By using the property known as Federer-Fleming conjecture (cf. [7, 3.1.17]), recently resolved by B. Bojarski, we prove the following Lusin type result: Theorem. Let A Rn be a measurable set and let k be a nonnegative integer. Assume that to each x 2 A corresponds a polynomial Px : Rn ! R of degree less or equal to k + 1 such that ap lim x!a (Formula Presented) We will use such a theorem to provide a simple new proof of a well-known property of Sobolev functions.
A lusin type result / Delladio, Silvano. - In: COMMUNICATIONS ON PURE AND APPLIED ANALYSIS. - ISSN 1534-0392. - 19:6(2020), pp. 3083-3091. [10.3934/CPAA.2020133]
A lusin type result
Delladio, Silvano
2020-01-01
Abstract
By using the property known as Federer-Fleming conjecture (cf. [7, 3.1.17]), recently resolved by B. Bojarski, we prove the following Lusin type result: Theorem. Let A Rn be a measurable set and let k be a nonnegative integer. Assume that to each x 2 A corresponds a polynomial Px : Rn ! R of degree less or equal to k + 1 such that ap lim x!a (Formula Presented) We will use such a theorem to provide a simple new proof of a well-known property of Sobolev functions.File | Dimensione | Formato | |
---|---|---|---|
DelladioToCPAA_revised.pdf
accesso aperto
Tipologia:
Post-print referato (Refereed author’s manuscript)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
284.1 kB
Formato
Adobe PDF
|
284.1 kB | Adobe PDF | Visualizza/Apri |
1534-0392_2020_6_3083 (1).pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
374.29 kB
Formato
Adobe PDF
|
374.29 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione