Learning on relational data is a relevant task in the machine learning community. Extracting information from structured data is a non-trivial task due to the combinatorial complexity of the domain and the necessity to construct methods that work on collections of values of different sizes rather than fixed representations. Relational data can naturally be interpreted as graphs, a class of flexible and expressive structures that can model data from diverse domains,from biology to social interactions. Graphs have been used in a huge variety of contexts, such as molecular modelling, social networks, image processing and recommendation systems. In this manuscript, we tackle some challenges in learning on relational data by developing new learning methodologies. Specifically, in our first contribution, we introduce a new class of metrics for relational data based on relational features extraction technique called Type ExtensionTrees. This class of metrics defines the (dis)similarity of two nodes in a graph by exploiting the nested structure of their relational neighborhood at different depth steps. In our second contribution, we developed a new strategy to collect the information of multisets of data values by introducing a new framework of learnable aggregators called Learning Aggregation Functions.We provide a detailed description of the methodologies and an extensive experimental evaluation on synthetic and real world data to assess the expressiveness of the proposed models. A particular focus is given to the application of these methods to the recommendation systems domain, exploring the combination of the proposed methods with recent techniques developed for Constructive Preference Elicitation and Group Recommendation tasks.

Relational Learning approaches for Recommender Systems / Pellegrini, Giovanni. - (2021 Oct 07), pp. 1-114. [10.15168/11572_318892]

Relational Learning approaches for Recommender Systems

Pellegrini, Giovanni
2021-10-07

Abstract

Learning on relational data is a relevant task in the machine learning community. Extracting information from structured data is a non-trivial task due to the combinatorial complexity of the domain and the necessity to construct methods that work on collections of values of different sizes rather than fixed representations. Relational data can naturally be interpreted as graphs, a class of flexible and expressive structures that can model data from diverse domains,from biology to social interactions. Graphs have been used in a huge variety of contexts, such as molecular modelling, social networks, image processing and recommendation systems. In this manuscript, we tackle some challenges in learning on relational data by developing new learning methodologies. Specifically, in our first contribution, we introduce a new class of metrics for relational data based on relational features extraction technique called Type ExtensionTrees. This class of metrics defines the (dis)similarity of two nodes in a graph by exploiting the nested structure of their relational neighborhood at different depth steps. In our second contribution, we developed a new strategy to collect the information of multisets of data values by introducing a new framework of learnable aggregators called Learning Aggregation Functions.We provide a detailed description of the methodologies and an extensive experimental evaluation on synthetic and real world data to assess the expressiveness of the proposed models. A particular focus is given to the application of these methods to the recommendation systems domain, exploring the combination of the proposed methods with recent techniques developed for Constructive Preference Elicitation and Group Recommendation tasks.
XXXIII
2019-2020
Università degli Studi di Trento
Information and Communication Technology
Passerini, Andrea
no
Inglese
File in questo prodotto:
File Dimensione Formato  
thesis(1).pdf

accesso aperto

Tipologia: Tesi di dottorato (Doctoral Thesis)
Licenza: Creative commons
Dimensione 4.4 MB
Formato Adobe PDF
4.4 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11572/318892
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact