 

4.2. The advection system 

Recall that in our splitting (15) the advection operator is written as 

F(a)(Q) =

⎡

⎣
0

q2/h
Ag(q/h)m

⎤

⎦ . (50)  

The algorithm we propose for constructing the numerical flux F(a)
i+1

2 
to be 

used in the update formula (26) is 

F(a)
i+1

2
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q∗

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

(
un

i

)

Ag

(
un

i

)m− 1

(
hn

i

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

if q∗ ≥ 0 ,

q∗

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

(
un

i+1

)

Ag

(
un

i+1

)m− 1

(
hn

i+1

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

if q∗ < 0

(51)  

where q∗ is the solution (38) emerging from the Riemann problem of the 

Fig. 5. Results for the Riemann problem Test 1 (2nd order of accuracy). Numerical solutions with the splitting and the DOT method are compared with the exact 
solution. Sediment transport is quantified by using the sediment transport formula (4) with Ag = 0.01s2/m and m=3.0. Computational parameters are: M=200, 
domain length L=30m, Tfinal=2s and CFL=0.9. AENO reconstruction is performed using TOL= 10− 4 and ϵ=0.5. 
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pressure system. 

4.3. Summary of the proposed scheme 

In order to compute the fluctuations D−
i+1

2 
and D+

i− 1
2 

and advection 

fluxes F(a)
i+1

2 
and F(a)

i− 1
2 

to be used in the update formula (26) we proceed as 

follows:  

• Pressure fluctuations. At each interface evaluate the solution of the 
Riemann problem QL

∗ = [h∗L, q∗, zbL]
T and QR

∗ = [h∗R, q∗, zbR]
T using 

Eqs.  (42), (37) and (38). Then calculate D−
i+1

2 
and D+

i+1
2 

as in (47) 

evaluating the approximated matrices (49) using one Gaussian point.  
• Advection flux Evaluate the advection fluxes F(a)

i+1
2 

as described in 

(51). 

5. Second order extension 

Extension to second order is obtained using the ADER methodology 
by (Toro et al. 2001). The procedure to achieve second order contains 
two ingredients: (i) a first-order non-linear spatial reconstruction of the 
gradient of the solution in each cell and (2) the solution of the gener-
alized Riemann problem (GRP) at the interface of each cell. For back-
ground on ADER see Chapters 19 and 20 of (Toro 2013) and references 
therein. Here we consider second-order accurate ADER schemes based 
on the HEOC solver of (Harten et al. 1987) (see also (Castro and Toro 
2008)) for the GRP. 

5.1. Nonlinear reconstruction technique 

First we deal with the reconstruction problem. We adopt the AENO 
reconstruction procedure, an averaged variant of the popular ENO 
method (Harten et al. 1987), recently proposed by (Toro et al. 2021). To 
achieve second-order of accuracy we need to construct first-degree 
polynomials pi in each cell Ii at time tn from the given cell averages 
{Qn

i } of the form 

pi = Qn
i + (x − xi)Δi (52)  

where Δi is the slope vector and xi =
(

xi− 1
2
+ xi+1

2

)/
2. Recall that in 

order to circumvent Godunovs Theorem (Godunov 1959), the recon-
struction must be non-linear. See Chapter 20 of (Toro 2013) for back-
ground. Here the non-linearity of the scheme is ensured by taking the 
polynomial slope as 

Δi =
1
2
(1+ β)Δi− 1

2
+

1
2
(1 − β)Δi+1

2
with |β| ≤ 1 (53)  

where 

β(r) =
1 − r

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ϵ2 + (r − 1)2
√ with r =

⃒
⃒
⃒
⃒
⃒
⃒
Δi− 1

2

⃒
⃒
⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒
⃒
⃒
Δi+1

2

⃒
⃒
⃒
⃒
⃒
⃒
+ TOL

(54)  

and 

Fig. 6. Results for the Riemann problem Test 2 (1st order of accuracy). Sediment transport is quantified by using the sediment transport formula (4) with Ag =

0.01019s2/m and m=3.0. Computational parameters are: M=200, domain length L=5.1m, Tfinal=0.3193s and CFL=0.9. 
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Δi− 1
2
=

Qn
i − Qn

i− 1

Δx
, Δi+1

2
=

Qn
i+1 − Qn

i

Δx
. (55)  

The parameter ϵ is a positive constant, while TOL is a small positive 
tolerance to avoid division by zero. 

5.2. Second-order ADER with the HEOC solver for the GRP 

The result of the reconstruction procedure is a non-oscillatory linear 
polynomial pi defined at time tn inside each spatial element Ii. We are 
interested in the left and right limiting values of the reconstruction 
polynomials, often called boundary extrapolated values. Let us first 
consider cell Ii with cell boundaries xi− 1

2 
and xi+1

2 
and define 

QL
i = pi

⎛

⎜
⎝xi− 1

2

⎞

⎟
⎠ = Q

⎛

⎜
⎝x+i− 1

2
, 0

⎞

⎟
⎠,

QR
i = pi

⎛

⎜
⎝xi+1

2

⎞

⎟
⎠ = Q

⎛

⎜
⎝x−i+1

2
, 0

⎞

⎟
⎠ .

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(56)  

We now evolve these limiting values in time using the time Taylor series 
expansion 

Q̃
L
i (τ) = Q

⎛

⎜
⎝x+i− 1

2
, 0

⎞

⎟
⎠+ τ∂tQ

⎛

⎜
⎝x+i− 1

2
, 0

⎞

⎟
⎠,

Q̃
R
i (τ) = Q

⎛

⎜
⎝x−i+1

2
, 0

⎞

⎟
⎠+ τ∂tQ

⎛

⎜
⎝x−i+1

2
, 0

⎞

⎟
⎠ .

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(57)  

After adopting notation (56) and using the Cauchy-Kovalevskaya pro-
cedure, in the case of our splitting, the time derivatives above can be 
expressed as 

∂tQ

⎛

⎜
⎝x+i− 1

2
, 0

⎞

⎟
⎠ = − ∂xF(a)

⎛

⎜
⎝pi

⎛

⎜
⎝xi− 1

2

⎞

⎟
⎠

⎞

⎟
⎠ − P

⎛

⎜
⎝pi

⎛

⎜
⎝xi− 1

2

⎞

⎟
⎠

⎞

⎟
⎠∂xQ

⎛

⎜
⎝x+i− 1

2
, 0

⎞

⎟
⎠,

∂tQ

⎛

⎜
⎝x−i+1

2
, 0

⎞

⎟
⎠ = − ∂xF(a)

⎛

⎜
⎝pi

⎛

⎜
⎝xi+1

2

⎞

⎟
⎠

⎞

⎟
⎠ − P

⎛

⎜
⎝pi

⎛

⎜
⎝xi+1

2

⎞

⎟
⎠

⎞

⎟
⎠∂xQ

⎛

⎜
⎝x−i+1

2
, 0

⎞

⎟
⎠.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(58)  

The advection flux gradient to second-order can be approximated as 
follows 

∂xF(a)

⎛

⎜
⎝pi

⎛

⎜
⎝xi− 1

2

⎞

⎟
⎠

⎞

⎟
⎠ = ∂xF(a)

⎛

⎜
⎝pi

⎛

⎜
⎝xi+1

2

⎞

⎟
⎠

⎞

⎟
⎠ =

F(a)(QR
i

)
− F(a)(QL

i

)

Δx
(59) 

Fig. 7. Results for the Riemann problem Test 2 (2nd order of accuracy). Sediment transport is quantified by using the sediment transport formula (4) with Ag =

0.01019s2/m and m=3.0. Computational parameters are: M=200, domain length L=5.1m and Tfinal=0.3193s. AENO reconstruction is performed using TOL= 10− 4 

and ϵ=0.8. 
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Fig. 8. Results for the Riemann problem Test 3 (2nd order of accuracy). Sediment transport is quantified by using the sediment transport formula (4) with Ag =

0.01019s2/m and m=3.0. Computational parameters are: M=200, domain length L=4m and Tfinal=0.3193s. AENO reconstruction is performed using TOL= 10− 4 

and ϵ=0.8. 

Fig. 9. Results for the Riemann problem Test 2 (2nd order of accuracy: zoom of the right shock wave.). Sediment transport is quantified by using the sediment 
transport formula (4) with Ag = 0.01019s2/m and m=3.0. Computational parameters are: M=800, domain length L=5.1m, CFL=0.5 and Tfinal=0.3193s. AENO 
reconstruction is performed using TOL= 10− 4 and ϵ=0.8. 
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and the pressure non-conservative term as 

P

⎛

⎜
⎝pi

⎛

⎜
⎝xi− 1

2

⎞

⎟
⎠

⎞

⎟
⎠∂xQ

⎛

⎜
⎝x+i− 1

2
, 0

⎞

⎟
⎠ = P

(
QL

i

)
Δi,

P

⎛

⎜
⎝pi

⎛

⎜
⎝xi+1

2

⎞

⎟
⎠

⎞

⎟
⎠∂xQ

⎛

⎜
⎝x−i+1

2
, 0

⎞

⎟
⎠ = P

(
QR

i

)
Δi.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(60)  

Finally, the evolved boundary values in cell Ii, at time τ = 1
2 Δt, after 

using (57), (59) and (60), become 

Q̃
L
i = QL

i −
1
2

Δt
F(a)(QR

i

)
− F(a)(QL

i

)

Δx
−

1
2

ΔtP
(
QL

i

)
Δi,

Q̃
R
i = QR

i −
1
2

Δt
F(a)(QR

i

)
− F(a)(QL

i

)

Δx
−

1
2

ΔtP
(
QR

i

)
Δi.

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(61)  

The time evolution is obtained in a splitting mode, making use of the 
advection fluxes F(a) and the pressure coefficient matrix P. We remark 
that we do not make use of the coefficient matrix of the full system A (8). 

5.3. The fully discrete second order accurate one-Step scheme 

Exact integration of the system (12) over a space-time control vol-

ume Vi =

⎡

⎢
⎣xi− 1

2
; xi+1

2

⎤

⎥
⎦× [tn; tn+1] (see (Castro et al. 2006) and (Parés 

2006) for details) gives the following update formula: 

Qn+1
i = Qn

i −
Δt
Δx

⎡

⎢
⎣

⎛

⎜
⎝D−

i+1
2
+D+

i− 1
2

⎞

⎟
⎠+

⎛

⎜
⎝F(a)

i+1
2
− F(a)

i− 1
2

⎞

⎟
⎠

⎤

⎥
⎦ − ΔtHi (62)  

where 

Hi =
1

Δt

∫ tn+1

tn

∫ xi+1/2

xi− 1/2

P
(

Q
(

xi,
1
2

Δt
))

∂xQ
(

xi,
1
2

Δt
)

dx dt. (63)  

The term Hi integrates the smooth part of the non-conservative product 
within each cell (excluding the jumps at the boundaries) and vanishes 
for a first order scheme where we have Hi = 0. This term will be defined 
shortly. 

Now, the required solution of the generalized Riemann problem at 
the interface xi+1

2 
is given by the solution of the following conventional 

(piece-wise-constant data, homogeneous) Riemann problem (see Fig. 3) 

∂tQ + P(Q)∂xQ = 0 , x ∈ R , t > 0 ,

Q(x, 0) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Q̃
R
i if x < 0 ,

Q̃
L
i+1 if x > 0 .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(64)  

The solutions of the GRP (64) are obtained solving the non-linear system 

(36–38) as described in Section 4.1 with initial data (Q̃
R
i , Q̃

L
i+1). Let us 

Fig. 10. Results for a Riemann problem with fixed bed (2nd order of accuracy). Sediment transport is inhibited setting Ag=0 in the sediment transport formula 
(4). Computational parameters are: domain length L=30m, Tfinal=2s and CFL=0.9. AENO reconstruction is performed using TOL= 10− 4 and ϵ=0.5. 
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denote the similarity solution of (64) as Q̃
L
∗ = [h̃∗L, q̃∗, z̃bL]

T and Q̃
R
∗ =

[h̃∗R, q̃∗, z̃bR]
T, then the fluctuations D−

i+1
2 

and D+

i+1
2 

are calculated as D−

i+1
2
=

1
Δt

∫ Δt

0

∫ 1

0
P
(

Ψ
(

s; Q̃
R
i , Q̃

R
∗

))
∂
∂s

Ψ
(

s; Q̃
R
i , Q̃

R
∗

)

)ds dt

D+

i+1
2
=

1
Δt

∫ Δt

0

∫ 1

0
P
(

Ψ
(

s; Q̃
∗

L, Q̃
L
i+1

))
∂
∂s

Ψ
(

s; Q̃
L
∗ , Q̃

L
i+1

)

)ds dt .

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(65) 

Fig. 11. Long term evolution of a sediment hump under 
subcritical conditions (Fr¼0.2173). Numerical solutions of 1st 

order (DOT and splitting) and 2nd order (splitting and DOT ADER 
with AENO reconstruction) are compared among them. Sediment 
transport is quantified by using the sediment transport formula (4) 
with Ag = 0.0017m1/2s1/2 and m=1.5. Computational parameters 
are: mesh M=300 cells, domain length L=300m (0 ≤ x ≤ 300m), 
Tfinal=6000s and CFL=0.9. AENO reconstruction is performed 
using TOL = 10− 4 and ϵ=0.5.   

Fr = 0.99 Fr = 1.2

Fig. 12. Short term propagation of a small sediment hump. (Left panels: near critical conditions (Fr=0.99)). (Right panels: supercritical conditions (Fr=1.2)). 
Numerical solutions of 2nd order splitting ADER with AENO reconstruction are compared with the linearized solution. Sediment transport is quantified by using the 
sediment transport formula (79) with Ag = 0.01m1/2s1/2, m=1.5 and ψu = 10− 2. Computational parameters are: mesh M=[400, 800] cells, domain length L=20m, 
Tfinal=6s and CFL=0.9. AENO reconstruction is performed using TOL = 10− 4 and ϵ=0.5. 
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Here, the paths considered are 

Ψ
(

s; Q̃
R
i , Q̃

∗

R

)

= Q̃
R
i + s

(

Q̃
∗

R − Q̃
R
i

)

Ψ
(

s; Q̃
L
∗ , Q̃

L
i+1

)

= Q̃
L
∗ + s

(

Q̃
L
i+1 − Q̃

L
∗

)

.

⎫
⎪⎪⎬

⎪⎪⎭

(66) 

Following the same approach as for the first order problem (see Eq. 
51), the numerical flux F(a)

i+1
2 

are obtained as 

F(a)
i+1

2
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q̃∗

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

ũL

Ag
ũm− 1

L

h̃L

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

if q̃∗ ≥ 0 ,

q̃∗

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

ũi+1

Ag
ũm− 1

R

h̃R

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

if q̃∗ < 0 .

(67)  

Finally, to compute Hi we first approximate the spatial derivative as 

∂xQ
(

xi,
1
2

Δt
)

=
Q̃

R
i − Q̃

L
i

Δx
. (68)  

Substitution into Eq. (63) and integrating we obtain 

Hi = P
(

Q
(

xi,
1
2

Δt
))

Q̃
R
i − Q̃

L
i

Δx
(69)  

where 

Q
(

xi,
1
2

Δt
)

= Qn
i −

1
2

ΔtP
(
Qn

i

)
Δi. (70) 

In the following we briefly summarize the entire second-order one- 
step algorithm:  

1. Perform the AENO reconstruction described in Section 5.1 in order to 
obtain the slope Δi (53) for each cell.  

2. Extrapolate values at cell boundaries xi− 1
2 

and xi+1
2 

(56) and then 
evolve these limiting values in time using the time Taylor series 
expansion (57).  

3. Solve the GRP (64) of the pressure system through the solution of the 

non-linear system (36–38) with initial data (Q̃
R
i , Q̃

L
i+1). This step 

gives the star region solutions Q̃
L
∗ = [h̃∗L, q̃∗, z̃bL]

T and Q̃
R
∗ =

[h̃∗R, q̃∗, z̃bR]
T. 

4. At each interface: use (Q̃
R
i , Q̃

L
i+1) and (Q̃

L
∗, Q̃

R
∗ ) to compute the fluc-

tuations (65) using the paths (66).  

5. At each interface: use (Q̃
R
i , Q̃

L
i+1) and (Q̃

L
∗, Q̃

R
∗ ) to calculate the fluxes 

(67).  

6. At each cell center: use (Q̃
R
i , Q̃

L
i+1) and time evolution of the center 

cell values (70) to calculate Hi (69).  
7. Finally use the fully discrete scheme (62) and perform the update of 

the cell averages. 

6. Numerical results 

Here we assess the proposed splitting method on a carefully selected 
suite of test problems. For all tests the numerical stability is imposed by 
the Courant-Friedrichs-Lewy condition and the integration time step is 
evaluated as 

Δt = CFL min
1≤i≤M

Δx
λHi

(71)  

where M is the total number of cells and λHi = |qi|/hi +
̅̅̅̅̅̅
ghi

√
is the 

maximum eigenvalue for the fixed bed case (Saint-Venant equations). To 
take into account the small differences between λHi and the maximum 
eigenvalue of the coupled SVE model (see (Lyn and Altinakar 2002) for 
details) we set the CFL number to 0.9 for all numerical runs. Numerical 
fluctuations (44) are evaluated using the linearized solution (42). As 
numerical reference schemes we use: (i) the Dumbser-Osher-Toro (DOT) 
solver (Dumbser and Toro 2011), which is an all-purpose universal 
Godunov upwind method, that can be applied to any hyperbolic system, 
as long as the full eigenstructure is available; (ii) the PRICE-C scheme 
(Canestrelli et al. 2009), which is a method of the centred type which 
requires a minimum knowledge about the eigenstructure, i.e. an esti-
mate of the fastest eigenvalue to be used in the CFL condition. 

6.1. Verification of the C-property 

A desirable feature of numerical methods for shallow water systems 
with variable bottom is the satisfaction of the so-called C-property as 
introduced by (Bermudez and Vazquez 1994). Let us consider a quies-
cent flow (q=0m2s− 1) over any submerged bed profile. Under these 
conditions the initial water surface H = h + zb is constant and should 
remain constant in time. This is numerically achieved if the solution 
does not change in time and thus Qn+1

i = Qn
i in (26). Therefore we have 

to prove that 
⎛

⎜
⎝D+

i− 1
2
+D−

i+1
2

⎞

⎟
⎠+

⎛

⎜
⎝F(a)

i+1
2
− F(a)

i− 1
2

⎞

⎟
⎠ = 0 . (72) 

First we consider the flux F(a)
i+1

2 
computed as in (51). Under quiescent 

flow conditions qL = qR = 0 and consequently from  (39) we obtain K =

h3/2
L + h3/2

R . Substitution of this result in (36) gives 

h3/2
L − h3/2

R − h3/2
∗L + h3/2

∗R = 0 (73)  

and thus we have from (38) q∗ = 0. Inserting q∗ = 0 into (51) leads to 
F(a)

i+1
2
= 0. Analogous conclusions can be drawn for F(a)

i− 1
2
. 

Second, we focus on the fluctuations D+

i+1
2
. The numerical evaluation 

of such fluctuation through (47) gives 

D−

i+1
2

= P̂
+

i+1
2

[
Qn

i+1 − QL
∗

]
=

⎡

⎢
⎢
⎢
⎣

0 1 0

gh 0 gh

0 0 0

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

hR − h∗L

0

zbR − zbL

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

0

gh[(hR + zbR) − (h∗L + zbL)]

0

⎤

⎥
⎥
⎥
⎦

(74)  

with h =

∫1

0

h(s)ds =

∫1

0

(hL + s(h∗R − hL))ds. If q = 0, then (34) gives 

that h∗L = hL and thus the second element of D−
i+1

2 
becomes 
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gh[(hR + zbR) − (h∗L + zbL)] = gh[(hR + zbR) − (hL + zbL)]

= gh(HR − HL) .

(75)  

Since H is constant, also HL = HR = H and therefore the second element 
of D−

i+1
2 

is zero. Thus we obtain that D−
i+1

2
= 0. The proof that D+

i− 1
2 
= 0 is 

found in an entirely analogous way. Therefore all four terms in (72) are 
identically zero and this demonstrates that our first-order splitting 
scheme is exactly well-balanced. Finally, we remark that numerical tests 
conducted with our second order extension of the splitting method 
demonstrate that the scheme we propose is also well balanced (results 
not shown). 

6.2. Numerical convergence study 

Here we verify the accuracy of our numerical scheme by studying 
empirical convergence rates. For the assessment we compare the exact 
solutions against the numerical solutions employing AENO and ENO 
reconstruction. We omit the presentation of ENO reconstruction as the 
reader can consult Chapter 20 of (Toro 2013). We use the exact solutions 
presented in (Canestrelli et al. 2009) and proceed as follows. We 
consider the frictionless SVE equations 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂th + ∂xq = 0,

∂tq + ∂x

(

qu +
1
2

gh2
)

+ gh∂xzb = 0,

∂tzb + ∂xqb = 0

(76)  

and prescribe three smooth functions for h(x,t), q(x, t) and zb(x, t) which 
satisfy exactly (76). These functions are 
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

h(x, t) = h0 + c0sin(kx − ωt),

q(x, t) =
ω
k

h0 + c0
ω
k

sin(kx − ωt),

zb(x, t) = − h(x, t),

qb(x, t) = − q(x, t)

(77)  

with k = 2π/Lw and ω = 2π/Tp. 
Results are presented in terms of standard norms L1, L∞ and relative 

convergence rates for variables q and zb and given in Tables 1 and 2. As 
expected from the settings of this test, the results for the variable h are 
similar to those of zb and are not reported here. The AENO method 
reached the expected rate in all norms, being suboptimal in L∞ norm for 
zb, similarly to what obtained in (Toro et al. 2021) in their application on 
blood flows. Although converging to the correct solution, the ENO 
method did not reach the expected rate in all norms. From the com-
parison of the CPU time, the AENO and ENO reconstructions are com-
parable. It is worth remarking that we run the convergence test 
computing numerical fluctuations (44) using both the iterative solution 
of the non-linear system (36–38) and the linearized solution (42). In 
both cases results give the very same norms presented in Table 1. We 
therefore recommend the linearized solution (42) for practical 
applications. 

6.3. Riemann problem tests with movable and fixed bed 

Here we assess the methods as applied to four Riemann problem tests 
with exact solution, three with movable bed (Test 1, Test 2 and Test 3), 
and one with fixed bed. The initial discontinuity is at x = 0 and initial 
data to the left and right are given in Table 3. 

For Test 1 (Murillo and García-Navarro 2010), the splitting numer-
ical solutions are compared with respect to the PRICE-C and DOT at first 
order of accuracy and to DOT with AENO reconstruction in conjunction 
with ADER at second order. Fig. 4 shows results for the first order and 
demonstrate as in spite of its simplicity, results with our splitting are 

comparable with that of the more sophisticated upwind DOT scheme. 
The solution is composed by two external rarefaction waves and a 
central slowly moving shock. Our splitting method structure well 
describe the shock, both in terms of strength and position in all variables 
providing very similar results to the DOT scheme also for the two 
rarefaction waves. As expected the PRICE-C method considerably dif-
fuses the central shock wave. Results at second order of accuracy in 
Fig. 5 show as all three schemes give good results for this test problem, in 
which the central shock wave moves very slowly. 

Test 2 has been recently proposed by (Zhu and Dodd 2019). The 
solution is composed of a left rarefaction, a central shock and a fast 
moving shock on the right. The presence of the fast moving shock (shock 
Froude number = 8.46) makes numerical simulations particularly 
challenging. The splitting numerical solutions are compared with 
respect to DOT at first order of accuracy and to DOT with AENO 
reconstruction in conjunction with ADER at second order. Fig. 6 shows 
results for the first order and demonstrate as results with DOT scheme 
require the use of three Gaussian points in the integration of fluctuations 
(49) while with our splitting method the right shock is well predicted 
using only one Gaussian point. The DOT with three Gaussian points 
accurately describe both the central shock wave and the left rarefaction. 
Our splitting method overshoots in the vicinity of the right shock Fig. 6. 
At second order of accuracy this produces spurious oscillations just 
behind the right shock for zb (Fig. 7). These oscillations disappear when 
the CFL number is reduced to 0.5. The DOT scheme (with 3 Gaussian 
points) also experiences some problems in the description of the right 
shock. In fact the numerical solution converges to a slower right shock 
with a reduced strength. 

Test 3 has also been recently proposed by (Zhu and Dodd 2018). The 
numerical solution contains a semi-characteristic shock on the left, a 
central shock and a right rarefaction. Results at second order of accuracy 
in Fig. 8 show as the DOT scheme (with 3 Gaussian points) predicts a 
wrong shock strength and propagation speed while the method we 
proposed accurately converges to the correct solution. 

In Fig. 9 we computed second-order results for Test 3 using very fine 
meshes and Courant number CFL=0.5. The left frame shows results from 
the DOT based scheme, while those on the right hand side show results 
from the newly proposed splitting scheme also in second-order mode. 
The right-facing shock is captured correctly by the present split scheme, 
but DOT converges to the wrong solution with slower propagation speed 
and reduced post-shock state. The results of Fig. 9 obtained from two 
second-order non-linear methods clearly illustrate the fact that, in 
general, numerical computation of non-conservative systems may result 
in computed shocks with the wrong post-shock states and wrong speed 
of propagation. Such difficulties are not obvious when coarse meshes are 
used. Very fine meshes and careful analysis are required to identify the 
problem and to clearly identify the actual converged numerical solu-
tions. This phenomenon will affect all numerical methods in one way or 
another, the root of the problem being in the equations themselves. The 
numerical methods cannot be conservative if the equations are not. 
However, there are differences amongst numerical methods, as is clearly 
illustrated in the Fig. 9. According to (Castro et al. 2008) and (Beljadid 
et al. 2017), the key feature in understanding the alluded numerical 
difficulty lies in the inherent numerical viscosity, which is present in 
most numerical methods. Exceptions are shock fitting methods (Dafer-
mos and Dafermos 2005) and the Random Choice Method of (Glimm 
1965). 

The results for the fixed bed case are displayed in Fig. 10. They 
demonstrate an important feature of the proposed splitting method. That 
is, our method converges to the solution of the hydrodynamic Saint- 
Venant equations when the flow does not transport sediments. This is 
a desirable feature that makes the proposed method particularly suitable 
for engineering applications. 
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6.4. Evolution of a sediment hump 

This test case simulates the long term evolution of an erodible bed 
hump immersed into a quasi-steady, frictionless flow (Johnson and 
Zyserman 2002; Hudson et al. 2005); (Long et al. 2008). The initial bed 
shape is described as 

zb(x, 0) = − zb0 + 2e− β(x− xc)
2
, (78)  

with zb0 =6m, β = 0.01m− 2 and xc = 150m as the center of the Gaussian 
hump. Flow discharge is kept constant at the inflow boundary and set 
equal to q(x = 0,t)=10m2s− 1 while a constant water depth h0=1m is set 
at the downstream end of the domain. The above quantities are specified 
according to similar settings in (Hudson et al. 2005; Long et al. 2008). 
Transmissive downstream boundary conditions are set for the bed. 
Initial conditions correspond to the backwater profile obtained with 
these two boundary conditions. 

The comparison is made for both 1st and 2nd order solutions. Results 
displayed in Fig. 11 demonstrate that the proposed scheme describes the 
hump evolution with good accuracy, very similar to the one of the more 
sophisticated DOT method. This latter feature is particularly important 
when long term bed evolution must be studied. 

6.5. Short term propagation of a small sediment hump 

With this test we aim to reproduce bed movement under different 
flow conditions each characterized by a different Froude number. We 
consider a one-dimensional flat channel with a small hump on the bed 
described as (78). For this test case the sediment transport formula is 

qb = Ag [max(u − ucr), 0]m, with ucr = |u| −
(

ψuh0

mAg

) 1
m− 1

(79)  

where ucr is the fluid velocity critical value that must be exceeded for 
bedload transport to occur and ψu is a small constant parameter. We 
then consider two different flow conditions, namely near-critical with Fr 
= 0.99 and supercritical with Fr = 1.2 and choose as reference water 
depth h=1m. Given Fr and h we can calculate the value of the discharge 
per unit width q which is kept always constant at the inlet. Thus, the 
initial condition h(x, 0) and q(x,0) are obtained running the code under 
fixed bed conditions. We consider a very small hump and set zbmax =

10− 5m. We then find the solution by application of a linearized 
analytical solver, which is suitable for studying the propagation of small- 
amplitude waves (see details in (Lyn and Altinakar 2002) and (Canes-
trelli et al. 2009)). Numerical results are compared with the linearized 
solutions in Fig. (12). In all cases they are in good agreement and 
converge to the linearized solution. In the supercritical case the nu-
merical solution correctly predicts upstream propagation of the small 
hump. In the near-critical case the two bed waves, one erosional prop-
agating upstream and one depositional propagating downstream are 
also correctly described. 

7. Concluding remarks 

In this paper we have proposed a splitting scheme for the SVE model 
we have studied the associated two systems of differential equations. 
After a careful study of the resulting two systems of PDEs we proposed a 
methodology for their numerical solution in the framework of Godunov 
methods. We then extend the method up to the second order of accuracy. 
Finally we assess the robustness of our splitting method considering 
different test cases. Results show that solutions have the correct 
empirical converge rate in space and time, satisfy the well-balanced 
property and are accurate when compared with existing techniques. 
Our splitting method constitutes a building block for the construction of 
high-order numerical methods and can easily include source terms at 
high order with the ADER approach. Furthermore, it gives the possibility 

of future extension to multiple space dimensions. The present approach 
also offers a simple way to incorporate sediment transport formulas for 
the quantification of sediment fluxes. These features are very attractive 
and makes the splitting scheme a viable alternative to existing ap-
proaches to be used for the solution of river and near-shore engineering 
morphodynamic problems. 
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