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Abstract

Several exact and approximate dynamic programming formulations

have already been proposed to solve hotel revenue management (RM)

problems. To obtain tractable solutions, these methods are often

bound by simplifying assumptions which prevent their application on

large and dynamic complex systems. This dissertation introduces Ho-

telSimu, a flexible simulation-based optimization approach for hotel

RM, and investigates possible approaches to increase the efficiency of

black-box optimization methods in the presence of noise. In fact, Ho-

telSimu employs black-box optimization and stochastic simulation to

find the dynamic pricing policy which is expected to maximize the

revenue of a given hotel in a certain period of time. However, the sim-

ulation output is noisy and different solutions should be compared in

a statistically significant manner. Various black-box heuristics based

on variations of random local search are investigated and integrated

with statistical analysis techniques in order to manage efficiently the

optimization budget.
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Chapter 1

Introduction

1.1 Need for simulation-based optimization

Standard optimization methods require the mathematical formulation

of a function to be optimized. In order to solve an optimization prob-

lem, techniques like linear or dynamic programming (DP) usually need

a set of equations which models the behavior and the constraints of

the problem.

In real-world scenarios, an explicit formulation is rarely available or

ready-to-use [1]. Also, mathematically formulating an objective func-

tion can often be difficult, especially in the stochastic setting. Not only

models can be linear or non-linear, and discrete or continuous, but also

based on deterministic or probabilistic assumptions which might cause

the objective function to contain several integrals [2, 3]. Once a for-

mulation has been constructed, various optimization methods can be

employed to find a solution which is exact or approximated, optimal or

suboptimal, available in closed-form or iteratively found by improving

an initial solution. The choice of the most suitable method depends

on the characteristics of the problem at hand and on the needs of the

1



Chapter 1

decision maker.

Although mathematical models are widely used in research, they are

often tied to simplifying assumptions which might be necessary to ob-

tain tractable models. Unfortunately, these models may result to be

too simplistic for real-world applications [2]. A possible solution comes

from the adoption of optimization methods which do not require a

mathematical formulation in closed-form, but only numerical evalua-

tions of the objective function at any given solution. These methods

are called numerical, derivative-free, black-box or model-free, because

they do not require any a priori knowledge of the structure of the

objective function [1, 2]. Therefore, to solve complex problems where

a closed-form solution is hard to construct, an alternative comes from

the combination of simulation and black-box optimization. Simula-

tion models mimic the behavior of dynamic systems, while black-box

methods use the numerical output of simulators in order to evaluate

possible solutions of the problem. The resulting framework is called

simulation-based optimization, and it is particularly useful in those

scenarios where a stochastic system can be easily simulated, whereas

a closed-form mathematical model with a tractable solution is hard to

find [2].

1.2 Complex dynamic systems

When modeling a dynamic system for optimization purposes, the for-

mulation of the problem is the first step towards its solution. It is

necessary to find a suitable model that comprehensively describes the

state of the system, and to define how the system transitions from a

state to another.

A system is usually modeled as a set of entities that interact with each

2
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other as an environment. The state at time t is determined as a set

of parameters which defines the characteristics of each entity, together

with any available information that can be useful to take decisions.

Transitions depend on the relationships between the entities of the

system, and the frequency of the transitions is modeled by considering

discrete or continuous time intervals. In the discrete case, the state

changes at discrete points in time (e.g. a customer enters or leaves a

queue at the postal office). In the continuous case, the state evolves

continuosly over time (e.g. the flow of liquids in fluid dynamics). Sys-

tems which are completely discrete or continuous are not common, but

in most problems one of the two time variations predominates and the

whole problem is considered as discrete or continuous [4].

In complex dynamic systems based on discrete-time intervals and prob-

abilistic assumptions, the size and complexity of the problem prevents

a straightforward application of classical optimization methods. Defin-

ing explicitely a state which leads to tractable models may be difficult,

because the state space corresponds to all possible combinations of the

parameters’ values which define the entities. So, the dimensionality

of the problem explodes very quickly together with the number of pa-

rameters. This problem is called the curse of dimensionality [2, 3].

Furthermore, in stochastic systems, the entities of the environment

are modeled as random variables which follow some probability distri-

butions. Generically, the larger the number of random variables the

more complicated is the analysis. This is especially true in the case of

mathematical models, since the larger the number of random variables

in a system the harder it is to derive closed-form expressions for the

objective function [2].

3
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1.3 Different types of optimization

In operations research, optimization problems of complex stochastic

scenarios are usually formulated according to control optimization or

parametric optimization paradigms [2]. In control optimization, the

goal is to determine an optimal control in each state of a system in

order to optimize some performance measure. Depending on the as-

sumption of discrete or continuous time intervals, control optimization

problems can be solved respectively by adopting DP or optimal learn-

ing formulations [3, 5]. In parametric optimization, the goal is to find

the values of the decision variables which optimize an objective func-

tion, and these problems are traditionally solved using mathematical

methods like linear or non-linear programming.

Prior to 1950, it had been established that many mathematical prob-

lems could be approximated numerically by means of a sampling exper-

iment in a Monte Carlo fashion [6]. The process of neutron transport

was the first application of simulations in the modern era [7, 8]. How-

ever, the terminology used for simulations can be misleading in this

context. Most works in the literature refer to any kind of simulation

as Monte Carlo, regardless of the simulation’s purpose or complex-

ity. Thus, to highlight effectively the different roles of simulation in

control and parametric optimization, this dissertation differentiates be-

tween static and dynamic simulation models [4]. Static models, which

correspond to the traditional Monte Carlo approach, estimate values

of interest by probabilistically representing a system at a particular

point in time through repeated random sampling. In contrast, dynamic

models represent the evolution of a system over time and capture the

internal logic of the process. An example is discrete-event simulation,

where the state of the system changes at discrete time intervals accord-

4
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ing to probability distributions which model the relationships between

entities.

Simulation models may be used in combination with mathematical

programming or black-box methods, in order to solve stochastic prob-

lems through optimization [2]. In the first scenario, random variables

are used in the closed-form model of the problem, and static simula-

tions estimate the expectations in closed-form solutions. In the second

scenario, probability distributions are employed to generate random

samples and mimic the behavior of the system. Therefore, dynamic

simulations estimate the objective function at different values of the

decision variables.

1.3.1 Control optimization

DP formulations are employed to model a discrete-time dynamic sys-

tem which changes its state over a finite number of time intervals, also

called stages. At each stage some form of control has to be applied

to the system, in order to take a decision which leads to the optimal

solution.

In control optimization problems, the optimal control at each stage is

the best action (deterministic case) or the best policy (stochastic case)

which can be selected from a set of feasible possibilities that are avail-

able at the current stage. Policies are functions which map all possible

states at a stage into actions, and in the stochastic setting they are

necessary because the formulation at each stage involves some form of

randomness which might depend on the current state.

Each stage is associated to a cost function which is additive over time.

For an initial given state, the total cost of a control sequence corre-

sponds to the sum of the cost of all the states from the initial to the

5
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final state. In the discrete-time setting, the objective of DP is to find

the control sequence with minimum total cost. According to Bellman’s

principle of optimality [9], the optimal cost function can be constructed

backwards in a sequential manner, by computing first the optimal cost

function from the states at the last stage, then for the states at the

previous stage and so on, until the initial stage is reached. Since the

optimal cost function at each stage is based on the optimal costs of

previous stages in a backwards manner, the cost function at the initial

stage is guaranteed to be optimal. Unfortunately, notice that at a cer-

tain stage the computation of the cost function must be done for all its

possible states, and in practice doing so is often quite expensive because

the state space might be significantly large [3]. Also, the information

used to take optimal decisions becomes progressively available as the

system evolves. Thus, at each stage, not all information is known: only

partial information about the solutions of already visited subproblems

is at disposal, and information about yet-to-be-visited solutions is not

available.

In the stochastic setting, the cost function is based on the expectations

of all the random variables involved in the model [3, 5]. This formu-

lation requires the explicit calculation of several expectations, which

can be computed exactly or approximately. Furthermore, transitions

between states become probabilistic. A significant part of the opera-

tions research literature defines methods for finding exact expressions

of transition probabilities in complex dynamic systems for different

applications. Unfortunately, these formulations are often complicated

and contain multiple integrals or advanced algebra [2]. As the com-

plexity of the problem grows, the more complicated is to find tractable

solutions based on exact DP formulations. A possible alternative is

to approximate the optimal cost function at each stage using a more

6



Chapter 1

tractable function. According to this approximation, the control at

each state is obtained by optimization of the cost over a limited hori-

zon (number of stages), plus an approximation of the optimal future

cost. The latter may be computed by a variety of methods, possibly

involving simulation or some heuristic. Thus, the use of static simula-

tion (model-free) often allows for implementations that do not require a

mathematical model (model-based). For additional information about

possible methods to provide DP approximations, please refer to [3].

1.3.2 Parametric optimization

When the closed form of the objective function is too hard to define, or

the transition probabilities in the DP formulation lead to untractable

models, using dynamic simulations to approximate the objective func-

tion is a valid alternative.

In discrete-event simulation the state of the system changes at discrete

time intervals, so each time that an event is realized from the probabil-

ity distribution used to model the respective entity. Dynamic simula-

tions reduce complex models to a set of basic events and interactions,

opening the possibility to encode a system through a set of rules which

define the simulation logic. The level of representation detail depends

on the requirements set by the decision maker, who might require the

simulation to approximate the real system up to a certain accuracy

level in order to properly justify meaningful decisions. However, the

higher the level of simulation detail, the heavier the computational

complexity. Also, the computational cost of simulations depends on

the number of simulation replications used to take statistically signif-

icant decisions when comparing possible solutions. More formally, let

F be a simulation that models a real-world problem, and its output to

7
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depend on some decision variables x and on a random vector ξ which

represents the random variables involved in the simulation model. The

expectation of F is defined as

f(x) = E[F (x, ξ)] (1.1)

and it can be estimated by using a sample ξ1, ..., ξn of independent

identically distributed (i.i.d.) realizations of the random vector ξ, in

order to compute the sample mean as

f̂n(x) =
1

n

n
∑

i=1

F (x, ξi) (1.2)

and the sample variance as

σ̂2
n(x) =

1

n− 1

n
∑

i=1

(F (x, ξi)− f̂n(x))
2. (1.3)

If the sample ξ1, ..., ξn is i.i.d., by the Law of Large Numbers, as n ap-

proaches infinity f̂n(x) converges to f(x) and so f̂n(x) is an unbiased

estimator of f(x). Moreover, if the variance of F is finite, by the Cen-

tral Limit Theorem f̂n(x) asymptotically follows a normal distribution

with mean f(x) and variance σ2/n, where σ2 is the variance of F . As

a consequence, the accuracy of the estimation increases with the sam-

ple size n and decreases, but this also increments the computational

burden.

8
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1.4 Noise management

In simulation-based optimization, the optimization of a dynamic simu-

lation model is usually subject to a limited budget constraint. Because

of the noisy and computationally expensive nature of simulations, this

budget should be efficiently allocated in order to obtain good and re-

liable solutions as soon as possible. If the state space is discrete and

sufficiently small as in the case of a few hundreds of possible alterna-

tives, statistical analysis techniques can be employed in a brute force

manner to select the best alternative [10, 11]. But, when the state

space is continuous or significantly large, black-box methods might be

a more efficient choice in order to find a globally or locally optimal

solution. Simulation-based optimization allows the decision maker to

systematically search a large decision space without being restricted

to a few alternatives. This capability greatly broadens the scope of

simulation as an analysis tool for complex system design [12].

The estimator defined in Equation (1.2) can be used by black-box tech-

niques to compute an approximation of the objective function at differ-

ent solutions, in order to optimize f(x). Therefore, in a minimization

problem, the goal is

min
x∈Θ

f(x), (1.4)

where Θ is the constraints-defined region in which x assumes values.

The output of F follows some distribution which may (or may not) vary

across Θ: in the first case the noise is said to be heteroscedastic, while

it is homoscedastic otherwise. But, since the noiseless value of the

objective function is distorted, making correct comparisons between

candidate solutions is not straightforward. Given any configuration x,

f(x)− f̂n(x) defines an error εn(x) that goes to 0 only in the limit of n

9
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going to infinity. Thus, when comparing two configurations x1 and x2,

f(x1) = f̂n1
(x1)+ εn1

(x1), f(x2) = f̂n2
(x2)+ εn2

(x2) and the difference

between the estimators can be written as

f(x1)− f(x2) = f̂n1
(x1) + εn1

(x1)− f̂n2
(x2)− εn2

(x2), (1.5)

which means that n1 and n2 should be chosen properly in order to take

a statistically significant decision. If the noise is too high with respect

to the difference between the true values of two candidates (signal),

and so the signal-to-noise ratio is too low, the outcome of a comparison

might be erroneous.

As stated by [13, 14], an established practice in simulation-based op-

timization is to introduce a statistical analysis after the optimization

by using ranking and selection (R&S) algorithms [15, 16, 14, 17, 18].

This analysis aims at selecting, in a statistically significant manner,

the best solution x∗ which performs better among the finite set of k

possibilities found during the optimization. According to this strategy,

during the search each solution is estimated by using a static number

of replications which is determined manually a priori, before the op-

timization. Unfortunately, a posterior analysis introduces additional

computational burden and possibly optimal solutions might not even

be analyzed in the R&S phase, because they are not visited during

the search. Heuristic algorithms provide no optimality guarantee and,

due to the presence of noise, estimates may be inaccurate. As a conse-

quence, improving solutions could be discarded and the search might

never explore some portions of the search space which would further

improve x∗.

Statistical analysis techniques can also be integrated into black-box op-

timization algorithms during the search [19, 20, 21, 22, 23]. Since the

10
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output of simulators is stochastic, the quality of each solution visited

throughout the optimization should be estimated. Therefore, to obtain

effective simulation-based optimization strategies, finding a tradeoff

between precision of estimation and CPU time is essential. In order to

deal with the presence of noise, black-box optimization methods gener-

ically have two alternatives: to increase the strength of the signal, or

to reduce the effect of noise. In the first case, the signal is improved

by adapting the search region according to the signal-to-noise ratio.

Multiple variants of this strategy have been studied in the field of evo-

lutionary algorithms, and it has been shown that the adaptation of the

search region during the optimization has a relevant impact [24, 25].

In the second case, the effect of noise can be reduced by combining

multiple solutions located in a restricted area of the search space (im-

plicit averaging) [26, 24, 27, 25], or by evaluating multiple times each

solution (explicit averaging) [28, 29, 30, 31, 20].

An analysis of the role that various heuristic black-box optimization

techniques have in simulation-based optimization is provided in [32,

33], while other surveys which cover several aspects of simulation-based

optimization are [2, 14, 18, 34, 35]. However, as highlighted by [36],

less attention has been given to the impact that the method used to

estimate the objective function has on the performance of search algo-

rithms employed in simulation-based optimization approaches. Prob-

ably due to the implicit averaging effect, population-based algorithms

gained a lot of attention in the noisy optimization literature. But,

to the best of the writer’s knowledge, no theoretical guarantee justi-

fies this choice over single-point randomized algorithms like simulated

annealing or other local search variants.

11
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1.4.1 Variance reduction

Variance reduction techniques like common random numbers (CRN),

control variates or antithetic sampling help to reduce the computa-

tional burden required to compare solutions in noisy optimization prob-

lems [37, 38].

Due to the simplicity of application, CRN are widely adopted in simu-

lations [17]. For each comparison, common seeds are used to initialize

and synchronize the pseudorandom number streams of paired simula-

tions. The objective is to induce positive correlation among the perfor-

mance of the solutions to be compared, in order to reduce the variance

of their difference [39]. In fact, it is well known that the variance of

the difference of two independent variables X and Y corresponds to

the difference of the respective variances. But, if the variables are

dependent, then

V ar[X − Y ] = V ar[X] + V ar[Y ]− 2 Cov[X, Y ]. (1.6)

Therefore, V ar[f̂n1
(x1)− f̂n2

(x2)] changes according to the amount of

correlation between f̂n1
(x1) and f̂n2

(x2). Without using CRN, the re-

alizations used to compute f̂n1
(x1) and f̂n2

(x2) are i.i.d, and because

of that Cov[f̂n1
(x1), f̂n2

(x2)] = 0. On the contrary, using CRN syn-

chronizes the realizations and introduces a positive correlation between

f̂n1
(x1) and f̂n2

(x2). As a consequence, Cov[f̂n1
(x1), f̂n2

(x2)] > 0 and

the total variance is reduced.

1.4.2 CRN and seed management

CRN synchronize the pseudorandom streams of the simulations used

to evaluate different solutions. The same seed is employed to initialize

12
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the pseudorandom generator in order to obtain evaluations based on

the same stochastic realizations. However, there are multiple ways to

manage the seeds used throughout the optimization.

In the statistical techniques proposed in this dissertation, the perfor-

mance of a solution x is initially estimated by using ξs, . . . , ξs+n0
i.i.d.

realizations, where s is the starting seed of the optimization and n0 is

the initial sample size. Once x has been evaluated on a seed i, which

defines the respective realization ξi, the evaluation F (x, ξi) is memo-

rized. If a comparison which involves x requires j > n0 realizations in

order to take a statistically significant decision, and the last in-memory

evaluation used to estimate x is based on ξi with n0 < i < j, the

missing realizations are ξi+1, . . . , ξj. Otherwise, if i ≥ j, in-memory

evaluations are reused.

By following this approach the reuse of samples is maximized, but the

optimization depends on the sequence of realizations initialized by ξs

and might overfit. Erroneous decisions might be taken if a particular

sequence is not sufficiently representative of the simulated problem at

hand, especially with small sample sizes. However, this effect is coun-

terbalanced as the optimization moves towards local optima. Due to

the qualitative similarity of solutions, larger sample sizes are required

in order to take statistically significant decisions. Therefore, the sam-

ple becomes more representative and reduces the risk of overfitting.

To further improve the robustness of the procedure, one can discard

completely or partially the samples saved in memory. For example,

after each comparison the best solution could drop all the previous

evaluations, and a new set of realizations based on different seeds could

be sampled. Another less computationally expensive option could sub-

stitute one or more evaluations of the best solution, always after each

comparison, with other evaluations based on new seeds.

13
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1.4.3 R&S algorithms

R&S problems were first formulated during the 1950s for agricultural

and clinical applications [40]. Back then, selecting the best alterna-

tive among a discrete set of solutions was a common problem. How-

ever, samples needed to be collected through physical experiments like

clinical trials, which were time-consuming and possibly required a sig-

nificant amount of resources to setup the experiments. Thus, empir-

ical data was often gathered in batches and statistical analysis tech-

niques meant to detect significant differences among multiple alterna-

tives were designed in a stage-wise fashion. Starting from the 1990s,

this paradigm began to change due to the increasing number of experi-

ments which were run through simulations, which required little setup

time.

As stated by [41], a stage occurs whenever the simulation of a con-

figuration is started in order to evaluate it. The idea of two-stage

procedures is to first gather an initial sample of the configurations in

the set, and then to define the sample size required to guarantee that

the best configuration is selected in the second stage. Single-stage pro-

cedures cannot guarantee to find x∗ among a set of k alternatives when

the variances of the configurations are unknown [42]. In contrast, two-

stage procedures can provide that guarantee [43].

In the simulation scenario samples can be collected sequentially, lead-

ing to the development of fully-sequential R&S procedures. Differently

from two-stage procedures, fully sequential methods sequentially com-

pute single observations and eliminate statistically inferior configura-

tions as soon as a statistically significant decision can be taken. But,

since most fully-sequential procedures use the Bonferroni inequality to

guarantee the PCS, they tend to be too conservative [44]. For more
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information about the evolution or R&S, please refer to [45].

1.5 Simulation for revenue management

Many problems in science, engineering, and finance are nowadays solved

through the adoption of static or dynamic simulations [4, 8]. Some

relevant areas of application include manufacturing, construction en-

gineering, logistics and distribution, traffic management, healthcare,

materials engineering and risk analysis. Another field with a signifi-

cant simulation-based stream in the literature is revenue management

(RM), where exact or approximate dynamic programming formulations

have been applied to RM problems, mostly in combination with static

simulations. But, in order to obtain tractable models, many of these

procedures are bound by simplifying assumptions which limit their ap-

plication in complex and large systems.

Initially developed by airlines in the 1970s, RM has become a common

business practice in many other industries. The purpose of RM is to

match supply and demand in order to maximize the revenue of a par-

ticular firm [46]. In fact, RM has been defined as the application of

information systems and pricing strategies to allocate the right capac-

ity of supply to the right customer at the right price at the right time

[47]. However, while general RM ideas easily apply to different fields,

each industry has specific characteristics which change the application

of RM techniques. For example, successful strategies for airlines are

not automatically good solutions for hotels and the two problems need

to be considered separately [46].

When allocating a specific resource according to demand from differ-

ent customer classes, airlines and hotels consumers can take decisions

from different sets of possible actions. In the case of airlines, resources
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are single flight legs and demand classes are leg itineraries, where a

flight leg is a direct flight from an airport A to an airport B with no

stops in-between. In the case of hotels, resources are single nights and

demand classes are combinations of consecutive nights. The difference

lies in the fact that airline customers generally travel at most two or

three legs, while in hotels customers might stay for a week or more

[48]. Another example is given by the group size of bookings: in hotels

the group size is the number of rooms reserved for a booking, while

in airlines it is the number of seats reserved for a certain leg. But in

hotels a room might contain more than a person and in airlines each

seat holds a person only. So capacities of resources change differently.

Also, in airlines itineraries might be composed by multiple legs offered

by different companies, while this rarely is an option taken in consid-

eration by customers of the hotel industry. This dissertation takes a

focus on the application of dynamic simulations on hotel RM.

1.6 Structure of the thesis

The remainder of the thesis is as follows.

Chapter 2 presents a flexible simulation-based optimization approach

based on dynamic pricing for hotel RM [49]. Demand is simulated

using a novel set of parametric models based on the RIM quantifiers

[50], whose parameters are daily statistics which can be estimated from

data. These models allow to change the curves parametrically, redis-

tributing demand along the booking horizon, without requiring any

change of advance historical data. Bookings and cancellations asso-

ciated to each day are distributed along the booking horizon with a

non-homogeneous Poisson process, where demand expectations of each

day are defined by the parametric models. The hotel manager can in-
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ject new information in the system, adapting pricing policies to the

mutated conditions of the market.

Chapter 3 compares various black-box methods based on variations

of local search methods in the context of noisy optimization [51]. In

particular, a widely used population-based method called Covariance

Matrix Adaptation Evolutionary System (CMA-ES) [52, 53] is tested

in various noise scenarios as well as other randomized algorithms which

are extended with a statistical analysis technique based on the prob-

abilities of making an error of type I and type II. As will be shown

empirically, the effect and the limits of implicit averaging depend on

the type and the amount of noise in the objective function.

Chapter 4 investigates possible integrations of black-box optimization

with the optimal computing budget allocation (OCBA) [10] and the

indifference-zone (IZ) [54] formulations, two popular R&S methods

which have been widely explored in the traditional R&S scenario.

Differently from previous approaches, which evaluate solutions only

according to independent random realizations, positive correlation is

exploited in order to take statistically significant decisions as soon as

possible. Correlation is especially important in noisy scenarios like

simulation-based optimization, where CRN are commonly used to re-

duce the variance of samples [55].

Chapter 5 summarizes results and provides possible directions for fu-

ture work.
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Simulation for Hotel Revenue

Management

2.1 Hotel revenue management

Information technology drastically changed how people plan travels

and accomodations. In fact, tools such as online travel agencies (OTAs)

or price comparison websites are now extensively used [56], and hotels

are no longer forced to sell their rooms only through traditional inter-

mediaries. Many hotel chains have already adopted RM techniques to

manage their availability of rooms, in order to maximize their revenue.

The situation is very different in the case of independent hotels, where

the management of prices is often still manually tailored and RM is

indirectly applied only on a subset of rooms through intermediaries

like OTAs.

Optimization problems related to hotel RM are usually expressed fol-

lowing two approaches: capacity control [57, 58, 59, 60, 61, 62, 63, 48],

where the decision variable is the amount of offered supply, and dy-

namic pricing [64, 65, 66, 67, 23], where the price represents the decision
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variable. In both cases, several mathematical optimization methods

have already been proposed to maximize revenue [46, 68, 69]. Many

of these formulations assume that demand is independent from the

chosen policy. More complex scenarios, where demand is influenced

by other factors (e.g., price), are more difficult to handle and closed-

form solutions are rarely available [70]. Demand is usually considered

as a known deterministic function or as a stochastic function follow-

ing a known distribution family with unknown parameters. Also, if

stochastic cancellations are considered, the CPU time for solving the

problem tends to grow exponentially and approaches like dynamic pro-

gramming are effective only in specific cases [71]. A possible solution to

mitigate the complexity of the model is approximate dynamic program-

ming [60, 23, 48], where the problem is partitioned into simpler sub-

problems. Nonetheless, even approximate models cannot provide suf-

ficiently tractable solutions for realistic scenarios because of the large

number of possible states [72].

The maximization of revenue can be achieved by using dynamic simu-

lations in combination with black-box optimization [73, 74]. The ana-

lytical model is substituted with a simulator of many inter-related pro-

cesses like reservations, cancellations, no-shows, walk-ins, and black-

box optimization is employed to find the policy which maximizes the

revenue. An effective technique to maximize revenue and simulate dif-

ferent stochastic aspects of the hotel booking scenario is discrete-event

simulation [75]. The generation of reservations and cancellations leads

to a distribution of possible revenues, and the expected value of the

distribution is considered as the variable to be maximized. For exam-

ple, [66] employ a dynamic simulation approach to simulate demand

as the result of many stochastic processes, and [67] also considers the

effect of price on demand.

20



Chapter 2

Existing simulation-based optimization approaches create empirical de-

mand curves which cannot be easily modified if the current market

situation deviates from the past [67, 65, 66]. This Chapter introduces

HotelSimu, a simulation-based optimization approach for hotel RM

with flexible parametric demand models which can be modified in order

to adapt pricing policies to mutated market conditions. Furthermore,

reservation requests and cancellations are not grouped into disjoint sets

of events like in [66], but occur in an interleaved manner.

The structure of the Chapter is as follows. Section 2.2 provides a de-

tailed analysis of relevant dynamic programming schemese for hotel

RM. Section 2.3 describes HotelSimu, and defines more in detail its

parametric models. Section 2.4 provides some details about the op-

timization procedure, and Section 2.5 shows the applicability of our

models to a set of hotels in Trento, Italy. Results show that the use

of HotelSimu leads to an average revenue increase similar to that of

other dynamic pricing strategies, even though only aggregated data is

used. Finally, Section 2.6 provides the main implications for the hotel

manager.

2.2 Simulation and dynamic pricing

A possible dynamic pricing approach for hotel RM is proposed by [65],

and it is based on the idea that hotels usually define a discrete set of

price categories, where each category corresponds to a certain num-

ber of rooms. Low-priced categories are assigned to early reservations

and, as they get booked, high-priced categories are used. As a con-

sequence, assigning too many rooms to the lower-priced category will

lead to more bookings, but at the expense of potentially losing higher

revenue from higher-priced categories (lost opportunity). The opposite
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problem would happen exchanging low-priced with high-priced rooms.

The goal of the paper is to find the optimal price for each category, in

each night, to maximize the total revenue. The objective function is

defined as the sum over nights of the multiplication of the price of each

night and the number of rooms reserved in that night. Moreover, the

only restriction in the model is that the total number of reservations

for each night does not exceed the associated capacity. The optimiza-

tion problem, formulated as a non-linear programming problem, takes

into account future bookings and their probabilities, considering the

price elasticity of demand as well. In fact, price elasticity is considered

separately from arrivals; a price drop results in an increase in demand,

and vice versa. Furthermore, instead of using pre-defined probability

distributions in order to approximate arrivals, historical data is used

to estimate demand.

Another dynamic pricing approach is proposed by [67], and it em-

ployes a full simulation-based optimization approach in order to pro-

pose prices in a dynamic manner. The idea is based on the fact that

usually hotels define a reference price for each seasonality that they

consider (i.e. high season, middle season, low season). This reference

price can be seen as the average price that hotel managers are willing to

offer for their rooms in different periods of the year. As a consequence,

when considering historical data, the implicit assumption is that the

state of the hotel in different seasons also depends on the reference

price that has been proposed. This means that the price elasticity of

demand can be set by using the reference price as starting point.

The structure of the simulation-based optimization approach proposed

by [67] involves three main entities: the simulation model that simu-

lates the performance of different configurations of the pricing model,

the optimization strategy that uses the results of the simulator to guide
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the optimization process in order to maximize the objective function,

and the dynamic pricing model to be optimized.

A dynamic simulator is employed to mimic the booking process of the

hotel, in order to estimate the value of the objective function which

can be obtained by proposing prices according to a specific configu-

ration of the multipliers of the dynamic pricing model [66]. In fact,

given a configuration of the parameters, the price of each reservation

request in the simulation can be computed. The objective function to

be maximized is the total revenue, defined by the sum of the revenue

of all reservations in the simulation which are not canceled before the

arrival of the customer. Once a configuration has been evaluated, it is

compared with respect to the current best solution. Then the black-

box optimization model proposes another configuration to be evaluated

and the optimization loop continues as long as the budget, which is set

before the whole optimization starts, is not over.

The dynamic pricing model is built using four linear multipliers which,

for each reservation request, are used to propose a price obtained by

multiplying the reference price. In fact, these multipliers take values

in the interval [0.60, 1.40], without modifying the reference price too

much so that it would be too cheap or too expensive for the customers.

Thus, each multiplier changes the reference price according to the value

it assumes: a multiplier value lower than 1 corresponds to a discount

and a value larger than 1 is a price increase. It is assumed that pro-

posed prices influence demand, and this relation is expressed through

a price elasticity function which considers the reference price as start-

ing point: prices higher than the reference price reduce demand and

viceversa. As a consequence, customers are going to accept or deny

reservation offers with different probabilities. The four linear multi-

pliers represent different features that characterize a reservation and
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Figure 2.1: Time to arrival multiplier, defined between 0 and 30, the
booking horizon. The x-axis defines the number of days between book-
ing and arrival date.

influence its price:

• MT , the number of days between booking and arrival date

• MC , the capacity of the hotel at booking time

• ML, the length of stay (LoS)

• MS, the number of reserved rooms (group size)

The time-to-arrival multiplier MT is the only multiplier defined as a

piecewise linear function. Its shape, which is guaranteed by constraints

defined on the parameters of the multiplier, can be seen in Figure 2.1.

The x-axis defines the time between booking and arrival date, where

time equal to 0 means that the booking date corresponds to the arrival

date (walk-in customers). The number of days in advance in which
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Figure 2.2: Capacity multiplier, defined between 0 and 100, the total
capacity of the hotel. The x-axis defines the remaining capacity: prices
are higher when remaining capacity is lower.

booking is possible is called booking horizon. The y-axis represents

the value of the multiplier itself. The idea is that when the booking

date is still far away from the arrival date, prices should be lower in

order to encourage bookings. So, in the last day of the booking hori-

zon, prices should be lower than the reference price and y2T defines

the multiplier value in that day. As the arrival date gets closer, prices

are raised until a certain point y3T , which usually is defined a few

days before the arrival date, when eventual vacancies need to be filled.

Thus, bookings should be encouraged again by lowering the multiplier

to y1T .

The capacity multiplier MC is defined as a monotonically decrescent

function. Its shape can be seen in Figure 2.2, where the x-axis de-

fines the remaining capacity of the hotel. The idea is that when the
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remaining capacity is low, the value of remaining rooms increases and

so prices should increase as well. In contrast, when there are many

vacant rooms, the value of rooms is lower and prices are decreased.

As a consequence, when prices are higher, more expensive rooms are

going to be booked by high-paying customers. y1C and y2C define

the slope of the multiplier.

Similar arguments apply for the other multipliers. The LoS multiplier

ML and the group size multiplier MS are also defined as monotonically

decrescent functions. As the length of stay or the number of rooms of

a reservation grows up to a limit set by the user, the relative price

should be lowered. Slopes of the multipliers are defined by the relative

parameters. As previously mentioned, the optimization strategy max-

imizes the objective function by changing the values of the parameters

of the multipliers, and evaluating the performance of each configura-

tion. The parameters of the multipliers are enumerated in table 2.1.

Notice that, if such parameters are not optimized, then the offered

price corresponds to the reference price and the multipliers have a hor-

izontally flat shape. More formally, let us define a reservation R as a

vector of the features that characterize it, so

R = {RT , RC , RL, RS} (2.1)

where RT is the time to arrival, RC is the remaining capacity of the

hotel when the reservation happens, RL is the LoS and RS is the

group size. The final unit price P of a reservation R corresponds to

the price for 1 room and 1 night used to compute the final price of

reservation offers. P is given by the product of the reference price

Pref and the multipliers function M , limited around Pref by ∆ in the

interval [(1−∆)Pref , (1+∆)Pref ], with a saturation speed proportional
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Multiplier Parameters

MT y1T, y2T, y3T
MC y2C
ML y2L
MS y2G

Table 2.1: HotelSimu’s dynamic pricing model parameters

to η. Let us define it as

P (R) = Pref · F (M(R),∆, η) (2.2)

where

M(R) = MT (RT ) ·MC(RC) ·ML(RL) ·MS(RS) (2.3)

and

F (M(R),∆, η) = (1−∆) + 2∆ · Φ(η · (M(R)− 1)), (2.4)

where Φ(·) is the cumulative distribution function (c.d.f.) of the stan-

dard normal distribution. As previously mentioned, the final price

obtained using the multipliers influences demand according to a price

elasticity function. This function is defined as a probit function which,

given a price Pnorm normalized respect to the reference price, maps

it to a certain demand index DI . A probit function Φ−1, which is

the inverse of the c.d.f. of the standard normal distribution, has been

used in order to consider saturation effects for large price variations.

Small changes of the reference price should influence the customers’

decision less than large variations. DI defines the demand associated

27



Chapter 2

to a certain price, and it is computed as

DI(Pnorm) = Φ−1(
Pnorm − 1

a
) + 0.5, (2.5)

where a demand index equal to 1 is the mean demand obtained when

using the reference price. The scaling parameter a defines the slope of

the function, mapping prices to demand. According to this parameter,

price changes have more or less influence on the decision of customers.

So, given the normalized price of a reservation, the simulator checks

the relative demand factor x and there are two possibilities. If x is

lower than 1, then the reservation is considered as accepted with a

probability equal to x; otherwise it is rejected. In contrast, if x is

greater than 1, the reservation is accepted and a new reservation is

generated with a probability equal to x− 1.

The simulator used to assess the performance of configurations models

the booking scenario of a hotel by considering stochastic reservations,

arrivals and cancellations [66]. It also models reservations with variable

length of stay, no-shows and group reservations. More precisely, these

processes are simulated forward in time after having estimated the

parameters of distributions from historical data. And since all the

involved processes are modeled as probabilistic distributions, the same

simulation has to be repeated multiple times in a Monte Carlo fashion

in order to obtain a sufficiently accurate estimation.

2.3 HotelSimu

The main components of HotelSimu are shown in Figure 2.3. An event

generator simulates the reservation requests and the cancellations. A

registry stores the information about the state of the hotel, in partic-
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Figure 2.3: HotelSimu overview. Reservation requests and cancella-
tions are interspersed. The state of the hotel after one complete simu-
lation is used by the optimizer to compute the total revenue and adjust
the pricing policy.

ular accepted reservations and room availability. A dynamic pricing

model proposes an offer for each reservation request, and an acceptance

probability model simulates the stochastic process by which customers

accept or discard reservation offers. An optimizer searches for the op-

timal pricing policy to maximize revenue.

2.3.1 Definitions

Let us define the main concepts and the notation used throughout the

rest of the Chapter.

Definition 1. A reservation request (RR) is an event characterized

by the following features. The reservation day (RRres), which is the

day the request occurs. The arrival day (RRarr), which is the day the

customer arrives at the hotel. The length of stay (RRlos), which is the

number of nights reserved. The size (RRsize), which is the number of
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rooms reserved.

Definition 2. A reservation offer (RO) is an admissible reservation

request (for which there is room availability) characterized by the price

(ROprice) proposed by the hotel, which depends on the features of RR.

Definition 3. An accepted reservation or simply reservation (R) is a

reservation offer accepted by the customer. It is registered on the hotel

registry and it effectively changes room availability.

Definition 4. The acceptance probability of a reservation offer (Praccept(RO))

is the probability that a customer accepts RO and the proposed price,

and therefore is equal to the probability that RO is registered on the

book.

Definition 5. The state of the hotel S(t) is defined as the state of the

booking registry at time t, which corresponds to the historical records

up to t as well as the set of reservations for future arrival days that are

in the registry at time t.

Definition 6. Given two days identified by i, j ∈ {0, 1, 2, . . . }, the

number of days between i and j, or their distance, is d(i, j) = d(j, i) =

|i− j| ≥ 0.

Definition 7. Given a reservation R, the time-to-arrival of R is RTTA =

d(Rres, Rarr). If RTTA = 0, a customer makes a reservation on the ar-

rival day or arrives at the hotel with no reservation and the customer

is referred to as a walk-in user.

Definition 8. The booking time window or booking horizon (BH ) is

the maximum time-to-arrival allowed by the hotel.
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Definition 9. A cancellation (C) is characterized by the cancellation

day (Cday), which is the day the event occurs, and the reservation

(Cres), which is the reservation on the book that is canceled by the

customer. When a reservation is canceled, it is removed from the hotel

registry and the associated rooms can be booked by other customers.

Definition 10. The cancellation probability, t days before arrival of a

reservation R (Prcancel(R, t)), is the probability that the customer asso-

ciated with R cancels it exactly t days before arrival, with t ∈ [0, RTTA].

According to this definition, the probability that R is canceled within

its lifetime is

Prcancel(R) =
∑

t∈[0,RTTA]

Prcancel(R, t). (2.6)

Definition 11. The reservation requests horizon (RH) is the set of all

the reservation days to be simulated. It corresponds to the values that

each Rres can assume during the simulation.

Definition 12. The arrivals horizon (AH) is the set of all possible

arrival days. It corresponds to the values that each Rarr can assume

during the simulation.

Definition 13. The optimization horizon (OH) is the set of arrival

days for which there is the need of an optimal dynamic pricing policy

to maximize revenue.

For each simulated reservation day r ∈ RH, a random sequence of

Cr cancellations and Rr reservation requests is generated. Each reser-

vation request is associated with an arrival day a ∈ AH following or

coinciding to r (a � r), and each cancellation is associated with a
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registered reservation. The proposal of a price depends on a reserva-

tion request and on the state of the hotel at the moment the event

occurs. Once a price has been proposed to the customer, a reserva-

tion is accepted according to the acceptance probability model. It is

then registered into the hotel registry and, if a cancellation does not

occur until the end of the simulation, it is considered in the evalua-

tion of the total revenue to be passed to the optimizer. As concerns

the optimization, one objective function evaluation corresponds to the

average total revenue of several simulation runs, with respect to the

reservations recorded in the registry within the OH.

2.3.2 Simulation of reservation requests

Let Ra
r , r ∈ RH, a ∈ AH, be the number of reservation requests gener-

ated on day r that are associated with arrival day a. The total number

of requests generated within RH and associated with one arrival day

is therefore given by:

Ra =
∑

r∈RH
r�a

Ra
r , (2.7)

where � describes the relation precedes or coincides to. The series

of reservations generated within RH and associated with a defines its

reservation curve. In fact, the expected total number of reservation re-

quests associated with one arrival day can be seen as the result of sev-

eral independent processes, which occur on each simulated day within

the BH of an arrival day:

E[Ra] = Λ(a) =
BH
∑

i=0

λ(i, a), (2.8)

32



Chapter 2

where λ(i, a) is the expected number of reservation requests occurring

i days before the arrival day a. If historical data is available, one

can estimate directly λ(i, a) for each i and a. However, to avoid the

computational load of a point-wise estimation and to facilitate what-if

analyses, each λ(i, a) is defined by the following model:

λα(i, a) = Λ(a)×Qα(i,BH)

= Λ(a)×
((

BH + 1− i

BH + 1

)α

−
(

BH− i

BH + 1

)α)

, (2.9)

with i = 0, 1, . . . ,BH, a ∈ AH, and for any parameter α > 0. Equation

2.9 is used to formulate a parametric reservation curve as a monoton-

ically decreasing function, whose maximum value corresponds to the

number of walk-in customers of a. The model is then parametrically

set in order to obtain curves like the ones in [66], which are estimated

from historical data. Similarly to the RIM quantifiers proposed in [50],

Qα(i,BH) defines a weight for each day i in order to distribute Λ(a)

along the BH, while also guaranteeing a few properties:

• it defines a function with discrete domain and continuous values;

• it sums up to 1:
BH
∑

i=0

Qα(i,BH) = 1,

for any α > 0 and therefore can represent a discrete probability

distribution or a normalized curve;

• it can model different reservation scenarios through α, from a

constant curve (α = 1) to increasing and decreasing curves (see

Figure 2.4);
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probability and the number of trials. However, a binomial distribution

converges to a Poisson distribution when the number of trials (e.g.,

customers generating requests) grows. Removing the limit on the pool

of customers that can generate new reservations makes the model more

realistic, since the number of possible customers is usually unbounded

and independent from the capacity of the hotel. The use of Λ(a) is

based on the assumption that it is possible to estimate the expected

number of accepted reservation requests for a specific arrival day which

are not canceled (Ra
accept). Similarly, it is assumed that one has access

to the expected number of reservation requests for a specific arrival

day that are accepted by the customers and canceled (Ra
cancel). Ra

accept

can be approximated by the expected number of arrivals, while Ra
cancel

can be seen as the expected number of cancellations.

HotelSimu includes also a model of the acceptance probability Praccept(RO).

A model of probabilities (possibly one for each admissible input) can

be estimated from data retrieved by an online booking platform, where

one can keep track of users that search for a room and decide to fi-

nalize the reservation or leave the website. One can also estimate the

expected acceptance probability E[Praccept(RO)] as the expected frac-

tion of reservation requests that are finalized by the users after the

search. Therefore, the expected total number of reservation requests

(accepted or rejected) associated with one arrival day can be estimated

as follows:

E[Ra] = Λ(a) ≈
Ra

accept +Ra
cancel

E[Praccept(RO)]
. (2.11)

2.3.3 Simulation of nights and rooms

Let nightsa be the expected number of nights for a reservation asso-

ciated with an arrival day a. Analogously, roomsa is the expected
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number of rooms. max-nightsa and max-roomsa represent the limits

imposed by the hotel manager. Since each reservation request includes

at least one night and one room, and the distributions of additional

nights and rooms observed in [66] have an exponential-decay behavior

which can be simulated by a Beta distribution, the discrete probability

distribution of the number of additional nights/rooms is modeled as

Pr(X − 1 = k) =

∫ k+1
max(X)

k

max(X)

(1− x)
max(X)

avg(X)−0.5−2

B(1, max(X)
avg(X)−0.5 − 1)

dx, (2.12)

where X is the number of nights/rooms, X − 1 is the number of ad-

ditional nights/rooms, max(X) is either max-nightsa or max-roomsa,

and avg(X) is either nightsa or roomsa. k = 0, 1, . . . ,max(X)−1, and

B(α, β) is the Beta function with parameters α and β.

The previously defined distribution is a discrete analogue of a (con-

tinuous) Beta distribution with α = 1 and β = max(X)
avg(X)−0.5 − 1. The

value of α is chosen so as to have a distribution with an exponential-

decay profile. β is chosen so as to have an expected value approxi-

mately equal to avg(X)−1. This is achieved by imposing the equality

of the expected value of the (continuous) Beta distribution, which is
α

α+β , to the expected number of additional nights/rooms rescaled to

[0, 1], which is avg(X)−0.5
max(X) . A correction of 0.5 is considered to account

for the discretization error (due to the approximation of the continu-

ous distribution using discrete intervals), in order to position rescaled

expected values of the distribution in the middle of the discretiza-

tion interval. Experiments show that the maximum error between

the expected values and the empirical averages of the discrete ana-

logue with max(X) = 5 is at most 0.33, for expected values equal to

0, 0.1, 0.2, . . . ,max(X)− 1.
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Even though modeling the length of stay or the number of rooms as

Bernoulli or Poisson processes provides a simple and exact way of im-

posing the expected value, it is not applicable to our context, which

cannot be reduced to a coin toss or to an arrival process. In the litera-

ture, the Beta distribution is often used to model unknown probability

distributions, with shapes that can be controlled by the parameters α

and β. By building a discrete analogue of a Beta distribution, it is pos-

sible to exploit its macroscopic features and to obtain a realistic model

of the variable of interest. A similar model can be defined also for group

reservations, which usually follow a different distribution from that of

the length of stay of normal reservations. This can be easily achieved

by considering a different value for avg(X). By following (2.12), an

instance of the random variable X , which is either RRlos or RRsize, is

generated as X = 1+bY ×max(X)c, where Y ∼ Beta(1, max(X)
avg(X)−0.5−1).

2.3.4 Simulation of cancellations

Under the same assumptions of Section 2.3.2, and by analogy to (2.6),

the probability that a reservation is canceled during its lifetime can

be seen as the summation of the probabilities that a reservation is

canceled exactly on a specific day within its lifetime:

Prcancel(R) = Ω(a) =

RTTA
∑

i=0

ω(i, a), (2.13)

where ω(i, a) is the probability that R is canceled exactly i days before

the arrival day a, with i within its lifetime. Each ω(i, a) is defined by
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the following parametric model:

ωα(i, a) = Ω(a)×Qα(i, RTTA)

= Ω(a)×
((

RTTA + 1− i

RTTA + 1

)α

−
(

RTTA − i

RTTA + 1

)α)

,(2.14)

with i = 0, 1, . . . , RTTA, a = Rarr, and for any parameter α > 0.

In this context one can also find α from the fraction of cancellations

that occur on the last day (Qα(0, RTTA)), which includes the so-called

no-shows. Ω(a) can be estimated as follows:

Ω(a) ≈ Ra
cancel

Ra
cancel +Ra

accept

, (2.15)

with an arrival day a = Rarr. In HotelSimu, different stochastic can-

cellation scenarios can be simulated by changing ωα(i, a) through Ω(a)

and α.

2.4 Optimizing the noisy simulator

Since simulations employs stochastic processes, the performance of

each solution corresponds to a distribution of results. The expected

value of the distribution is used as an approximation of the objective

function to be optimized, so the optimization operates in the presence

of noise.

In the literature, multiple works tested diverse heuristic algorithms

on noisy functions, and they have shown that population-based ap-

proaches like CMA-ES are a good choice to optimize noisy functions

[77, 78, 79, 25]. In fact, instead of relying only on a single solution,

at each iteration CMA-ES combines a subset of its candidate solu-
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tions in order to direct the search in the most promising direction. By

combining multiple solutions located in a restricted area of the search

space, the impact of noise is decreased due to an implicit averaging

effect [80, 25]. Moreover, to further reduce the effect of noise on the

optimization, the performance of each solution can be computed as

the mean of the outcome of multiple simulations. From probability

theory, one knows that the effect of noise can be reduced by evaluating

multiple times each solution [80].

CMA-ES is an evolutionary optimization algorithm in which a mul-

tivariate normal distribution N(µt,Mt) is used to sample solutions,

where t defines the iteration of the algorithm. At each iteration, the

mean µt defines the center of the distribution, while the covariance ma-

trix Mt determines shape and orientation of the ellipsoid corresponding

to N(µt,Mt). Also, a step size σt controls the spread of the distribu-

tion as a percentage of the search space. Iteratively, CMA-ES follows

the following steps. First, a population of λ solutions is sampled from

N(µt,Mt). Second, candidates are evaluated and ranked according to

the respective evaluations. Third, the best bλ2c results are used to up-

date µt and Mt, in order to move the search towards the most promising

search direction. Fourth, σt is increased or decreased according to the

length of the so-called evolution paths. Evolution paths are weighted

vector sums of the last points visited by the algorithm. They provide

information about the correlations among points, and they are used to

find the direction recently followed by the optimization. If consecutive

steps are going in the same direction, the same distance could be cov-

ered by longer steps and the current path is too long. If consecutive

steps are not going in the same direction, single steps tend to cancel

each other out and so the current path is too short.

CMA-ES is executed with λ = 4 + b3 log dc and σ = 0.5, where d is
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the dimensionality of the objective function and σ ∈ (0, 20]. The size

of the population is the one suggested by the authors of [52], who have

also tested that CMA-ES with this population size is a robust and fast

local search method [81]. Also, all the standard stopping criterias of

CMA-ES are active[82]. Each time a stopping criteria is triggered, the

algorithm is restarted from another randomly generated point in the

search space, with a new population of the same size.

2.5 Results

The following experiments show how HotelSimu can be used to search

for the optimal pricing policies that maximize the total revenue of a

set of hotels of different sizes. Tests assume the presence of only one

category of rooms in the hotel, and that at least historical data about

final demand is available. However, if advance historical data is also

available and empirical demand curves can be estimated, the models

can be calibrated using optimization algorithms [83].

2.5.1 Setup of the experiments

Reservation curves are considered as monotonically decreasing func-

tions with 40% of the customers treated as walk-in users, and these

models are calibrated according to the curves estimated from histori-

cal data in [66]. The goodness of this choice is also confirmed by data

collected by the Italian Institute of Statistics (Istat) on the features of

trips1, which show that approximately 40% of the interviewed people

travel without booking. As a consequence, it is reasonable to assume

1http://dati.istat.it/?lang=en; section: Communication,culture,trips/Trips/Trips and their
characteristics.
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that the remaining 60% of the reservations is monotonically distributed

in the BH in a decreasing fashion as moving away from the walk-in day.

Also, it is assumed that the maximum number of cancellations occurs

on the last day, and this number is fixed to 40% of the total number of

cancellations. BH is fixed to 180 days, the maximum number of nights

for one reservation to 10, and the maximum number of rooms to 4. As

concerns the pricing policy, the model proposed in [67] is used. The

multipliers vary around 1, and each multiplier changes the reference

price according to the value it assumes. The price ROprice proposed to

a customer corresponds to the unit price for 1 room and 1 night, and

it is computed as

ROprice = pricea · ξ(RRTTA, RRlos, RRsize, S,∆, η), (2.16)

where pricea is the expected unit price for customers arriving on day

a, and ξ(·) is a function of the reservation request features and of the

hotel registry, with average value equal to 1. This function smoothly

adjusts the price within the interval [(1−∆)pricea, (1+∆)pricea], with

a slope proportional to η:

ξ(RRTTA, RRlos, RRsize, S,∆, η) = ξ(t, l, s, S,∆, η) = (2.17)

= (1−∆) + 2∆ · Φ(η · (MT (t)ML(l)MS(s)MC(S)− 1)).

Φ(·) is the c.d.f. of the standard normal distribution, and MT (·),
ML(·), MS(·) and MC(·) are functions (or multipliers) of the time-

to-arrival, the length of stay, the number of rooms and the remaining

hotel capacity at the moment the reservation request is generated, re-

spectively. The parameters of the multipliers are set as T0 = 30 and

C0 = L0 = G0 = 1.6. Also, η = 3 and ∆ = 0.6 in order to pro-
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pose prices with a maximum increase/decrease of 60% with respect to

pricea.

The effect on the room demand of changing the unit price is modeled

by the acceptance probability, which is defined similarly to [66]. When

the proposed price is equal to the average price of reservations with

the same arrival day, the acceptance probability is set to 0.5, to model

the absence of any preference about accepting or rejecting the reserva-

tion. With prices fixed to the average values, the expected number of

accepted reservations is equal to half of the total number of reservation

requests. The expected percentage of accepted reservations increases

when the price decreases and decreases otherwise. This phenomenon,

called price elasticity, is modeled by the following function:

Praccept(RO) = 1− Φ(ρ · (ROprice − pricea)), (2.18)

where Φ(·) is the c.d.f. of the standard normal distribution, and ρ is

a parameter that controls the slope of the function and allows us to

consider different price elasticity scenarios. In the experiments, ρ is

chosen so that Praccept(RO) ≈ 1 when there is a discount of at least

50% and Praccept(RO) ≈ 0 when the price increases of at least 50%.

The applicability of HotelSimu is empirically shown on 10 hotels in

Trento, Italy. Representative hotels have been selected from the official

open data of the Province of Trento2, as reported in Table 2.2. The

information on the average arrivals and the average number of nights

per reservation is taken from the Statistics Institute of the Province of

Trento (Ispat)3. No information is available about the average number

of rooms per reservation, which is assumed to be equal to 1. Data on

2http://dati.trentino.it/dataset/esercizi-alberghieri.
3http://www.statistica.provincia.tn.it, section “Annuari del Turismo".
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Figure 2.5: Price elasticity model of HotelSimu with different slope
coefficients, defined around a reference price of 80

arrivals has been disaggregated and mapped onto each hotel according

to the respective capacity, under the assumption that bigger hotels usu-

ally register more arrivals than smaller hotels. Real aggregated data

on tourists and different hotels has been used to simulate time series

of reservations and cancellations, and these time series are considered

as a baseline to be compared to the outcome of the optimization.

In the experiments RH starts on July 1st, 2017, and ends on Decem-

ber 31st, 2018. AH starts on July 1st, 2017, and ends on January 31st,

2019. OH starts on January 1st, 2018, and ends on December 31st,

2018.

The optimization has a budget of 300 iterations (for a maximum run-

ning time of 5/6 hours), and each iteration estimates the total revenue

as the average of 20 simulation runs, all with the same parameter con-

figuration, for a total of 6000 simulations within one optimization run.

43



Chapter 2

Hotel Rooms Price (e) Arrivals Occupancy Revenue Optimization Simulation
01 52 120.00 48.2±0.5 47.6±0.6 18.4±0.6 11000±109.0 2.0 ±0.012
02 34 69.50 50.6±0.6 50.6±0.7 20.4±0.7 10800±82.33 1.91±0.006
03 136 290.00 51.6±0.3 52.6±0.3 21.6±0.3 18400±258.5 3.54±0.030
04 46 153.33 44.0±0.5 44.2±0.6 17.8±0.6 9910±97.61 1.78±0.008
05 113 136.675 55.5±0.3 55.2±0.4 23.1±0.4 16700±241.2 3.19±0.031
06 37 74.00 46.9±0.6 45.8±0.6 17.8±0.6 9570±87.87 1.69±0.012
07 9 39.00 38.2±1.1 37.7±1.3 12.8±1.2 7370±17.70 1.25±0.010
08 22 216.50 43.2±0.7 42.0±0.8 18.0±0.8 7870±35.67 1.35±0.004
09 14 66.50 42.0±0.9 41.8±1.0 17.7±1.0 7740±32.26 1.3 ±0.010
10 19 82.67 41.8±0.8 40.5±0.9 17.3±0.9 8650±46.21 1.49±0.008

Table 2.2: Characteristics of hotels used for the tests, and results.
Arrivals, occupancy (as room-nights) and revenue after optimization
are expressed as percentage increase, where maximum and minimum
values are in bold. Optimization total CPU time and single-run simu-
lation CPU time are defined in seconds.

The optimization is repeated 10 times. Each experiment is started

from an initial solution which has been generated by a uniform distri-

bution defined over the search space. Tests have been run on virtual

machines using a KVM hypervisor (1 per hotel), each one with 512

MB of RAM and 1 CPU (1 core) at 2.1 GHz.

2.5.2 Results on arrivals, occupancy and revenue

Table 2.2 reports the results on customer arrivals, occupancy and to-

tal revenue as the percentage increase led by the optimized pricing

model with respect to the configuration with the multipliers equal to

1. Results are expressed in terms of averages and standard errors, and

they are statistically significant according to Welch’s two-tailed un-

equal variances t-test [84], with a significance level α = 0.01. A unit

of occupancy corresponds to the so-called room-night, which is a room

occupied for one night.
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to optimize the simulator.

HotelSimu models stochastic arrivals and cancellations in an inter-

leaved fashion, considering several characteristics of reservation re-

quests in order to propose dynamic prices and it models the effect

that price variations have on demand (price elasticity). Its paramet-

ric models, based on the RIM quantifiers, allow the hotel manager to

adapt pricing policies to dynamic market conditions, and to analyze

different booking scenarios by changing a compact set of meaningful

parameters. Seasonal averages can be set even on a day-by-day basis,

thus allowing the hotel manager to adapt the pricing policy to special

events and to consider monthly as well as weekly seasonal effects.

The case study shows that the parametric models lead to results sim-

ilar to other dynamic pricing models in the literature, while relying

only on aggregated data. The average revenue increase is ≈ 19% with

respect to the original pricing policies, and the risk of losses is absent

for medium-big hotels and limited for small hotels, with a maximum

loss probability of ≈ 0.03. Moreover, experiments show that Hotel-

Simu can simulate one year and a half in ≈ 2 seconds on average on

a low-end machine. Also, a complete optimization can be run within

one night.
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Heuristic Search Strategies for

Noisy Optimization

3.1 Heuristics for noisy optimization

In many optimization problems, the evaluation of candidate solutions

is affected by noise. Possible sources of noise include physical mea-

surement limitations, or the stochastic component employed in simu-

lations. Similarly, in machine learning, the diversity of data used to

train and test models adds a layer of uncertainty to the problem. Dif-

ferent models are usually compared using cross-validation approaches,

but comparisons are not guaranteed to be correct. The same happens

in simulation-based optimization, where the output of a stochastic sim-

ulator is used in combination with black-box methods in order to op-

timize an objective function.

In order to deal with noise, various heuristics have been proposed and

studied [85, 78, 24, 79, 25]. In particular, many studies employ vari-

ants of evolutionary algorithms, which adopt a set of candidate so-

lutions (population) subject to local perturbative search and stronger
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diversification means, often described with terms derived from genet-

ics. Since these algorithms iteratively employ a population to explore

the search space and propose new solutions, they are considered to

be robust to the presence of noise [86, 25]. If a black-box method

is population-based, the impact of noise can be decreased by incre-

menting the number of candidates (size) of the population [26, 24, 27].

This effect, called implicit averaging, has been studied using normally

distributed noise with zero mean and different values of constant stan-

dard deviations [87, 85, 88]. However, as shown by [85], increasing

indiscriminately the population size can be counterproductive. A sim-

ilar approach is followed by shrinking-ball methods, where the value of

the objective function is approximated by averaging single evaluations

sampled within a hypersphere defined around the configuration to be

evaluated. The neighborhood of a solution x is defined by a ball of a

certain radius r, which can be reduced as the optimization progresses

as in [89] or it can be kept constant as in [90].

Multiple works compared various heuristic algorithms with evolution-

ary strategies, and they have shown that population-based approaches

are a good choice to optimize noisy functions [78, 79, 25]. However,

these studies mostly compare evolutionary strategies only with algo-

rithms which propose candidate solutions deterministically, without

considering any extension based on statistical analysis techniques. In

fact, the effect of noise can be reduced by evaluating multiple times

each solution [28, 29, 30, 31, 20]. An example is given by simulated

annealing [91], which has been extended by adapting the number of

samples per solution based on some statistical analysis [19, 21]. How-

ever, studies which compare the performance of diverse randomized

algorithms extended with statistical methods are not common in the

literature. As will be shown empirically, even single-point randomized
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methods extended with statistical techniques can perform better than

regular population-based methods. The effects and the limits of im-

plicit averaging depends on the type and the amount of noise in the

objective function.

This Chapter compares the efficiency of different heuristic search strate-

gies in the presence of noise, in order to investigate the effects that dif-

ferent components of these strategies have on the performance. Differ-

ently from previous studies, all the heuristic search strategies employed

in this study are randomized, and algorithms not based on populations

are extended using a reactive sample size scheme based on paired t-

tests. The rest of the chapter is structured as follows. Section 3.2 gives

an overview of the reactive sample size scheme. Section 3.3 outlines the

heuristic search algorithms which have been used in the experiments,

and comments their components. Section 3.4 defines the experiments

and analyzes the results.

3.2 Reactive sample size

In this Chapter, in order to deal with the presence of noise, heuristic

techniques which do not use a population are extended with a reactive

sample size algorithm based on Student’s paired t-test.

At each iteration of the optimization process, a new configuration xnew

is proposed by a heuristic algorithm and must be compared against

the current best configuration xcurrent. For each comparison, the algo-

rithm reactively changes the sample size n used to evaluate f̂n(xnew)

and f̂n(xcurrent), according to observed statistical evidence. Significant

differences are detected by considering the relationship between prob-

abilities α and β of making an error of type I and type II. To remind

the reader, given a null hypothesis H0 and an alternative hypothesis
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H1, α is the probability to reject H0 when H0 is true and β is the

probability to fail to reject H0 when H0 is false.

In noisy optimization, it is not necessary to detect a difference be-

tween the estimators, which would require a two-sided test. In con-

trast, using a one-sided test to assess if f̂n(xnew) > f̂n(xcurrent) or

f̂n(xnew) < f̂n(xcurrent) is sufficient, depending on whether one is max-

imizing or minimizing the objective function. Upper-tailed tests are

used in the case of maximization and lower-tailed tests for minimiza-

tion. The following definitions consider a maximization problem, where

null and alternative hypothesis of the upper-tailed test on the differ-

ence in means are defined as

H0 : f̂n(xnew)− f̂n(xcurrent) ≤ δH0

H1 : f̂n(xnew)− f̂n(xcurrent) > δH0
,

(3.1)

where δH0
= f(xnew)− f(xcurrent) = 0 defines the value for which the

null hypothesis is assumed to be true. To statistically determine if

H1 is true, paired or unpaired evaluations can be used to compute a

statistic. The reactive algorithm uses paired evaluations to compute

Student’s paired t-test statistic by evaluating xnew and xcurrent on the

same realizations. And since the mean of paired differences corresponds

to the difference of means, the statistic to test is

Tn−1 =
δobs − δH0

σ̂n/
√
n

, (3.2)

where the observed difference δobs = f̂n(xnew)−f̂n(xcurrent) and s is the

sample standard deviation of paired evaluations. Furthermore, since

σ of F is approximated with σ̂n, Tn−1 follows a t-distribution with

n − 1 degrees of freedom (d.o.f.) and the algorithm requires n ≥ 2.
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The statistic in equation (3.2) can be used to compute the p-value,

which defines how unlikely it is to observe a statistic such as Tn−1 if

H0 is true. If this is too unlikely (threshold defined by the user-defined

probability α of making an error of type I), then H0 should be rejected.

However, it is also important to consider the probability β to make an

error of type II, so to fail to reject H0 when H0 is false. To compute β,

a specific value for which H1 is assumed to be true has to be defined,

because β depends on the difference δobs for which H0 is assumed to be

false and H1 to be true. In fact, assuming that H1 is true, if Tn−1 falls

in the acceptance region of H0 then it is unlikely that H0 is false. In

the reactive algorithm, the value for which H1 is assumed to be true

is δobs. When H1 is true, Tn−1 follows a noncentral t-distribution with

n− 1 d.o.f. Unfortunately the noncentral t-distribution has a complex

density function, but [92] propose a method to approximate it using

the t-distribution. Thus, in the one-tailed case, β can be approximated

as

β = 1− Tn−1(δnorm
√
n− tn−1,α) + Tn−1(−δnorm

√
n− tn−1,α) (3.3)

where Tn−1 is the c.d.f. of the t-distribution with n− 1 d.o.f., δnorm =

δobs/σ̂n and tn−1,α is the quantile x of the t-distribution with n−1 d.o.f.

such that Tn−1(x) = α. As a consequence, given a paired sample,

equation (3.3) can be used to iteratively find the minimum sample

size n that should be used to test a one-tailed hypothesis with error

probabilities α and β as

n =
(tn−1,α + tn−1,β)2

δ2norm
. (3.4)
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Algorithm 1 Statistical guard

1: procedure statisticalGuard(xnew, xcurrent)
2: Compute δobserved, σ̂n, δnorm
3: p-value ← 1− Tn−1(

δobserved
σ̂n/
√
n
)

4: β ← 1− Tn−1(δnorm
√
n− tn−1,α) + Tn−1(−δnorm

√
n− tn−1,α)

5: if β ≤ βreq then

6: if p-value ≤ αreq then

7: xcurrent ← xnew
8: ncurrent ← max(n, ncurrent)

9: return

However, in real world problems, one might not be interested to cor-

rectly detect very small differences between means. It might be too

computationally expensive to statistically differentiate between two

means that are very similar. Precisely, if xnew and xcurrent have a very

similar performance and δobs is smaller than a certain user-defined δheu,

the comparison can be performed heuristically according to the values

of f̂n(xnew) and f̂n(xcurrent). The value of δheu is expressed as a per-

centage of f̂n(xcurrent), because in many cases the user does not know

a priori the performance of the best possible solution which can be

found during the optimization. Furthermore, because of the stochas-

ticity of the objective function, the algorithm also considers the impact

of the sample standard deviation σ̂n. Before checking if a comparison

should be done heuristically, δheu is normalized by σ̂n and, to apply

the heuristic solution, the algorithm checks if

δnorm <
δheu
σ̂n

. (3.5)

In the heuristic solution, f̂n(xnew) is evaluated at least as many times

and on the same set of seeds as f̂n(xcurrent). In fact, the reactive scheme
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keeps track of the sample size ncurrent used to evaluate f̂n(xnew) when

Equation 3.5 is verified, and any sample size which lowers the cur-

rent value is not accepted. As a consequence, the sample size used in

the heuristic case can only increase as the optimization advances. As

suggested in [14], the sample size should increase as the optimization

proceeeds towards a local minimum, because it is more difficult to de-

tect the difference between solutions which tend to have similar values.

When the current evaluation is far from any minimum present in Θ, a

small sample size should be sufficient to distinguish the performance of

different configurations. As the process goes towards locally optimal

points, comparing diverse solutions becomes harder and so additional

evaluations are necessary.

When increasing n using (3.4), the update is not done in one-shot but

iteratively, updating the pair f̂n(xnew) and f̂n(xcurrent) with one eval-

uation at the time. This is done because (3.4) defines an estimation

of the minimum sample size required to test the hypothesis, which is

based on the observed sample. But the observed sample is not always

representative of the whole population, and so estimations might not

be correct. As n increases, the sample is going to be more and more

representative; but by checking iteratively p-value and β a lot of un-

necessary evaluations are saved. In fact, at each update, p-value and

β are compared with αreq and βreq; if such requirements are satisfied,

then a statistically significant decision can be taken. The same is done

when Equation 3.5 is verified and the heuristic solution is applied. In

fact, by computing iteratively p-value and β even in the heuristic solu-

tion, a statistical guard checks if sufficient statistical evidence has been

observed in order to take a statistically significant decision (Algorithm

1).
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3.2.1 Parameters of the algorithm

The main parameters of the algorithm are the required probability αreq

of making an error of type I, the required probability βreq of making

an error of type II and the minimum required difference δheu between

averages to apply a statistical test. To provide additional flexibility

to the algorithm, a minimum number nmin and a maximum number

nmax of function evaluations can be set for each configuration in com-

parisons. If during a comparison nmax is reached, but αreq and βreq

have not yet been satisfied, a decision is taken by considering only the

values of f̂n(xnew) and f̂n(xcurrent). In the experiments nmin = 2 and

nmax = ∞, so the algorithm autonomously decides when to stop the

sampling process.

3.2.2 Outline of the algorithm

The reactive sample size algorithm is outlined in Algorithm 2. At

each step of the optimization process, given two configurations xnew

and xcurrent, the algorithm first evaluates both configurations on nmin

times in order to obtain f̂n(xnew) and f̂n(xcurrent), where n = nmin.

Then, p-value and β are computed using (3.2) and (3.3), respectively.

If these values satisfy the probabilities of making an error of type I

and II required by the user, then a decision which is considered to

be statistically significant can be taken; otherwise, the sample size of

both estimators is increased with one additional evaluation based on

the same ξi. In both cases, if Equation 3.5 is verified, the decision

is taken heuristically by considering only the values of f̂n(xnew) and

f̂n(xcurrent). The optimization continues as long as there is a sufficient

amount of budget left, where the budget is defined as number of ob-
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Algorithm 2 Reactive sample size algorithm

1: procedure reactiveComparison(xnew, xcurrent)

2: Compute f̂nmin(xnew)
3: statisticalGuard(xnew, xcurrent)
4: n← (tn−1,α + tn−1,β)2/δ2norm.
5: i← nmin

6: while i ≤ n do

7: Update f̂i(xnew) and f̂i(xcurrent) using ξi+1

8: statisticalGuard(xnew, xcurrent)
9: if δnorm ≤ δheu/σ̂n then . Heuristic decision

10: k ← i
11: while k ≤ ncurrent do

12: Update f̂k(xnew) using F (xnew, ξk+1)
13: statisticalGuard(xnew, xcurrent)
14: k ← k + 1

15: heuristicDecision(xnew, xcurrent, ncurrent)

16: i← i+ 1
17: if i = nmax then

18: heuristicDecision(xnew, xcurrent, nmax)

19: if i = n+ 1 then

20: n← (tn−1,α + tn−1,β)2/δ2norm.

jective function evaluations.

Algorithm 2 is called by a heuristic optimization process when some

xnew has to be compared against xcurrent, with xnew 6= xcurrent. In Al-

gorithm 2, on line 7 a new evaluation F (xcurrent, ξi) is computed only if

f̂i(xcurrent) has not been evaluated on ξi yet. On line 20, n is computed

again in the case that the initial sample produces an underestimate of

the minimum sample size required to statistically differentiate between

the performance of xnew and xcurrent.
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3.3 Optimization algorithms

The optimization algorithms employed in the experiments are Random

Search (RS), the Reactive Affine Shaker (RAS) [93] and the Covariance

Matrix Adaptation Evolutionary Strategy (CMA-ES) [52, 82]. RS is a

simple stochastic local search algorithm which is often used as baseline

for comparisons, while RAS and CMA-ES are more advanced stochas-

tic schemes which adapt step size and direction of the search during

the optimization.

In RS, a new candidate solution xnew is sampled from an interval de-

fined in a neighborhood of the current best solution xcurrent, accord-

ing to a uniform distribution. A step size σ is used to define, as a

percentage of the intervals which define Θ along each dimension, the

boundaries of the local search region located around xcurrent. Conse-

quently, diverse step sizes correspond to search policies with different

levels of locality. A step size of 1 would make the search global, and

the optimization would correspond to pure random search.

In RAS, a local search region is adapted by an affine transformation.

The aim is to scout for local minima in the attraction basin where the

initial point falls. The step size σ and the direction of the search re-

gion are adapted in order to maintain heuristically the largest possible

movement per function evaluation. The search occurs by generating

points in a stochastic manner, with a uniform probability in the search

region, following a double shot strategy. A single displacement ∆ is

generated, and two specular points xcurrent + ∆ and xcurrent − ∆ are

considered for evaluation. An evaluation is successful if the objective

function value in at least one of the two candidates is better than

f̂(xcurrent). The search region is modified according to the outcome of

the comparisons. It is compressed if both comparisons are unsuccess-
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ful, and it is expanded otherwise. In both cases, the search region is

modified according to an expansion factor ρ > 1.

CMA-ES [52, 82] is an evolutionary optimization paradigm in which

configurations are sampled from a multivariate normal distribution

N(µt,Mt), where t defines the iteration of the algorithm. At each

iteration, the mean µt defines the center of the distribution, the co-

variance matrix Mt determines shape and orientation of the ellipsoid

corresponding to N(µt,Mt), and a step size σt controls the spread of

the distribution as a percentage of the intervals which define each di-

mension of Θ. The ellipsoid is the local search region used by the

algorithm to explore the search space and propose candidate solutions.

Iteratively, CMA-ES follows four steps. First, it samples a fixed num-

ber λ of new configurations from N(µt,Mt), creating a population.

Second, candidates are evaluated and ranked according to the qual-

ity of the evaluations. Third, the best bλ2c results are used to update

N(µt,Mt), in order to move the search towards the most promising

search direction. Fourth, σt is increased or decreased according to the

length of the so-called evolution paths, in order to maximize the ex-

pected improvement of the optimization. This last step is explained

more in detail in the following subsection. Also, CMA-ES has been

extended with an uncertainty handling (UH) method, to deal with pos-

sible noise in the objective function [53]. In this version of CMA-ES,

referred as UH-CMA-ES, the uncertainty is measured by rank changes

among members of the population. Once each solution of the popula-

tion has been evaluated and ranked, a few additional evaluations are

taken and the population is ranked again. By doing so the algorithm

tries to estimate the amount of noise in the evaluations, in order to

increase σt and prevent the signal-to-noise ratio from becoming too

low.
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3.3.1 On CMA-ES step-size adaptation

The adaptation of σt, also called cumulative step-size adaptation, is

based on the evolution paths mentioned in Section 3.3. An evolution

path is a weighted vector sum of the last points successively visited by

the algorithm. It provides information about the correlations between

points, and it can be used to detect the direction of consecutive steps

taken by the optimization. If consecutive steps are going in the same

direction (scalar product greater than zero), the same distance could be

covered by longer steps. If consecutive steps are not going in the same

direction (scalar product lower than zero), single steps tend to cancel

each other out and the current path is too short. To make successive

steps more efficient, σt is changed accordingly. The step size determines

the signal strength used by CMA-ES to estimate the direction of the

gradient. If the steps of the algorithm are very small, the signal is

also likely low and therefore the signal-to-noise ratio becomes small as

well. Also, it has been shown that in noisy optimization the cumulative

step-size adaptation may result in premature convergence [94].

3.4 Experiments

Before showing the results about the performance of different random-

ized algorithms in various noisy scenarios and higher dimensions, a

preliminary study which investigates the effect of implicit averaging

on CMA-ES is presented.
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3.4.1 Setup

Each experiment is based on 100 macroreplications, where each op-

timization process has a budget (number of function evaluations) of

5000. Initial solutions are generated according to a uniform distribu-

tion defined on the interval of each dimension of Θ. In each experiment,

algorithms start the optimization from a different randomly generated

solution x0 and consider the same local search region around it. Then,

the local search region is iteratively modified according to the algo-

rithm. Apart from CMA-ES and UH-CMA-ES, the algorithms are

employed in two versions: with a naive scheme which uses 1 evaluation

for each solution, and the reactive sample size scheme. The acronym of

each algorithm is preceded with N in the former case and with R in the

latter. The parameters of the reactive method are set as αreq = 0.1,

βreq = 0.4 and δheu = 0.01. At the end of the optimization, the solu-

tion x∗ with the best measured performance is returned.

In the first set of experiments on CMA-ES, restarts are not considered.

The standard implementation of CMA-ES includes various stopping

criterias and restart policies [82], but they have been deactivated in

order to simplify the analysis of the different components of the algo-

rithm. In the second set of experiments, global restarts are activated

and based on a single stopping criterion: if the current best solution

does not improve by at least 10% in k = 500 function evaluations, a

restart is done. An exception is given by RAS, which possibly needs

to be restarted because of its double-shot strategy. In fact, if x0 is

generated nearby the boundaries of the search space, the double shot

strategy might be unable to generate a valid configuration.

RS uses σ ∈ {0.1, 0.2}, while RAS employs σ ∈ {0.1, 0.2} and ρ = 2.

CMA-ES and UH-CMA-ES adopt σ ∈ {1.0, 2.0}, because the library
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used to implement the algorithm defines σ ∈ (0, 10]1 and not in (0, 1].

Also, λ = 4 + b3 log dc, where d is the dimensionality of the objective

function. The values of ρ and λ are the ones suggested respectively by

the authors of [93, 82].

3.4.2 Benchmarking functions and noise models

In order to test diverse heuristic strategies in the presence of noise,

Sphere and Rastrigin functions have been extended with multiple types

and levels of noise. As in other works in the literature, both functions

are optimized in [−5.12, 5.12]d, where d is the number of dimensions.

To evaluate the impact of noise on the optimization, a standard prac-

tice in the literature is to extend deterministic functions by introducing

multiplicative or additive noise. In the case of multiplicative noise, a

percentage ε of f(x) is added to f(x) according to a displacement

generated using a standard normal distribution:

f(x, ε) = f(x) + f(x) · ε ·N(0, 1). (3.6)

This kind of noise is typical of devices which take physical measure-

ments, like speed cameras, where values are guaranteed to be accurate

up to a certain percentage of the measured quantity. However, as the

optimization proceeds towards lower values, the noise decreases. This

means that as the optimization approaches the global optimum, it is

easier to move into the right direction and, if the function value at the

global optimum is equal to zero, there is almost no noise in its prox-

imity.

Although such a situation might be true in many real-world scenarios,

1https://github.com/beniz/libcmaes
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there exist other problems where the noise does not always go to zero

as the global optimum (if any) is approached. As examples, consider

the optimization of simulation models, or the tuning of the hyperpa-

rameters of machine learning algorithms. In this case, the noise can

be simulated by adopting additive noise. However, determining the

amount of noise to add is up to the practitioner. In fact, additive noise

is usually normally distributed with zero mean and constant standard

deviation σε. Since this kind of perturbations does not depend on the

signal, the signal-to-noise ratio might cause problems only when ap-

proaching the minimum and its effects are going to be very different

from function to function.

To avoid these drawbacks, a possibility is to define additive noise as

normally distributed with zero mean and dynamic standard deviation.

Since the step size used by randomized algorithms impacts the strength

of the signal, in order to test harder noise scenarios it makes sense to

set the noise level according to the step size. So, given a point x in Θ

and a percentage ε, the dynamic standard deviation σi along each di-

mension i is computed as follows. Compute lower bound li = xi−ε ·Θi

and upper bound ui = xi+ ε ·Θi, where Θi is the interval in which the

function is defined along dimension i. Then, find the minimum m and

the maximum M among {f(li), f(xi), f(ui)}. Finally, σi = |m −M |
and the additive noise model is defined as

f(x, ε) = f(x) +
N
∑

i=1

N(0,
σi
k
), (3.7)

where N is the dimensionality of the function and k is a constant

used to control the amount of noise. In the experiments, ε = 0.1

and k ∈ {1, 2, 3, 6}. Therefore, while using this model of noise, the
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distortion of the signal is set according to the maximum signal which

can be detected by an algorithm which adopts a fixed step size (like

RS). With k = 6, 99.7% of the noise is generated within the intervals

which define the local search region. With k = 3, k = 2, k = 1 the

same is true respectively for 81.86%, 68, 27%, 34.14% of the noise.

3.4.3 Average loss signal per iteration

In a noisy scenario, in order to understand how the algorithm behaves

with populations of different sizes, a possible way to proceed is to

measure the magnitude of the error made when estimating the gradient.

To do so, at each iteration, the population of candidate solutions p =

{x1, ..., xm} is ranked in two ways. Firstly, according to the noisy

ranking r̂ based on f̂1(x1), ..., f̂1(xm). Secondly, following the noiseless

ranking r defined by f(x1), ..., f(xm). Then, the signal loss L is defined

as the difference between the signal of these two rankings, where the

signal of a ranking is the sum of the absolute differences among the

ordered values used for ranking. More formally, in the case of r̂ and r,

ŝ(r̂, p) =
m−1
∑

i=1

|f̂1(xi)− f̂1(xi+1)| (3.8)

and

s(r, p) =
m−1
∑

i=1

|f(xi)− f(xi+1)|, (3.9)

where the set {1, ...,m− 1} is ordered respectively according to r̂ and

r. Therefore,

L(r̂, r, p) = ŝ(r̂, p)− s(r, p) (3.10)

64



Chapter 3

and the average signal loss per iteration is defined as

E(L) =
1

N

N
∑

i=1

L(r̂i, ri, pi), (3.11)

where N is the number of iterations of the algorithm. By following

this procedure, the optimization estimates the gradient according to

r̂ and it is possible to measure by how much the optimization goes

in the wrong direction. Also, by comparing r̂ and r, the number of

misrankings among each population’s candidates can be computed,

as well as the average misrankings’ percentage E(M) of the whole

optimization.

3.4.4 Results with larger populations

This set of experiments is based on the bidimensional Sphere func-

tion. Tables 3.1 - 3.3 contain the results of the experiments that

investigate the effect of implicit averaging on CMA-ES, where the

best performances are highlighted in bold. Tests adopt σ = 1.0 and

λ ∈ {6, 36, 60}.
As it is possible to see in the tables, in all cases E(L) keeps increasing

as the population grows. Larger populations can potentially detect

more signal, but are unable to do so. In fact, as Figures 3.1a - 3.1c

show, larger populations contribute to mantain a larger step size and

so to make wider steps. However, as the amount of noise increases,

misrankings are going to happen first among similarly ranked candi-

dates and then also between solutions ranked farther away from each

other. Also, the magnitude of the errors increases with the noise. Con-

sequently, larger populations tend to lose more signal and to guide the

optimization farther away from the true direction of the gradient. The
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Table 3.1: Mean and standard error representing the performance of
CMA-ES with σ = 1.0 on the Sphere function with d = 2 and multiple
levels of constant additive noise.

Constant additive

λ N σ
ε

E(M) E(L) f(x∗)

6 833 0.1 81.92± 0.07 0.01± 0.00 0.02± 0.00

6 833 1.0 82.55± 0.06 0.05± 0.00 0.22± 0.00

6 833 2.0 82.74± 0.06 0.10± 0.00 0.42± 0.01

6 833 3.0 82.85± 0.07 0.14± 0.01 0.75± 0.01

36 138 0.1 93.26± 0.31 0.01± 0.00 0.01± 0.00

36 138 1.0 95.72± 0.08 0.14± 0.01 0.05± 0.00

36 138 2.0 95.98± 0.08 0.30± 0.03 0.10± 0.00

36 138 3.0 96.20± 0.05 0.40± 0.03 0.14± 0.00

60 83 0.1 93.75± 0.45 0.02± 0.00 0.00±0.00

60 83 1.0 97.05± 0.12 0.19± 0.01 0.04±0.00

60 83 2.0 97.50± 0.04 0.35± 0.03 0.08±0.00

60 83 3.0 97.59± 0.05 0.52± 0.04 0.12±0.00

Table 3.2: Mean and standard error representing the performance of
CMA-ES with σ = 1.0 on the Sphere function with d = 2 and multiple
levels of multiplicative noise.

Multiplicative

λ N σ
ε

E(M) E(L) f(x∗)

6 833 0.1 13.37±0.34 0.00±0.00 0.00±0.00

6 833 0.2 24.34±0.17 0.01±0.00 0.00±0.00

6 833 0.3 33.82±0.61 0.03±0.01 0.28±0.02

6 833 0.4 43.78±0.76 0.06±0.02 2.28±0.05

36 138 0.1 53.48±0.19 0.04±0.01 0.00±0.00

36 138 0.2 70.86±0.13 0.07±0.01 0.00±0.00

36 138 0.3 79.03±0.11 0.14±0.02 0.38±0.02

36 138 0.4 84.30±0.08 0.28±0.04 4.63±0.06

60 83 0.1 66.15±0.11 0.05±0.01 0.00±0.00

60 83 0.2 80.16±0.07 0.13±0.02 0.00±0.00

60 83 0.3 86.12±0.06 0.22±0.03 0.58±0.02

60 83 0.4 90.09±0.04 0.48±0.05 6.56±0.06
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Table 3.3: Mean and standard error representing the performance of
CMA-ES with σ = 1.0 on the Sphere function with d = 2 and multiple
levels of dynamic additive noise.

Dynamic additive

λ N σ
ε

E(M) E(L) f(x∗)

6 833 6 82.28±0.07 0.04±0.00 0.15±0.00

6 833 3 82.39±0.08 0.12±0.01 1.45±0.02

6 833 2 82.61±0.08 0.23±0.01 3.26±0.04

6 833 1 82.50±0.12 0.97±0.13 9.09±0.06

36 138 6 95.72±0.06 0.16±0.01 0.35±0.01

36 138 3 95.85±0.04 0.53±0.03 2.26±0.02

36 138 2 95.87±0.05 1.17±0.06 4.22±0.03

36 138 1 96.22±0.04 3.32±0.25 9.07±0.06

60 83 6 97.10±0.10 0.23±0.02 0.40±0.01

60 83 3 97.25±0.04 0.78±0.05 2.48±0.02

60 83 2 97.33±0.03 1.73±0.09 5.24±0.04

60 83 1 97.64±0.03 4.47±0.22 10.04±0.05

effect of the misrankings depends on the amount of noise. Even if

E(M) increases with the population size, it is not implied that the

performance of the optimization deteriorates. For example, Table 3.1

shows that in the case of constant additive noise, larger populations

obtain better results. This happens because the signal-to-noise ratio is

sufficiently high to avoid misrankings which would guide the optimiza-

tion towards a significantly wrong direction. The amount of noise starts

creating problems only when approaching the minimum, as shown in

Figure 3.2. With this amount of noise, even N-RS is able to perform

comparably well. In contrast, in the case of dynamic additive noise, the

signal-to-noise ratio is approximately the same throughout the search

space and results are expected to deteriorate much more, as confirmed

by the results in Table 3.3. Even in the case of multiplicative noise,

larger populations possibly worsen the performance of the optimiza-
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Figure 3.1: Each row shows respectively average variation of CMA-ES
step size (3.1a) and CMA-ES covariance matrix volume (3.1d), with
σ = 1.0 and λ ∈ {6, 36, 60}. Each column refers respectively to a
particular case of the diverse types of noise used in Table 3.1. More
precisely, they show the cases with constant additive noise with σ = 1.0
(first column), multiplicative noise with ε = 0.2 (second column) and
dynamic additive noise with k = 3 (third column).

tion. Therefore, when the signal-to-noise ratio is low and misrankings

happen among further positions, increasing the population size or the

number of parents is not going to significantly improve the robustness

of the optimization. In this case, it is preferable to increase the sample

size used to estimate each candidate solution.

It is also worth noticing the premature convergence of the covariance

matrix. Figures 3.1d - 3.1f show that the volume of the covariance

matrix goes to zero in the first part of the optimization. After that,
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Figure 3.2: Noiseless mean and standard error of the solutions with
best measured performance found during the optimization, using
CMA-ES (σ = 1.0, λ = 60) and N-RS (σ = 0.1) on the Sphere
function with d = 2 and multiple levels of constant additive noise.

CMA-ES is no longer able to propose significantly different solutions.

3.4.5 Results with larger sample size

These experiments are based on both Sphere and Rastrigin functions,

with d ∈ {2, 10}. Results in Tables 3.4 - 3.6 show that, with high levels

of noise, a simple optimization algorithm such as R-RS performs bet-

ter than more complex algorithms like RAS, CMA-ES or UH-CMA-ES.

Without increasing the sample size of estimators, using a population

of solutions is not able to compete with single-point algorithms which

adapt the sample size of estimators according to empirical evidence.

Furthermore, in this context, UH-CMA-ES might even worsen the per-

formance. As shown in Figure 3.3d, increasing the step size according

to observed misrankings provides better results when the initial step

size is very low with respect to the distortion caused by the noise.

Figure 3.3a shows that a larger step size can improve the efficiency of
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Table 3.4: Noiseless mean and standard error of the solutions with
best measured performance found during the optimization by different
optimizers, with multiple levels of dynamic additive noise applied to
the Sphere function (d = 2).

Optimizer σ k = 1 k = 2 k = 3 k = 6
R-RS 0.1 1.14±0.01 0.29±0.00 0.15±0.00 0.05±0.00

R-RS 0.2 1.25±0.02 0.45±0.01 0.26±0.00 0.05±0.00

R-RAS 0.1 4.12±0.06 1.37±0.03 0.78±0.03 0.12±0.01
R-RAS 0.2 3.41±0.05 1.35±0.04 0.55±0.03 0.05±0.00

CMA-ES 1.0 13.95±0.05 5.72±0.04 2.45±0.03 0.44±0.01
CMA-ES 2.0 14.76±0.06 5.00±0.04 2.14±0.02 0.41±0.00

UH-CMA-ES 1.0 14.71±0.05 5.09±0.03 2.15±0.01 0.45±0.01
UH-CMA-ES 2.0 15.46±0.05 5.66±0.04 2.03±0.02 0.38±0.00

Table 3.5: Noiseless mean and standard error of the solutions with
best measured performance found during the optimization by different
optimizers, with multiple levels of dynamic additive noise applied to
the Sphere function (d = 10).

Optimizer σ k = 1 k = 2 k = 3 k = 6
R-RS 0.1 4.29±0.02 1.75±0.01 0.81±0.00 0.29±0.00

R-RS 0.2 3.77±0.02 1.74±0.01 1.16±0.01 0.51±0.00
R-RAS 0.1 6.85±0.03 4.27±0.02 2.59±0.02 0.83±0.01
R-RAS 0.2 7.63±0.03 4.63±0.03 3.34±0.03 0.70±0.01

CMA-ES 1.0 11.98±0.03 7.22±0.03 3.13±0.02 0.69±0.01
CMA-ES 2.0 12.17±0.02 7.47±0.03 3.17±0.02 0.71±0.00

UH-CMA-ES 1.0 12.96±0.02 9.86±0.03 5.26±0.03 1.02±0.01
UH-CMA-ES 2.0 12.79±0.02 10.33±0.02 6.09±0.03 0.98±0.01

Table 3.6: Noiseless mean and standard error of the solutions with
best measured performance found during the optimization by different
optimizers, with multiple levels of dynamic additive noise applied to
the Rastrigin function (d = 2).

Optimizer σ k = 1 k = 2 k = 3 k = 6
R-RS 0.1 1.87±0.02 0.58±0.01 0.30±0.00 0.13±0.00

R-RS 0.2 2.19±0.02 0.77±0.01 0.48±0.01 0.25±0.00
R-RAS 0.1 7.68±0.07 5.65±0.05 5.10±0.05 3.68±0.03
R-RAS 0.2 6.61±0.06 4.77±0.04 4.61±0.04 2.86±0.03

CMA-ES 1.0 16.85±0.07 6.62±0.06 3.58±0.03 1.03±0.01
CMA-ES 2.0 17.48±0.07 6.16±0.05 2.85±0.02 0.98±0.00

UH-CMA-ES 1.0 16.79±0.08 4.73±0.03 2.98±0.02 1.11±0.00
UH-CMA-ES 2.0 17.67±0.07 5.21±0.05 2.11±0.01 0.95±0.01
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Table 3.7: Noiseless mean and standard error of the solutions with
best measured performance found during the optimization by different
optimizers, with multiple levels of dynamic additive noise applied to
the Rastrigin function (d = 10).

Optimizer σ k = 1 k = 2 k = 3 k = 6
R-RS 0.1 10.94±0.03 8.07±0.02 7.29±0.01 6.60±0.01
R-RS 0.2 10.30±0.03 7.24±0.02 6.40±0.01 5.93±0.01

R-RAS 0.1 13.20±0.03 9.55±0.03 8.47±0.02 6.97±0.02
R-RAS 0.2 13.98±0.04 10.16±0.03 8.35±0.03 6.88±0.02

CMA-ES 1.0 18.83±0.03 12.37±0.05 6.21±0.04 2.24±0.01
CMA-ES 2.0 19.59±0.03 13.31±0.04 6.46±0.04 2.13±0.01

UH-CMA-ES 1.0 19.89±0.03 15.94±0.03 11.02±0.03 3.95±0.02
UH-CMA-ES 2.0 19.71±0.03 16.57±0.04 12.64±0.03 3.91±0.02

the optimization. On average, compared solutions correspond to more

different estimators and a lower sample size is required to make statis-

tically significant comparisons. However, since a larger step size also

implies reducing the sampling granularity, the optimization enhances

the global search phase and the convergence speed tends to decrease.

For the same reason, as shown in Figure 3.3b, the effectiveness of the

double-shot strategy in a noisy environment is questionable. Although

such an approach can be a good strategy for deterministic optimiza-

tion, on each iteration very similar configurations are compared, the

signal-to-noise ratio tends to be low and the sample size required to

make statistically significant comparisons increases. Furthermore, as

the search region is compressed, this effect is further enhanced.

In noisy scenarios, step-size adaptation mechanisms and adaptations

of the search space are potentially counterproductive. In deterministic

functions, compressions of the search region usually lead to a better

exploitation of the local structure of the objective function. However,

because of the presence of noise, decisions to compress the search re-

gion might be wrong and therefore the optimization might prematurely
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Figure 3.3: Noiseless mean and standard error of the solutions with
best measured performance found during the optimization, using dif-
ferent step sizes and dynamic additive noise (Sphere function values,
with d = 10 and k = 3).

converge to false local optima.

In larger dimensions, the situation changes in the case of Rastrigin

function with lower levels of noise. However, it is expected that a

population-based algorithm performs better than single-point algo-

rithms in the case of a multimodal function like Rastrigin. Combining

a set of candidate solutions at each iteration gives the algorithm the

ability to adapt to the local topology of the objective function, reducing

the risk to get stuck in local optima.
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3.5 Conclusions

This Chapter investigated different components of diverse heuristic

strategies in the context of noisy optimization. A preliminary study

on the bidimensional Sphere function showed how the implicit averag-

ing effect of population-based algorithms does not always improve the

optimization as the size of the population is increased, and analyzed

how different amounts of noise change the impact of this effect on the

optimization. Randomized algorithms not based on populations have

been extended using a statistical analysis technique to deal with the

presence of noise, and they have been compared with CMA-ES and

UH-CMA-ES.

Results in Section 3.4.4 confirm the findings of [85]. The analysis pro-

vides an explanation about the reason for which larger populations do

not always improve the optimization, and a higher sample size should

be preferred when the signal-to-noise ratio is too low. Furthermore,

these results also agree with [25]: in the presence of noise, step length

control mechanisms are crucial to the performance of the optimiza-

tion. If optimization methods are extended with statistical analysis

techniques, the resolution at which the search space is explored mat-

ters significantly. With lower step sizes, solutions correspond to more

similar function evaluations, and the sample size required to statisti-

cally determine a difference increases.
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Comparisons in Simulation-based

Optimization

4.1 Diverse comparisons during the search

In many optimization problems, it might not be possible to find the

optimal solution in acceptable (polynomial) CPU times [95]. Further-

more, according to the application of interest, determining a sufficiently

good solution might be more relevant than finding a solution which is

guaranteed to be optimal. Heuristic search algorithms provide several

methods for this purpose [96, 1]. For example, local search strategies

can find good solutions trough the iterative improvement of an ini-

tial solution, by gathering information on the objective function from

within the neighborhood of the current solution. The target is not to

generate a sequence of solutions that provably converges to the global

optimum, but to improve the quality of visited solutions as quickly as

possible [25].

Optimization might be further complicated by the presence of noise,

due to several reasons: measurement errors, probabilistic modeling,
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and others. This is also the case in simulation-based optimization,

where the output of a stochastic simulator is used to estimate the

objective function. Therefore, to obtain effective simulation-based op-

timization strategies, finding a tradeoff between precision of estimation

and CPU time is essential.

Statistical analysis techniques can be integrated into heuristic search

algorithms [19, 20, 21, 22, 23]. This Chapter investigates possible

heuristic search integrations of the optimal computing budget allo-

cation (OCBA) and the indifference-zone (IZ) formulations, two pop-

ular R&S methods which have been widely explored in the traditional

R&S scenario. Differently from previous approaches [20, 22, 23], which

evaluate solutions only by assuming independent random realizations,

positive correlation is exploited in order to take statistically significant

decisions as soon as possible. Correlation is especially important in

noisy scenarios like simulation-based optimization, because it reduces

the computational burden required to compare estimators [55].

In this Chapter, building on the approximation of [97], OCBA is ex-

tended with a stopping rule which considers positive correlation among

the samples. Results show that, by evaluating simultaneously multiple

stopping criteria based on different assumptions about the samples, the

efficiency of the optimization significantly improves. Also, to further

enhance the exploration-vs-exploitation tradeoff of the search, the IZ

formulation is considered. Tests are run for the particular case that

k = 2, as it happens in local search methods like simulated annealing or

variants of random local search, but results are likely to be extended

to the general case where k > 2. Experiments consider the OCBA

approximation by [97] and a more conservative hypothesis testing pro-

cedure based on the probabilities of making errors of type I and type II.

Results show that diverse assumptions on the samples lead to different
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probability guarantees, with a significant impact on the efficiency of

the optimization.

The rest of the Chapter is structured as follows. Section 4.2 describes

related work about OCBA, IZ selection and different assumptions of

statistical testing. Section 4.3 defines possible ways to improve the

efficiency of heuristic search in simulation-based optimization. Section

4.4 outlines the design of the experiments and analyzes the results.

4.2 Statistical analysis methods

Given a finite set of k solutions, whose performance can be evaluated

only through sampling, the purpose of R&S methods is to identify the

best performing solution. This objective is usually bound by two possi-

ble constraints: guaranteeing a given fixed precision of correct selection

(PCS), or achieving the best possible PCS within a given fixed sam-

pling budget [54]. Since the primary goal of fixed-precision procedures

is to guarantee a specified PCS, they tend to be more conservative with

respect to fixed-budget procedures.

4.2.1 Optimal computing budget allocation

In the heuristic search setting the objective is to improve the quality of

visited solutions as soon as possible. OCBA is among the best perform-

ing fixed-budget procedures [16], so it is a good choice for integrating

a statistical selection procedure within heuristic search techniques.

Many methods in the R&S literature are statistically conservative, and

essentially allocate simulation replications to competing configurations

proportionally to the estimated variance without considering the value

of estimated means. OCBA is a less conservative sequential R&S pro-
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cedure based on Bayesian statistics, and it considers both estimated

variances and means. Given an estimate of the mean and the variance

of each competing configuration, OCBA defines the ratios between the

sample sizes of the k configurations which lead to the maximization

of an approximation of the PCS. At each step of the allocation proce-

dure, a part ∆ of the remaining budget is assigned to the configurations

according to these ratios. In order to avoid a poor allocation of the

budget at each iteration, especially in the first stages of the allocation,

∆ should be as small as possible and can be set as 1 [10]. The allo-

cation continues sequentially until a stopping criteria which provides

an approximated probability of correct selection (APCS) is satisfied.

However, the original allocation rule and stopping criteria of OCBA

do not consider correlation among the samples [10].

Some authors derived optimal allocation rules to be applied in the pres-

ence of positive correlation between paired evaluations [98, 99]. As the

correlation vanishes, the optimal allocation policy corresponds to the

original OCBA rules based on independent samples [98]. In particular,

if k = 2 and variances are the same, equal allocation is optimal for any

positively correlated samples. Otherwise, the greater the difference in

the variances, the higher level of positive correlation is required for

the equal allocation to be optimal. Also, if the variance difference

is sufficiently large, equal allocation can never be optimal. However,

these works have some limits. Firstly, exact solutions are available

only if k = 2. For the general case, only approximated asymptotic al-

location rules are derived and there is no guarantee of optimality in a

fully-sequential setting. Secondly, the PCS of the best found solution

cannot be computed directly and can only be estimated in a Monte

Carlo fashion. Thirdly, a significantly large initial sample size (10 or

20) is required in order to compute accurately the optimal allocation.
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Variance known

The original OCBA formulation assumes known means and variances

in order to derive PCS guarantees based on normal distributions. From

a Bayesian perspective, under a non-informative prior, it is possible to

make the assumption that f(x) follows a normal prior N(µx, σ
2
x) with

unknown µx and known σ2
x [10]. After simulation F (x, ξi) is run, the

posterior distribution pi(f(x)|F (x, ξi)) can be built by updating the

prior with the output of F (x, ξi). Since σ2
x is known, pi approximately

follows a normal distribution with mean f̂n(x) and variance σ2
x/n [100].

According to [10], in practice σ2
x can be approximated using σ̂2

n(x).

At each step of the optimization, a configuration x1 must be compared

against some other configuration x2. Since

f̂n1
(x1)− f̂n2

(x2) ≈ N

(

f̂n1
(x1)− f̂n2

(x2),
σ̂2
n1
(x1)

n1
+

σ̂2
n2
(x2)

n2

)

,

(4.1)

P{f̂n1
(x1)− f̂n2

(x2) > 0} ≈ Φ







f̂n1
(x1)− f̂n2

(x2)
√

σ̂2
n1
(x1)

n1
+

σ̂2
n2
(x2)

n2






(4.2)

where Φ is the c.d.f. of the standard normal distribution. So, given

k configurations which are approximately normally distributed with

means f̂n1
(x1), · · · , f̂nk

(xk) and variances σ̂2
n1
(x1), · · · , σ̂2

nk
(xk), esti-

mated with sample sizes n1, · · · , nk, the Approximate Probability of

Correct Selection (APCS) is computed as

1−
k
∏

i=1,i 6=b

Φ







f̂ni
(xi)− f̂nb

(xb)
√

σ̂2
ni
(xi)

ni

+
σ̂2
nb
(xb)

nb






, (4.3)
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where b is the index of the solution with the best sample mean.

Variance unknown

Since in practice means and variances are approximated using estima-

tors, t distributions can be used in order to be consistent with the prob-

abilistic assumptions linked to the unknown variance [97, 16]. There-

fore, from a Bayesian perspective, under a non-informative prior, it is

possible to make the assumption that f(x) follows a Normal-gamma

prior N(µx, σx) with unknown µx and unknown σ2
x [10]. After simu-

lation F (x, ξi) is run, the posterior distribution pi(f(x)|F (x, ξi)) can

be built by updating the prior with the output of F (x, ξi). Since σ2
x is

unknown, pi follows a non-standardized t distribution T with sample

mean f̂n(x), precision n/σ̂2
n(x) and n− 1 d.o.f. [101].

At each step of the optimization, a configuration x1 is proposed by a

heuristic algorithm and must be compared against another configura-

tion x2. As [97, 20] state, since

f̂n1
(x1)− f̂n2

(x2) ≈ St (µ, r, ν) , (4.4)

with location µ = f̂n1
(x1)−f̂n2

(x2), precision r = (
√

σ̂2
n1
(x1)/n1 + σ̂2

n2
(x2)/n2)

−1

and ν is Welch’s approximation [102] for the d.o.f., then

P{f̂n1
(x1)− f̂n2

(x2) > 0} ≈ Φν







f̂n1
(x1)− f̂n2

(x2)
√

σ̂2
n1
(x1)

n1
+

σ̂2
n2
(x2)

n2






(4.5)

where Φν is the c.d.f. of the standardized t distribution and ν corre-

sponds to the d.o.f. defined by Welch’s approximation. So, given k con-

figurations which approximately follow a non-standardized t distribu-
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tion with locations f̂n1
(x1), · · · , f̂nk

(xk) and variances σ̂2
n1
(x1), · · · , σ̂2

nk
(xk),

estimated with sample sizes n1, · · · , nk, Slepian’s inequality can be

used to compute the APCS as

1−
k
∏

i=1,i 6=b

Φν







f̂ni
(xi)− f̂nb

(xb)
√

σ̂2
ni
(xi)

ni

+
σ̂2
nb
(xb)

nb






. (4.6)

4.2.2 Indifference-zone methods

In real world problems, one might not be interested to correctly detect

very small differences between solutions. The difference between the

means of solutions may be smaller than a certain threshold δiz, called

the IZ parameter, which defines the minimum difference considered to

be worth correctly detecting. Thus, if considering solutions which have

means that fall into the indifference zone, it does not matter which one

of these good alternatives is selected as the best. Therefore, the target

is to provide a guarantee of probability of good selection (PGS) rather

than the original PCS.

The IZ formulation was first introduced by [40]. Subsequent works in-

clude [103, 43], who proposed solutions based on a two-stage approach,

and [104, 41, 105, 106, 55], who adopted a fully sequential approach.

The goal of IZ procedures is to discard configurations as soon as pos-

sible while guaranteeing the PCS, to reduce the computational burden

required to find x∗. But, as highlighted by [44], since most fully sequen-

tial procedures use the Bonferroni inequality to guarantee the PCS,

they are too conservative. Examples are [41, 105, 106, 55]. Unfortu-

nately, all these methods assume that no solution has been sampled

before the beginning of the R&S procedure. Also, they do not exploit
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samples obtained previously, and already visited solutions are always

evaluated anew. In contrast, during the heuristic search, using infor-

mation about already visited solutions is desirable. But extending IZ

techniques in order to exploit previous samples (and proving their va-

lidity), is not straightforward [107].

Differently from the previously mentioned R&S approaches, [105, 55]

propose methods to be applied during the heuristic search. Both works

are based on the results of [108, 109], who improved the PCS bounds

of Paulson’s procedure [104]. These approaches use a fixed triangu-

lar region, also called continuation region, to decide the sample size

which should be used for each comparison in order to guarantee the

PCS of the procedure. [105] introduce a fully-sequential scheme called

Sequential Selection with Memory (SSM), which eliminates solutions

as soon as they are considered as statistically inferior with respect to

the best. The algorithm memorizes samples found during the search,

in order to reuse them during the optimization. Then, at each iter-

ation of SSM, an additional observation is taken for each surviving

solution; solutions might be eliminated if the cumulative sum between

the evaluations of the solution and the best falls out from the continu-

ation region. [55] propose fully-sequential R&S methods for problems

in which solutions are generated sequentially. They propose single-

elimination approaches, where each solution is considered only once,

and stop-and-go schemes where each solution is considered through-

out the whole optimization. However, in order to fulfill the PCS re-

quirement using the triangular continuation region, a large number of

evaluations is necessary. Both procedures aim at guaranteeing a fixed-

precision and are based on the Bonferroni inequality. Thus, they are

more conservative with respect to OCBA and therefore constitute less

effective choices for integration with heuristic search algorithms.
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4.2.3 Paired and unpaired comparisons

In hypothesis testing, the difference in means can be tested according

to diverse assumptions about the samples used to compute the esti-

mators. In fact, samples can be considered as paired or unpaired. In

simulation-based optimization approaches which adopt CRN, the as-

sumption which leads to the minimum sample size required to take

a statistically significant decision depends on the amount of positive

correlation introduced by CRN.

At each step of a heuristic search algorithm, in the case that k = 2, a

new configuration xnew is proposed and must be compared against the

current best configuration xcurrent. The assumption of paired or un-

paired samples changes the statistic used to compute the p-value, and

also the d.o.f. of the distribution followed by the difference in means.

Therefore, diverse assumptions lead to different probability guarantees,

with a significant impact on the efficiency of the optimization.

Student’s and Welch’s t-tests

The following definitions extend the formulation provided in Section

3.2, by considering the possibility that the sample sizes might differ.

In this case, null and alternative hypothesis of the upper-tailed test on

the difference in means are defined as

H0 : f̂n1
(xnew)− f̂n2

(xcurrent) ≤ δH0

H1 : f̂n1
(xnew)− f̂n2

(xcurrent) > δH0
,

(4.7)

where δH0
= f(xnew)− f(xcurrent) = 0 defines the value for which the

null hypothesis is assumed to be true. To take a statistically significant

decision, samples can be assumed to be paired or unpaired and, in the
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latter case, assuming equal or diverse variances.

In the first case, using Student’s paired t-test, the mean of paired

differences corresponds to the difference of means and the statistic to

test is

Tn−1 =
δobs − δH0

σ̂n/
√
n

, (4.8)

where n = n1 = n2, observed difference δobs = f̂n(xnew) − f̂n(xcurrent)

and σ̂n is the sample standard deviation of paired evaluations. Also,

since σ of F is approximated by using the sample standard deviation

of the differences, Tn−1 follows a standardized t-distribution with n−1

d.o.f. In the second case, assuming equal variances, Student’s unpaired

t-test defines the statistic to test as

Tn1+n2−2 =
δobs − δH0

σ̂p

√

1
n1

+ 1
n2

, (4.9)

where σ̂p is the pooled estimator of the variance of δobs and Tn1+n2−2
follows a standardized t-distribution with n1 + n2 − 2 d.o.f. Other-

wise, assuming unequal variances, Welch’s approximation determines

the statistic to test as

Tν =
δobs − δH0
√

σ̂2
n1

n1
+

σ̂2
n2

n2

, (4.10)

where ν corresponds to the d.o.f defined by Welch’s approximation.

The aforementioned statistics are used to compute the p-value, which

defines how unlikely it is to observe the statistic if H0 is true. If this is

too unlikely , then H0 should be rejected. However, it is also important

to consider the probability β to make an error of type II, so to fail to

reject H0 when H0 is false. To compute β, a specific value for which
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H1 is assumed to be true has to be defined, because β depends on the

difference δobs for which H0 is assumed to be false and H1 to be true.

When H1 is true, the statistic follows a noncentral t-distribution.

According to [92], in the case of homoscedastic noise, β can be com-

puted according to a generic formula. Assuming known variances and

means, let the probability of making an error of type II to be computed

as

β = 1−Φ(δnorm
√
n−(σnew/σcurrent)zα/2)−Φ(−δnorm

√
n−σnew/σcurrent)zα/2)

(4.11)

where σnew = σ(xnew), σcurrent = σ(xcurrent), δnorm = f(xcurrent) −
f(xnew)/σcurrent and zα/2 is the quantile x of the standard normal

distribution such that Φ(x) = α/2. In the case of paired comparisons

n = n1 = n2, otherwise n corresponds to the sample size of the smallest

sample. Power size calculations for one-sided tests are obtained by

doubling the value of α. However, if σnew 6= σcurrent, (4.11) does not

yield a closed solution and a result can be obtained through iterative

methods. Thus, assuming that variances and means are estimated

using sample statistics, in the one-tailed case with paired samples

β ≈ 1− Φn−1(δnorm
√
n− tn−1,α)− Φn−1(−δnorm

√
n− tn−1,α) (4.12)

where Φn−1 is c.d.f. of the standardized t-distribution with n−1 d.o.f.,

δnorm = (δobs−δH0
)/σ̂n and tn−1,α is the quantile x of the standardized

t-distribution with n−1 d.o.f. such that Tn−1(x) = α. In the one-tailed

case with unpaired samples

β ≈ 1−Φn(k+1)−2(δnorm
√
n−tn(k+1)−2,α)−Φn(k+1)−2(−δnorm

√
n−tn(k+1)−2,α)

(4.13)
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where k is the ratio between the two samples used in the comparison

and δnorm = (δobs − δH0
)/σ̂p. Unfortunately, in the case of Welch’s

approximation, the computation of β is more complicated. [110] pro-

pose an iterative method, which can be adapted to the one-tailed case.

This approach is based on the numerical evaluation of the c.d.f. of a

noncentral t-distribution that is necessary to compute Welch’s approx-

imation, and its integration with respect to a Beta distribution. The

computation of the c.d.f. of the noncentral t-distribution is based on

[111].

On the assumptions of parametric tests

Parametric tests are usually more powerful than their non-parametric

alternatives, but they make some assumptions. Student’s t-test as-

sumes that F is normally distributed and the variances of samples are

at least approximately similar. When the sample sizes of the groups

are equal, Student’s t-test is robust to unequal variances as long as the

estimators do not deviate significantly from the true values. But, in

the case that both variances and sample sizes are significantly differ-

ent across samples, the test can be biased [112, 113]. Also, Student’s

t-test robustness to unequal variances relies on the assumption that

distributions are at least approximately normally distributed. This it

typically the case in simulation, because the output of a simulator is

estimated using an average metric that tends to satisfy the Central

Limit Theorem [10]. Although the normality assumption is not always

valid, it is often possible to batch a number of evaluations so that

normality is approximately satisfied [20, 16]. Therefore, if the sample

sizes are equal, Student’s t-test can be a valid statistic to adopt even

in the case that variances are different. Also, notice that as the quality
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of solutions becomes more and more similar throughout the search,

comparisons are going to require a larger sample size in order to take a

decision. As a consequence, even comparisons based on paired samples

iteratively become more robust. However, if sample sizes are signifi-

cantly different across samples, Welch’s t-test is more robust [114].

Whenever a positive correlation exists within paired samples, the de-

nominator for the paired t-test is smaller than its counterpart in the

unpaired t-test. Even if a paired test has an advantage in the case of

positive correlation, at the same time it has a loss of n− 1 d.o.f with

respect to an unpaired test. Increasing the d.o.f. of a test changes the

shape of the distribution of the statistic, improving its power. But it

is worth noticing that as long as the d.o.f. are large enough (usually at

least 30), the loss of d.o.f. does not significantly change the shape of

the distribution. Therefore, the tradeoff lies between the reduced vari-

ance caused by the positive correlation among dependent samples and

the increase of power caused by the additional d.o.f. of the statistic.

4.3 Integrations with R&S techniques

In the classic R&S setting, no solution is sampled before the beginning

of the procedure, and already visited solutions are always evaluated

anew. In contrast, during the heuristic search phase, using information

about already visited solutions is desirable. Similarly to [105], in the

proposed integrations all evaluations of solutions visited during the

search are kept in memory, in order to avoid the waste of computational

budget in the case of repeated comparisons.
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4.3.1 Hypothesis testing procedure

By taking a statistical hypothesis testing (HT) perspective, significant

differences between means can be detected by considering the proba-

bilities α and β of making an error of type I and type II. A statistically

significant decision can be taken according to the value of α when the

power of the test, defined as 1 − β, is sufficiently high. The relation-

ship between α and β is based on the importance given to correctly

detecting an effect on the population [115]. In most of the scientific

literature, concluding that there is an effect when there is no effect in

the population is usually considered four times as serious as conclud-

ing there is no effect when there is an effect in the population [116].

Therefore, if α = 0.05, a generally accepted minimum level of power

is 0.80.

Given a null hypothesis H0 and an alternative hypothesis H1, α defines

the probability to reject H0 (assuming H0 is true and H1 is false) and

β corresponds to the probability to fail to reject H0 (assuming H1 is

true and H0 is false). The p-value can be computed by using Student’s

or Welch’s t-tests for the difference in means. If the observed value of

the chosen statistic is too unlikely, then H0 should be rejected. But,

in order to take a statistically significant decision, enough statistical

evidence to provide a guarantee for β should also be gathered. To do

so, a significant difference in means to be detected, for which H0 is

assumed to be false and H1 to be true is necessary. This difference

defines the minimum effect in the population which is important to

detect, and it corresponds to δnorm in the power formulas of Section

4.2.3.

According to this framework, given k = 2 solutions to be compared, a

statistically significant decision can be taken as follows. Firstly, gather
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an initial first-stage sample of n0 = 2 evaluations for each solution.

Secondly, in a fully-sequential manner, increment the sample of each

solution with 1 additional evaluation based on a new realization ξi

(unless the evaluation for that realization has been saved in memory).

Because of the CRN assumption, the realization is the same for both

solutions. Evaluations are sequentially requested until a statistically

significant decision can be taken according to one of the stopping rules

based on the probability guarantees defined in Section 4.2.3.

Differently from the procedure in Section 3.2, which uses the statistical

guard mechanism to take a decision whenever the observed difference

in means is lower than a certain threshold, this procedure is able to

take a statistically significant decision within a margin of error defined

by δH0
.

4.3.2 OCBA using paired and unpaired samples

As mentioned in Section 4.2.3, the difference in means can be tested

according to diverse assumptions. By assuming paired or unpaired

samples, different approximations of the PCS can be used to take sta-

tistically significant decisions.

In simulation-based optimization, the amount of positive correlation

induced by CRN depends on how the internal models of the simulator

react to different values of the decision variables. Thus, it is not pos-

sible to decide a priori which assumption leads to the most efficient

stopping rule. The correlation among pairs of solutions might vary

across Θ, and depend on the similarity of the solutions. Therefore, it

is reasonable to expect that a single stopping rule based on paired or

unpaired samples is not going to always be the most efficient choice.

According to the comparison, assuming paired samples might be less
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or more efficient than assuming unpaired samples. One can consider

both stopping criteria simultaneously, taking a statistically significant

decision as soon as one of the two APCS is satisfied. In the case of

paired samples, according to Equation (4.8)

P{f̂n(x1)− f̂n(x2) > δH0
} ≈ Tn−1 =

f̂n(x1)− f̂n(x2)− δH0

σ̂n/
√
n

(4.14)

with n = n1 = n2. So, given k configurations whose paired differences

follow a standardized t distribution with n− 1 d.o.f, the APCS based

on paired samples is computed as

1−
k
∏

i=1,i 6=b

Φn−1

(

f̂n(xi)− f̂n(xb)− δH0ib

σ̂n(xi, xb)/
√
n

)

, (4.15)

where σ̂n(xi, xb) is the sample standard deviation of paired evaluations

of xi and xb. In the case of unpaired samples, the APCS is computed

according to Welch’s approximation as defined in Equation (4.6).

4.3.3 IZ selection

In the traditional R&S scenario, δiz is statically defined by the deci-

sion maker. The objective of the statistical analysis is to find the best

solution among a static set of k alternatives by at least δiz (PCS case)

or a solution which is at most δiz away from the best (PGS case). In

this setting, regardless of the budget, the priority is to provide a fixed-

precision guarantee. In contrast, if a R&S method is integrated within

a search algorithm which is also bound by the same total budget, the

precision of estimation impacts also the search policy and the target is

to achieve the best possible PCS (or PGS) within a fixed budget. Thus,
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the higher the precision, the less the search space is explored. A set of

k solutions is compared at each iteration of the search, but the qual-

ity of the final result depends also on the exploration-vs-exploitation

tradeoff of the search.

The magnitude of the objective function might change throughout the

search space. A static δiz does not consider this variation, because

it is formulated according to the best possible outcome that the de-

cision maker expects from the optimization. However, this is just an

approximation which must be manually defined and it is not easy to

be correctly determined a priori. Therefore, one could define δiz as a

percentage of the sample mean of the current best estimator, in order

to consider an IZ parameter which changes according to the variations

of magnitude during the search as

δiz = p · f̂(xcurrent),

with 0 < p ≤ 1. So, statistically significant differences worth detecting

become proportional to the magnitude of the objective function.

4.4 Experiments

Experiments are run on four benchmark functions extended with ar-

tificial noise and HotelSimu. The benchmarks are Sphere, Rastrigin,

Griewank and Ackley functions, defined in two dimensions. All func-

tions have a global optimum in (0, 0) and, apart from the first one, are

multimodal [117, 118].
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4.4.1 Noise in benchmark functions

To evaluate the impact of noise on the optimization, a standard prac-

tice in the literature is to extend deterministic functions by introducing

additive noise. In this Chapter, benchmarks are perturbed by intro-

ducing different levels of additive noise as

f(x) = f(x) +N(0, d · σε) (4.16)

where σε ∈ {1, 2, 3} and d defines to the dimensions of the function.

In the experiments, the additive noise is generated in order to simu-

late different levels of correlation induced by the adoption (or not) of

CRN. The amount of correlation is controlled by sampling the noise of

paired samples from a Bivariate Normal Distribution with correlation

coefficient ρ. Multiple correlation levels are used to provide empirical

evidence about how paired comparisons take advantage of the positive

correlation between samples with respect to the help obtained by the

additional d.o.f. employed by the statistics based on unpaired samples.

Two random variables X1, X2 follow a Bivariate Normal Distribution

with correlation coefficient ρ when

(

X1

X2

)

∼ N

[(

µ1

µ2

)

,

(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)]

(4.17)

Let Z1, Z2 be two independent random variables which follow a stan-

dard normal distribution. To sample from a Bivariate Normal Distri-

bution, samples from Z1, Z2 are transcformed according to

X1 = σ1Z1 + µ1

X2 = σ2(ρZ1 +
√

1− ρ2Z2) + µ2

(4.18)
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where µ1 = µ2 = 0 and σ1 = σ2 = d · σε. In the experiments, ρ ∈
{0.00, 0.25, 0.50, 0.75, 1.00}. In fact, if CRN are used, it is reasonable

to assume that the correlation between simulations based on the same

realizations is going to be non negative. Also, the correlation between

nearby solutions in the search space is expected to be higher with

respect to solutions which are far away.

4.4.2 Setup

Each experiment is based on 100 macroreplications initialized with

a different ξs, and each macroreplication adopts a budget (number of

function evaluations) of 500·d, where d is the dimension of the problem.

The initial solution of each macroreplication is generated according to

a uniform distribution defined on the interval of each dimension of Θ.

All values of benchmark functions are normalized by the dimensional-

ity. Furthermore, in the experiments based on Hotelsimu, the ground

truth is not available and the quality of each best found solution is

approximated by building an estimator based on a fixed set of n = 100

seeds (which are disjoint from the ones used in the macroreplications).

At the end of the optimization, the solution x∗ with the best measured

performance is returned.

4.4.3 Local search algorithm

In each experiment, the algorithm starts the optimization from a ran-

domly generated solution x0 (according to a uniform distribution de-

fined on Θ) and considers a local search region around x0. The local

search region is iteratively adapted according to a variant of random

local search (RLS). In RLS, a new candidate solution xnew is sam-
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pled from an interval defined around the current best solution xcurrent,

according to some distribution. In the RLS variant adopted for the

experiments, called dynamic RLS (D-RLS), a uniform distribution is

used to sample new solutions. A step size p defines, as a percentage

of the interval in which the function is defined, the boundaries of the

interval around the best current solution in which new candidate so-

lutions are sampled. Consequently, diverse values of p correspond to

search policies with different levels of locality. A step size of 1 makes

the search global, and the optimization corresponds to pure random

search. Initially, and after each restart, p = 0.5. The neighborhood of

xcurrent is defined as a dynamic box which is enlarged each time xnew is

better than xcurrent and shrinked otherwise. In both cases, similarly to

[93], the expansion factor has a ratio of 1/10. The search is restarted

in two cases: whenever the search box becomes too small (p < 0.01),

or when a stagnation is detected (the quality of the current best solu-

tion does not improve by at least 1% after 100 function evaluations).

Restarts are of two different types: from randomly chosen points in Θ,

or as the average of the best solutions found during the optimization

before a restart. In order to balance exploration and exploitation of

previous results, restarts are alternated.

4.4.4 Results

D-RLS is integrated with the statistical techniques enumerated in Sec-

tion 4.3. Two sets of tests have been designed to consider integrations

which are based on PCS or PGS guarantees, so in order to include or

not the IZ formulation. In the first set, the HT and OCBA procedures

are combined with D-RLS in order to provide PCS guarantees. In the

second set, the HT and OCBA methods are extended according to the
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(d) ρ = 0.00

Figure 4.1: Noiseless mean and standard error of the solutions with
best measured performance found during the optimization, at different
levels of correlation (Rastrigin function values, with d = 2 and σ = 3).

IZ formulation in order to provide PGS guarantees.

Both procedures are tested with different probability guarantees which

stop the sequential allocation of samples (stopping criteria) according

to the statistics defined in Section 4.2.3. In the following analysis,

stopping criteria are based on Student’s t paired statistic (P), Welch’s

t unpaired statistic (W), or simultaneously on both statistics (PW).

OCBA based on Welch’s stopping criterion (OCBA-W) corresponds to

the standard OCBA formulation based on the t-distribution approxi-

mation proposed by [97].
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(b) ρ = 0.50
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(c) ρ = 0.25
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Figure 4.2: Noiseless mean and standard error of the solutions with
best measured performance found during the optimization, at different
levels of correlation (Ackley function values, with d = 2 and σ = 3).

First set of experiments

In the vast majority of cases, OCBA-WP obtains the best performance

both in terms of efficiency and quality of the solution found at the end

of the optimization. Figure 4.1 and Figure 4.2 show that on average

OCBA-WP converges to the best found solution before the other com-

parison schemes at different levels of correlation. This achievement is

reached in almost all experiments, with the exception of a few cases

where HT-P or HT-WP outperform OCBA-WP when the correlation
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Table 4.1: Noiseless mean and standard error of the solutions with best
measured performance found during the optimization (Sphere function
values, d = 2).

ρ = 0.25 ρ = 0.50
Optimizer σ = 1 σ = 2 σ = 3 σ = 1 σ = 2 σ = 3

R-P 0.22± 0.04 0.51± 0.08 0.60± 0.10 0.20± 0.04 0.36± 0.05 0.42± 0.06

HT-W 0.34± 0.05 0.49± 0.09 0.71± 0.08 0.37± 0.05 0.59± 0.11 0.77± 0.12
HT-WP 0.21± 0.04 0.42± 0.05 0.60± 0.10 0.18± 0.03 0.34± 0.04 0.59± 0.06

OCBA-W 0.20± 0.02 0.45± 0.04 0.68± 0.06 0.21± 0.03 0.48± 0.06 0.68± 0.08
OCBA-WP 0.19± 0.02 0.41± 0.04 0.47± 0.05 0.16± 0.02 0.41± 0.05 0.47± 0.05

Table 4.2: Noiseless mean and standard error of the solutions with
best measured performance found during the optimization (Rastrigin
function values, d = 2).

ρ = 0.25 ρ = 0.50
Optimizer σ = 1 σ = 2 σ = 3 σ = 1 σ = 2 σ = 3

HT-P 2.06± 0.27 2.74± 0.29 3.49± 0.34 2.17± 0.27 2.73± 0.29 3.03± 0.31
HT-W 2.28± 0.27 3.51± 0.39 3.67± 0.36 2.83± 0.35 3.67± 0.38 4.03± 0.38

HT-WP 1.84± 0.26 2.54± 0.26 2.76± 0.27 1.59± 0.23 2.29± 0.27 2.56± 0.29
OCBA-W 1.34± 0.24 2.04± 0.27 2.48± 0.26 1.72± 0.26 2.20± 0.26 2.89± 0.30

OCBA-WP 0.70± 0.05 1.16± 0.07 1.60± 0.09 0.81± 0.04 1.09± 0.08 1.78± 0.13

Table 4.3: Noiseless mean and standard error of the solutions with
best measured performance found during the optimization (Griewank
function values, d = 2).

ρ = 0.25 ρ = 0.50
Optimizer σ = 1 σ = 2 σ = 3 σ = 1 σ = 2 σ = 3

HT-P 0.78± 0.06 0.93± 0.06 1.32± 0.14 0.67± 0.02 0.97± 0.10 0.96± 0.09
HT-W 0.99± 0.12 1.05± 0.09 1.47± 0.16 0.97± 0.08 1.06± 0.08 1.37± 0.15

HT-WP 0.83± 0.07 0.97± 0.05 1.18± 0.13 0.72± 0.04 0.95± 0.10 1.01± 0.05
OCBA-W 0.82± 0.61 1.04± 0.49 1.17± 0.69 0.82± 0.95 1.14± 1.18 1.36± 0.98

OCBA-WP 0.71± 0.18 0.88± 0.29 1.01± 0.48 0.67± 0.17 0.82± 0.33 0.95± 0.44

Table 4.4: Noiseless mean and standard error of the solutions with best
measured performance found during the optimization (Ackley function
values, d = 2).

ρ = 0.25 ρ = 0.50
Optimizer σ = 1 σ = 2 σ = 3 σ = 1 σ = 2 σ = 3

HT-P 2.18± 0.23 4.02± 0.33 6.04± 0.35 1.92± 0.21 3.65± 0.34 4.64± 0.34
HT-W 3.06± 0.31 5.12± 0.35 6.54± 0.37 3.77± 0.36 5.25± 0.38 6.84± 0.34

HT-WP 1.98± 0.22 3.30± 0.30 4.96± 0.34 1.90± 0.24 2.80± 0.30 4.21± 0.33
OCBA-W 2.05± 0.25 2.95± 0.30 4.43± 0.33 1.69± 0.18 3.51± 0.32 4.49± 0.34

OCBA-WP 0.70± 0.05 1.66± 0.09 2.38± 0.13 0.79± 0.06 1.78± 0.11 2.64± 0.17
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is high (ρ = 0.75 or ρ = 1.00). Tables 4.4 - 4.1 provide the noiseless

value of the average best found solution at the end of the optimization

with ρ = 0.5 and ρ = 0.25, at different levels of additive noise. Not

all results are reported in the tables, but the outcomes are coherent

with the observations above. The same outcome is observed in Figure

4.3, where the optimization is applied on a particular booking sce-

nario in HotelSimu (the same use case scenario of Hotel 07 in Section

2.5.2). HT-WP performs similarly to OCBA-W under mild amounts

of correlation (ρ = 0.25 or ρ = 0.50). As the correlation decreases,

OCBA-W performs slightly better and viceversa. Although, with high

levels of correlation (ρ = 0.75), even HT-P performs better with re-

spect to OCBA-W. By considering simultaneously both paired and

Welch stopping criteria, on average both HT and OCBA methods sig-

nificantly improve their performance with respect to their counterparts

which only consider stopping criteria singularly.

Second set of experiments

The IZ formulation improves the efficiency of both HT and OCBA

procedures. The performance gap between HT and OCBA is drasti-

cally reduced, but OCBA-WP performs better with respect the other

approaches in most case. Also, differently from the previous set of ex-

periments, HT-WP achieves better results with respect to OCBA-W,

the classical OCBA formulation. By requesting the null hypothesis

value to be different from 0, an indifference zone is introduced in the

difference in means in order to reduce the signal which is supposed

to be correctly detected. As a consequence, comparisons become less

conservative and more budget is available for the optimization. By

considering the PGS, the difference in terms of performance between
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Figure 4.3: Estimated mean and standard error of the best solutions
found during the optimization (HotelSimu revenue from hotel 07).

HT and OCBA is reduced. Tables 4.5 - 4.8 show a subset of the re-

sults on benchmark functions for the case where ρ = 0.50 and σ = 3.

The adoption of an absolute δabs implicitly requires a manual adapta-

tion which depends on the magnitude of the function, since there is

no direct relationship between δabs and the function value. Defining a

relative δrel removes this limit, and the performance is similar. How-

ever, even in this case, some manual tuning is required. A possible

direction for future research involves the dynamic adaptation of the IZ

parameter according to the step size of the algorithm.
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Table 4.5: Noiseless mean and standard error of the solutions with best
measured performance found during the optimization (Sphere function
values, using IZ with ρ = 0.50 and σ = 3).

absolute relative
Optimizer δabs = 0.10 δabs = 0.50 δabs = 1.00 δrel = 0.01 δrel = 0.05 δrel = 0.10

HT-P 0.35± 0.04 0.27± 0.04 0.27± 0.03 0.39± 0.05 0.34± 0.04 0.29± 0.03

HT-W 0.62± 0.08 0.38± 0.04 0.43± 0.06 0.66± 0.08 0.61± 0.07 0.54± 0.05
HT-WP 0.57± 0.07 0.40± 0.03 0.37± 0.04 0.51± 0.05 0.51± 0.05 0.39± 0.04

OCBA-W 0.73± 0.08 0.53± 0.05 0.42± 0.04 0.62± 0.07 0.69± 0.07 0.48± 0.06
OCBA-WP 0.31± 0.04 0.31± 0.04 0.31± 0.04 0.30± 0.04 0.33± 0.04 0.31± 0.04

Table 4.6: Noiseless mean and standard error of the solutions with
best measured performance found during the optimization (Rastrigin
function values, using IZ with ρ = 0.50 and σ = 3).

absolute relative
Optimizer δabs = 0.10 δabs = 0.50 δabs = 1.00 δrel = 0.01 δrel = 0.05 δrel = 0.10

R-P 2.76± 0.30 2.58± 0.28 1.70± 0.18 2.60± 0.22 1.80± 0.13 1.68± 0.16
R-W 3.82± 0.36 2.46± 0.19 1.64± 0.11 3.20± 0.24 2.02± 0.13 1.92± 0.15

R-WP 2.31± 0.26 1.41± 0.10 1.12± 0.08 2.20± 0.21 1.34± 0.09 1.23± 0.08

OCBA-W 2.59± 0.27 1.83± 0.13 1.67± 0.10 2.17± 0.18 1.80± 0.12 1.81± 0.13
OCBA-WP 1.33± 0.08 1.35± 0.08 1.32± 0.08 1.27± 0.08 1.33± 0.08 1.32± 0.08

Table 4.7: Noiseless mean and standard error of the solutions with
best measured performance found during the optimization (Griewank
function values, using IZ with ρ = 0.50 and σ = 3).

absolute relative
Optimizer δabs = 0.10 δabs = 0.50 δabs = 1.00 δrel = 0.01 δrel = 0.05 δrel = 0.10

R-P 0.90± 0.04 0.82± 0.04 0.88± 0.11 0.88± 0.04 0.87± 0.04 0.83± 0.07
R-W 1.22± 0.12 1.08± 0.08 0.95± 0.05 1.41± 0.15 1.08± 0.06 1.00± 0.05

R-WP 0.92± 0.05 0.85± 0.04 0.87± 0.04 0.91± 0.04 0.93± 0.04 0.89± 0.04
OCBA-W 1.20± 0.08 1.14± 0.06 1.00± 0.04 1.28± 0.09 1.12± 0.07 0.83± 0.07

OCBA-WP 0.79± 0.03 0.79± 0.03 0.79± 0.03 0.83± 0.03 0.79± 0.03 0.80± 0.03

Table 4.8: Noiseless mean and standard error of the solutions with best
measured performance found during the optimization (Ackley function
values, using IZ with ρ = 0.50 and σ = 3).

absolute relative
Optimizer δabs = 0.10 δabs = 0.50 δabs = 1.00 δrel = 0.01 δrel = 0.05 δrel = 0.10

R-P 3.81± 0.30 2.06± 0.18 1.75± 0.18 3.84± 0.28 2.33± 0.20 1.76± 0.15
R-W 6.42± 0.38 4.23± 0.34 2.10± 0.16 6.33± 0.37 2.75± 0.17 1.99± 0.10

R-WP 3.48± 0.29 1.81± 0.11 1.51± 0.10 3.22± 0.28 1.96± 0.12 1.57± 0.07

OCBA-W 4.15± 0.32 2.51± 0.18 2.43± 0.11 4.00± 0.28 2.35± 0.10 1.76± 0.15
OCBA-WP 1.67± 0.08 1.67± 0.08 1.72± 0.08 1.75± 0.09 1.68± 0.08 1.65± 0.08
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4.5 Conclusions

This Chapter integrated different statistical analysis techniques with a

variant of random local search and investigated the respective effects

on the heuristic search in simulation-based optimization. Since CRN

are commonly used to reduce the impact of noise on the computational

load of simulation-based optimization, tests on benchmark functions

considered various levels of additive noise and positive correlation.

Results show that the adoption of multiple stopping criteria based on

Student’s paired t-test and Welch’s unpaired t-test significantly im-

proves the efficiency of the optimization. In particular, OCBA-WP

improves its performance with respect to its classic formulation as the

amount of correlation among samples increases. Also, even in the case

that the samples are uncorrelated, OCBA-WP still performs better

or approximately the same as OCBA-W. However, in the presence of

negative correlation (as in the case that variance reduction techniques

like antithetic sampling are employed), paired comparisons would be

penalized and not particularly effective.

The introduction of the IZ parameter in the formulation improves sig-

nificantly the efficiency of the optimization in all cases, because com-

parisons are not required to detect exact differences. Thus, statisti-

cally significant decisions can be taken using smaller sample sizes and

more budget is available to explore the search space. Although it is

possible that the best visited configuration is not selected in favour

of a good alternative, considering the PGS to provide a probability

guarantee leads to a faster convergence with respect to PCS. In the

heuristic search setting, the impact of a wrong decision is not as seri-

ous as in the traditional R&S scenario. In the former case, even if a

solution is discarded, a similar solution might be sampled again during
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the optimization. In the latter case, once a solution is discarded, it is

removed completely and not considered further. Also, as the quality

of solutions becomes more and more similar throughout the search,

comparisons are going to require a larger sample size in order to take

a decision and comparisons iteratively become more robust.
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Conclusions

This dissertation introduced HotelSimu, a novel simulation-based op-

timization approach for hotel RM, and investigated various statistical

analysis approaches which can be employed to improve the efficiency

of black-box methods in noisy scenarios.

In order to maximize the revenue of an hotel, HotelSimu avoids the

formulation of a mathematical model and employs a discrete-event

simulator which mimics the processes that define the hotel booking

scenario. The generation of multiple realizations of the stochastic pro-

cess used to model the booking logic is employed to estimate the total

revenue obtained by several dynamic pricing policies. The expectation

of the revenue distribution is used by black-box optimization methods

to find the dynamic pricing policy which is expected to maximize the

revenue. Furthermore, HotelSimu’s parametric demand models can be

used to inject new information into the simulator, in order to adapt

pricing policies to mutated market conditions and run what-if analy-

ses. Possible directions of future work could involve the extension of

the dynamic pricing model by using non-linear models like neural net-

works or Gaussian processes. Other extensions could include multiple
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categories of customers and rooms in the simulation logic, leading to

the creation of multiple price elasticity models and to the necessity of

optimally allocating the availability of rooms while dynamically chang-

ing the price.

Black-box algorithms can deal with the presence of noise by combining

multiple solutions located in a restricted area of the search space, or by

evaluating multiple times each solution. The implicit averaging effect

of population-based schemes is effective under mild noise conditions,

but in the presence of larger amounts of noise statistical analysis tech-

niques are necessary in order to effectively deal with the presence of

noise. The increase of the populations’ size does not always lead to an

improvement of the optimization performance, and additional evalua-

tions of the samples should be preferred whenever the signal-to-noise

ratio is low. Future work should extend the current results in order to

consider additional black-box strategies and more benchmarks. Also,

it would be worth investigating the performance of more global search

policies, which iteratively compare configurations located farther away

in Θ and search more locally in different parts of Θ only if sufficient

empirical evidence to do so is observed. Approaches like CoRSO [119]

or Bayesian Optimization [120] could be good choices.

Statistical analysis techniques can be integrated within heuristic search

methods, in order to efficiently manage the optimization budget and

manage the number of replications of each solution in comparisons.

The adoption of CRN in simulations induces a variable amount ot pos-

itive correlation between the samples of different solutions to be com-

pared. Therefore, it is reasonable to exploit this correlation in order to

take a statistically significant decision as soon as possible. Considering

simultaneously multiple stopping criteria based on Student’s t paired

test and Welch’s t unpaired test significantly improves the efficiency of
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the optimization. In particular, as the amount of the correlation among

samples increases, OCBA significantly improves its performance with

respect to its classic formulation. Moreover, the introduction of the

IZ parameter in the hypothesis formulation leads to stopping criteria

based on PGS guarantees, which require lower samples with respect

to their PCS counterpart. The efficiency of the optimization signifi-

cantly improves since more budget is available to explore the search

space, and finding smarter ways to set dinamically the IZ parameter

(possibly with respect to the locality of the search or the quality of the

current best solution) might lead to further improvements.
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