Several exact and approximate dynamic programming formulations have already been proposed to solve hotel revenue management (RM) problems. To obtain tractable solutions, these methods are often bound by simplifying assumptions which prevent their application on large and dynamic complex systems. This dissertation introduces HotelSimu, a flexible simulation-based optimization approach for hotel RM, and investigates possible approaches to increase the efficiency of black-box optimization methods in the presence of noise. In fact, HotelSimu employs black-box optimization and stochastic simulation to find the dynamic pricing policy which is expected to maximize the revenue of a given hotel in a certain period of time. However, the simulation output is noisy and different solutions should be compared in a statistically significant manner. Various black-box heuristics based on variations of random local search are investigated and integrated with statistical analysis techniques in order to manage efficiently the optimization budget.
Noise and Hotel Revenue Management in Simulation-based Optimization / Dalcastagnè, Manuel. - (2021 Oct 14), pp. 1-123. [10.15168/11572_319438]
Noise and Hotel Revenue Management in Simulation-based Optimization
Dalcastagnè, Manuel
2021-10-14
Abstract
Several exact and approximate dynamic programming formulations have already been proposed to solve hotel revenue management (RM) problems. To obtain tractable solutions, these methods are often bound by simplifying assumptions which prevent their application on large and dynamic complex systems. This dissertation introduces HotelSimu, a flexible simulation-based optimization approach for hotel RM, and investigates possible approaches to increase the efficiency of black-box optimization methods in the presence of noise. In fact, HotelSimu employs black-box optimization and stochastic simulation to find the dynamic pricing policy which is expected to maximize the revenue of a given hotel in a certain period of time. However, the simulation output is noisy and different solutions should be compared in a statistically significant manner. Various black-box heuristics based on variations of random local search are investigated and integrated with statistical analysis techniques in order to manage efficiently the optimization budget.File | Dimensione | Formato | |
---|---|---|---|
phd_unitn_Manuel_Dalcastagne.pdf
accesso aperto
Descrizione: phd thesis
Tipologia:
Tesi di dottorato (Doctoral Thesis)
Licenza:
Creative commons
Dimensione
3.05 MB
Formato
Adobe PDF
|
3.05 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione