Relational Learning
approaches for
Recommender Systems

Giovanni Pellegrini

Advisor: Andrea Passerini

Department of Information Engineering and Computer Science

University of Trento

Ph.D. Dissertation

University of Trento September 2021

Abstract

Learning on relational data is a relevant task in the machine learning com-
munity. Extracting information from structured data is a non-trivial task due
to the combinatorial complexity of the domain and the necessity to construct
methods that work on collections of values of different sizes rather than fixed
representations. Relational data can naturally be interpreted as graphs, a class
of flexible and expressive structures that can model data from diverse domains,
from biology to social interactions. Graphs have been used in a huge variety of
contexts, such as molecular modelling, social networks, image processing and
recommendation systems. In this manuscript, we tackle some challenges in
learning on relational data by developing new learning methodologies. Specifi-
cally, in our first contribution, we introduce a new class of metrics for relational
data based on relational features extraction technique called Type Extension
Trees [60]. This class of metrics defines the (dis)similarity of two nodes in
a graph by exploiting the nested structure of their relational neighborhood at
different depth steps. In our second contribution, we developed a new strat-
egy to collect the information of multisets of data values by introducing a new
framework of learnable aggregators called Learning Aggregation Functions.
We provide a detailed description of the methodologies and an extensive exper-
imental evaluation on synthetic and real world data to assess the expressiveness
of the proposed models. A particular focus is given to the application of these
methods to the recommendation systems domain, exploring the combination
of the proposed methods with recent techniques developed for Constructive

Preference Elicitation [42] and Group Recommendation tasks.

Table of contents

List of figures ix
List of tables xiii
1 Introduction 1
1.1 Contributions 2

1.2 Outline of the Thesis 3

2 Background 5
2.1 FirstOrder Logic 5

22 Graphs. 6

2.3 Relational Features, 7
2.3.1 Type Extension Trees 8

2.4 Kernel Methods on Graphs 13
2.4.1 Weisfeiler-Lehman Graph Kernel 15

242 WL Subtree Kernel 18

243 WL Kernels with continuous labels 19

2.44 Walks and paths kernels 20

2.5 Deep Learning for Graphs 22
2.5.1 The Graph Neural Network Model 23

2.5.2 Graph Convolutional Networks 24

253 GraphSAGE oo 25

2.5.4 Graph Isomorphism Networks 26

3 Distance Measures Based On TETSs 29
3.1 Relational Data Structures 29

3.2 Logistic Evaluation Function 31

vi

| Table of contents

3.2.1 Neural network perspective and weight learning 35
3.3 Histogram Approximation 35
34 NHT Metrics o i 38
3.4.1 Node Histogram Metric 39
3.4.2 Histogram Tree Metric 43
343 MarginalEMDo 43
3.4.4 Baseline Count Distance 44
3.5 Metric Tree Retrieval 45
3.6 Experiments Lo 47
3.6.1 Data and Experimental Setup. 47
3.6.2 H-index classification. 49
3.6.3 H-index regression 55
3.64 Retrieval oL 56
377 MetricLearning Lo 59
38 The TETRIC 60
39 TETRICLearning 62
3.10 Experiments on Metric Learning 66
3.10.1 Data and Experimental Setup. 66
3.10.2 Synthetic Dataset 66
3.10.3 Real-world Datasets 68
301 Remarks 71
Learning Aggregation Functions 73
4.1 The problem of aggregation 74
4.2 Learning Aggregation Functions 75
4.2.1 The Learnable Aggregator 75
422 LAF Architecture 79
423 LAFLayer 80
43 Experiments e e e e 83
4.3.1 Scalars Aggregation 83
432 MNISTdigits 85
433 PointCloud 87
434 SetExpansion 88
4.3.5 Multi-task graph properties 89
4.3.6 SetTransformer with LAF aggregation 90
44 Remarkso 93

Table of contents | vii

S Applications in recommendation systems 95
5.1 Constructive Preference Elicitation Model 96
5.1.1 Extension with Relational Metrics 98

5.2 Group Recommendation 100

6 Conclusions 103

References 105

List of figures

2.1

2.2

3.1

Graphical representation of: a) a relational graph, b) a TET
and c¢) a TET-value. The TET b) defines the feature structure
for an author entity. To obtain the feature values for objects the
root variables are instantiated and the TET extracts the count-
of-count features from the relational graph. The TET-value c)
of the author a; uses only true values.
Example of the iterations of the 1-dimensional Weisfeiler-Lehman
algorithm. Each quadrant shows the initial state of the labels
at the beginning of the iteration, and the relabeling step consid-
ering the different combinations of nodes’ label and neighbors
multiset. The algorithm stops at iteration 3: the coloring of the

nodes of the graphs is different.

TET-feature for an author a. The numbers attached to the nodes
and the edges represent the weights of a possible parameter

assignment B.

x | List of figures

3.2

3.3
3.4

3.5

3.6

4.1
4.2
4.3

Graphical representation of the steps from a TET-value to its
histograms approximation. The value ¥ is computed by the lo-
gistic evaluation function which outputs the logistic evaluation
tree LB (y). Then the multi-value paths .# (v;) are constructed
from LB (7). The histograms are computed for nodes (from left
to right) vg, vy, vz, vz with N = 4. Empty cells correspond to
zero count. A node v; with depth d; in the TET is represented
by a d;-dimensional histogram whose dimensions correspond
to the TET nodes on the path from the root to v;. Since all
paths start with the same value (0.0001) in the first compo-
nent, and end with a 1 in the last component, only a single
one-dimensional slice in the 3-dimensional histogram is popu-
lated with nonzerocounts.
TETs used for AMiner a) and IMDb datab),c).
Results on the bibliometrics classification task. We compare
the accuracy of the considered methods on the reduced data
set (top) and on the full data set (bottom). See Table 3.1 for a
definition of the different methods being compared.
Results on the bibliometrics regression task. We compare the
RMSE of the considered competitors on the reduced data set
(top) and on the full data set (bottom). See Table 3.1 for a
definition of the different methods being compared.
TET for a node of the synthetic dataset. The numbers attached
to the nodes and the edges represent the weights of the lo-
gistic functions that allow for accurate classification using the

Ae_memd METIC. o o e e e e e e

LAF functions with randomly generated parameters
End-to-end LAF architecture.
Trend of the MAE obtained with an increasing number of LAF
units for most of the functions reported in Table 1. The error
distribution is obtained performing 500 runs with different ran-
dom parameter initializations. A linear layer is stacked on top
of the LAF layer with more than 1 unit. The y axis is plot in
logaritmicscale.

67

List of figures | xi

4.4

4.5

4.6

4.7

Test performances for the synthetic experiment with integer
scalars on increasing test set size. The x axis of the figures
represents the maximum test set cardinality, whereas the y axis
depicts the MAE error. The dot, star, diamond and triangle
symbols denote LAF, DeepSets, PNA, and LSTM respectively.
Test performances for the synthetic experiment on MNIST dig-
its on increasing test set size. The x axis of the figures rep-
resents the maximum test set cardinality, whereas the y axis
depicts the MAE error. The dot, star, diamond and traingle
symbols denote LAF, DeepSets, PNA and LSTM respectively.
Scatter plots of the MNIST experiment comparing true (x axis)
and predicted (y axis) values with 50 as maximum test set size.
The target aggregations are max (up-left), inverse count (up-
right), median (bottom-left) and kurtosis (bottom-right).
Distribution of the predicted values for ST-PMA and ST-LAF
by set cardinalities. On the x-axis the true labels of the sets,
on the y-axis the predicted ones. Different colors represent the

sets’ cardinalities |x|. L.

84

86

87

91

List of tables

3.1
32

33

4.1

4.2

4.3

4.4

Overview of methods and notations
Results on the recasting experiment. For each movie, we re-
port the ranking of the target actor within the list of the nearest
neighbors of the query actor.
Experiments on metric learning on real datasets. The best per-
formance for each dataset is highlighted inbold.

Different functions achievable by varying the parameters in the
formulationinEq.4.3 o o
Results on the Point Cloud classification task. Accuracies with
standard deviations (calculated on 5 runs) for the ModelNet40
dataset.
Results on Text Concept Set Retrieval on LDA-1k, LDA-3k,
and LDA-5k. Bold values denote the best performance for each
MELrIC. o v o vt e e e e
Results on the Multi-task graph properties prediction bench-

mark. Results are expressed in log 10 of mean squared error.

90

Chapter 1

Introduction

Since the middle of the *90s, thanks to the development of the internet and its
life-changing disruption in many aspects of society, the amount of data pro-
duced every day is exponentially increasing. The International Data Corpora-
tion esteems that the total amount of production and consumption of data has
reached 59 zettabytes (ZB) in 2020!, and in the next three years, the amount
of data produced in the last 30 years will be doubled. Consequently, strate-
gies to store, retrieve and process this huge amount of information has raised
interest in both the industry and academia. Although it is estimated that the
vast majority of the data produced is unstructured, in many cases, the pieces
of information produced relate to each other, possibly forming very complex
networks. For instance social networks [44], images [46], biological structures
[110], road networks [1], recommendation systems [108] and web pages [129]
are domains that present the same underlying structure, having as basic com-
ponents the entities involved and the various relationships that connect them.
The general way to represent the data of this domains is to model it as a graph.
Graphs are data structures used to represent objects (nodes) and their connec-
tions or relationships (edges), are extremely flexible and generalize other archi-
tectures such as Relational Databases [32] and Knowledge Bases [73]. Every
data source in which its entities or base components present interconnections
can be represented as a graph structure. Learning representation on graphs is
a challenging task that has been investigated by the artificial intelligence and
machine learning communities for the last twenty years. While early works on
learning on graphs focused on the construction of kernel functions to compare

Thttps://www.idc.com/getdoc.jsp?containerld=prUS46286020

2 | Introduction

structures and attributes [10, 16, 18, 21], the increasing developments in neural
networks architectures lead to the recent advances in deep learning techniques
for graphs [98, 119, 70, 52, 127] that, together with other techniques for pro-
cessing non-euclidean data, recently culminated in the new field denominated
Geometric Deep Learning [19]. Despite the notable amount of research work
on graph data, we aim to provide new solutions for determining the similarity
of graphs’ nodes and overcome some limitations when aggregating information
from multisets of data and, in the case of graphs, neighbors nodes. Another
consequence of the increasing amount of information produced on the web is
the necessity to develop methods that are able to match and retrieve contents
based on some query or specific necessities of a system or a user. Recom-
mendation systems are nowadays a well established technology that have risen
interests in the last decade. Applications in areas such as e-commerce [99],
video streaming services [2] and social networks [78], to mention a few, use
state-of-the-art techniques in real world applications. Part of this work discuss
how such systems can take advantage of relational structures to enhance their

expressiveness and overcome some problems in this domain.

1.1 Contributions

This thesis embodies my effort to study and research machine learning appli-
cation on graph structured data. Another aspect of my PhD work is given by
the possible application of this techniques into recommendation systems. The
main contributions of this thesis can be summarized in three part:

* Definition of a new class of metrics on relational data;
* A solution for learning to aggregate information from multisets of data;

» Extension of some recommendation techniques to integrate the newly pro-
posed techniques.

The following manuscript is the result of the following papers published in peer
reviewed conferences and journals

 Jaeger, M., Lippi, M., Pellegrini, G., and Passerini, A. (2019). Counts-of-
counts similarity for prediction and search in relational data. Data Mining
and Knowledge Discovery, pages 1-44

1.2 Outline of the Thesis | 3

* Dragone, P., Pellegrini, G., Vescovi, M., Tentori, K., and Passerini, A.
(2018a). No more ready-made deals: constructive recommendation for
telco service bundling. In Proceedings of the 12th ACM Conference on
Recommender Systems, pages 163—171. ACM

and the following manuscript accepted at [JICAI °21:

e Pellegrini, G., Tibo, A., Frasconi, P., Passerini, A., and Jaeger, M. (2020).
Learning aggregation functions. arXiv preprint arXiv:2012.08482

1.2 QOutline of the Thesis

This manuscript is structured as follows:

Chapter 2: this chapter summarizes the literature on machine learning tech-
niques for graph data. Here we introduce some of the most relevant research

works that constitute the foundation of my research;

Chapter 3: in this chapter we present the first contribution of this work,
1.e. a class of metrics that define the similarity between the entities in a re-
lational graph. Initially we illustrate how to construct the relational features
upon which the metric is applied, developing later a whole set of distance func-
tion that use this features. Then we show how to modify some of the proposed
metrics in order to perform metric learning tasks. We provide experimental

analysis for classification, regression and information retrieval tasks.

Chapter 4: in this chapter we illustrate a framework to learn aggregation
functions for multisets of values. We show the learning procedure for this
class of aggregators and provide extensive experimental evaluation on many

benchmarks;

Chapter 5: here we discuss the extension of some recommendation systems
to integrate the methodologies proposed in the Chapters 4 and 5.

Chapter 6: finally, we draw some conclusions and discuss some future re-
search directions.

Chapter 2
Background

2.1 First Order Logic

In propositional logic, the world is composed of facts which do not present
any internal structure, and can be either true or false. First Order Logic (FOL)
can be interpreted as an extension of propositional logic, in which the world
is composed of objects and these objects are linked by some relations. First
Order Logic is particularly useful to model real world scenarios in which en-
tities characteristics, relationships with other entities, and the action taken by
the entities influence the state of the world. Another way to think about FOL,
with some restrictions, are some type of knowledge bases as, for instance,
relational databases. FOL can perfectly represent relational databases if the
right components are provided in the formulation of the particular world de-
scribed in the database. In this section, we introduce the concepts and notation
to define the FOL formalism. The FOL language is composed of four sets
of symbols: variables, constants, predicates and functions. Constant sym-
bols represent the instance of the objects in the domain, e.g. moon, mars,
jupyter. Variable symbols denote sets of objects (e.g. Planets). Both con-
stants and variables can be typed, so objects of a particular type belong to the
variable of the same type, and typed variables represent only objects of the
same type. Function symbols operate on tuples of objects and return as output
an object (e.g. Satellites(earth)). Predicates symbols are used to describe
the relationships among (tuple of) objects, or attributes of the objects (e.g.
OrbitsAround(europa, jupyter) or HasRing(saturn)). For clarity, through-

out the manuscript we use capital letters (X, Y, Z) to denote variables, and lower

6 | Background

case letters (x,y,z) to denote constants. Bold letters represent multiple occur-
rences (arities) of variables or constant symbols. A ferm is any constant, any
variable and any function symbol with terms as arguments. A single predicate
that takes as input a tuple of terms is called an arom. FOL shares with propo-
sitional logic the logical connectives such as the negation (—), the conjunction
(N), the disjunction (V), the single and double implication (=, <>). In addition
to propositional logic, FOL introduces two new symbols: the universal quan-
tifier (V), which is true if a formula is satisfied for all the object in a specific
domain, and the existential quantifier(d), which is true if at least one of ob-
ject in the domain satisfies the formula. A formula is a composition of one or
more atoms and logical connectives. A formula is said to be propositional if
no quantifiers appears in it. A Ground term is a term containing no variables
and a ground formula is a formula with ground terms as arguments. A world
is represented by a relational signature, a set which contains all the variables,
constant, predicates and function symbols. Finally, a Herbrand interpretation
assigns a truth value to every ground formula obtainable from the world.

2.2 Graphs

In this section we provide a formal definition of a graph and the notation that
will be used throughout the entire manuscript. A graph is a tuple of objects
G = (V,E), where V is the set of nodes (or vertices) and E is the set of edges
connecting the nodes. |V| represents the total number of nodes in the graph.
We denote with lower case letter the instance objects of the respective sets, i.e.
v € V denotes a node, and (v;,v;) € E denotes the edge connecting the node
v; to the node v;. For the edges we will also use the notation ¢; ; € E when
convenient. A node can also contain a self-loop, i.e., (v;,v;) € E. A graph
is undirected if (v;,v;) < (vj,v;), otherwise the graph is directed. If a graph
is weighted, the edges are associated with a weight w; ; > 0 determining the
"strength" of the connection. In weighted undirected graphs w; ; = w;;. A
compact representation of the connections is given by the the adjacency matrix
A cRIVIXVIip which A; ; = 1 if there exists an edge (v;,v;). In weighted graphs
A; j =w; j. The neighbourhood .#"(v) of a node v is defined as the set of nodes
to which v is linked to by one or more edges, i.e. .4 (v;) = {vj|(v;,vi) € E}.
A graph is labeled if nodes (and possibly edges) are associated with a symbol

2.3 Relational Features | 7

from an alphabet X. We denote with L, the label of a node and with L
the label of an edge. The shortest-path between two nodes is the

€i7j
or L(Viﬂ’j)
minimal sequence of nodes and edges traversed to connect two non-neighbor
vertices. A random walk starting at node v; is a sequence of nodes v; 1,v; 2, ...
inigs - We use the

symbol x € R” to represent a n-dimensional feature vector attached to a node,

obtained according to the probability P(ixi1|i1,...,ix) =A

referred to as the stafe of the node. The matrix X € RIVI>7 groups together all
the nodes’ states. If all the edges of the graph belong to a single class, i.e., they
all represent one type of connection, then we call the graph single-relational.
Otherwise, two nodes can possibly be connected by multiple edges belonging

to different classes, in this case we talk about multi-relational graphs.

2.3 Relational Features

Statistical Relational Learning (SRL) is a branch of machine learning that stud-
ies the models that can be constructed upon relational data. A relational knowl-
edge base can be expressed in the form of a graph or a network, resulting in
a multi-relational data structure, in which the entities of the relational domain
are represented by the nodes and the relationships between entities correspond
to the edges. Notable research work in this field can be found in [92, 59, 38].
Most reinforcement learning or deep learning techniques construct their model
from data which present an attribute-value representation, in which an entity (or
data point) is characterized by some features expressed as a fixed size vector
(or matrix) of values. A meaningful representation can be determined by man-
ually setting the size of the vector by the system expert, or by obtaining a latent
representation with any representation learning technique. The clear advantage
of the vectorial representation is given by the geometrical meaning of the data
points, allowing for models to take advantage of linear algebra tools to perform
transformations and operations of the vectors in an euclidean space, learning
how to separate or fit the data through some hyperplanes. This non-relational
representation assumes that all the information of the entities is flattened into
a single table where all data points are independent and identically distributed
(i.i.d.). This is one of the strongest assumption made by non-relational mod-
els. Contrarily, SRL models take advantage of the relational structure to define
features for entities allowing for a greater flexibility and generalization abil-

8 | Background

ity by removing the i.i.d. assumption. Another notable distinction is that, in
non-relational models, heterogeneous entities must be represented by the same
vectorial structure to be processed by a learning model. For instance, in collab-
orative filtering recommendation the vector associated to a user and the vector
representing an object must have the same number of dimensions in order to
perform the dot product. Meanwhile, relational features can be constructed
upon heterogeneous structures of entities and not being bounded to have a
fixed representation. However, designing meaningful feature representations
for relational data is a relevant problem due to the combinatorial nature of the
relational information that can be exploited from the domain. In this section
we describe a technique to create features for entities in a relational domain,
and how machine learning models can be constructed upon this features. The
research works presented in Chapter 3 is developed upon a specific formalism
of this type, called Type Extension Trees (TETs). We show that learning mod-
els of different nature can be developed upon the values extracted with TETs,
such as logistic regression models and relational similarity measures. The rest
of this section describes the motivation behind TETs and the formal rules to
create such features.

2.3.1 Type Extension Trees

An object in a relational domain is characterized by the values of its attributes,
the objects in its relational neighborhood, and the attributes of such objects. In-
ductively, each object in the set of neighbors is characterized by its own set of
neighbors’ objects and their attributes. Therefore, by considering the different
depths of neighbors, in a relational domain the supply of information is pos-
sibly unlimited. When analyzing the neighbors structure of a multi-relational
graph, one can also restrict the relational neighborhood to a specific type of
relationship or keep or filter out neighbors that present certain characteristics.
Moreover, it is possible to define "chains" of relational patterns, and charac-
terize an object as a combination of these patterns. Many SRL models lack a
precise definition of the relational features needed to train the learning model,
resulting in an oversimplified representation of the data (e.g., propositionaliza-
tion approaches) or a tight integration of the data representation and the learn-
ing model [14, 117]. Therefore, defining a clear feature space and representa-

tion language is a fundamental step to clearly separate the relational features

2.3 Relational Features | 9

value space and the learning model applied over them. Type Extension Trees
fill this gap between data representation and learning models by introducing
a formalism that allows for the use of First Order Logic to construct nested
combinatorial features while giving a sound definition of the features value
space. TETs do not only focus on simple numerical values of the attributes
of the object but on the statistics of nested structures of neighbors objects that
satisfy a relational constraint, to create what is called a counts-of-counts fea-
ture. The main concept of a TET feature is to count the occurrences of similar
sub-structures at different depths of the relational neighborhood, for a single
object or a set of objects, while allowing for defining relational constraints on
the neighbors relationships. Some commonly used measures in information re-
trieval can be expressed as counts-of-counts features, for instance the h-index
and #f-idf index of documents [60]. TETs are defined with a formalism based
on FOL, making them easy to encompass features for both single relation and
multi-relational data. Initially introduced in [58], several research studies have
shown the possible application of TET in citation networks and forecasting pre-
diction [75, 60]. In this section, we review the definition and semantics of the
TET formalism, which is used as the fundamental building block for describing
the new methodologies introduced in Chapter 3.

Definition 1 Consider a relational signature R of relational symbols of differ-
ent arities. An R-literal is an atom r(V) such that r € RU{=}V = V...,V
is a tuple of variable symbols. An R-type is a conjunction of R-literals. A Type
Extension Tree is a tree structure in which nodes are labeled with R-types and

edges can be labeled with variables.

Throughout the manuscript, we will use the terms TET and TET-feature to
denote the same concept. Each node of the TET is assigned with a specific type
determined by the literals specified in the node. Labeled edges are related to
universal quantifiers in FOL, in that they bind all the occurrences of the vari-
ables specified in it to the subtree pointed by it. An example of TET-feature is
given in Figure 2.1b, defined for the relational domain in Figure 2.1a. Here the
TET defines a feature for an author entity. The variables that appear in the TET
but that are not quantified in any edge are called free variables, determining the
variables for which a TET defines a feature. If the edges are not labeled, no
variable of the TET is quantified; therefore, the TET is equivalent to a proposi-

tional representation of the variables. We call it propositional TET if no edge

10 | Background

a) Relational graph of authors a and papers p.

author(A)
f/ \é/
author0f(A,P) coauthor(A,A")
Is
cites(P,P)

b) TET-feature defined on the relational signature of a)

£, {e,{t:11):2, (¢,{t:3}) :1}, {t:2})

N NT—

(t,{t:1}) (t,{t:1}) (£,{t:3}) t t

/I\

t t t t t
¢) TET-value for the author a;

Fig. 2.1 Graphical representation of: a) a relational graph, b) a TET and c) a
TET-value. The TET b) defines the feature structure for an author entity. To
obtain the feature values for objects the root variables are instantiated and the
TET extracts the count-of-count features from the relational graph. The TET-
value c) of the author a; uses only true values.

2.3 Relational Features | 11

is quantified by any label, in that it represents a feature for a specific set of
objects. A formal representation of a TET-feature is the following:

T(V) = [OC(V), (Y17Tl (Vvyl))a T (Ym; Tm(V,Ym>)]

T(V) indicates a TET defined for the free variables in V = V;,...,V;. The
symbol ¢ (V) represents the root of the TET, while (Y, 74 (V,Y)),k=1,...,m
is the k;;, subtree, with an edge from the root to the child node labeled with
variables Y.

Example 1 The formal representation of the TET-feature in Figure 2.1b is

T(A) = [author(A),
(P, [author0f(A,P),
(P, [eites(P',P)])]),
(A’,[coauthor(A,A")])]

The TET above defines a relational feature for a single variable. The root
literal determines whether the input objects of the TET is an author. Variable A
is the only free variable of the TET since it is not quantified in any edge of the
tree. The two children of the root represent two sub-TETs rooted at the literals
author0f(A,P) and coauthor(A,A’), each linked through edges labeled with
variables P' and A’ respectively. Following the same formal structure, the two
sub-TETs are

T (A,P) :[authorﬂf(A,P), (P/, [cites(P/,P)])]
T>(A,A") =[coauthor(A,A)]

T\ defines a feature for a pair of author-paper, while T, defines a feature for
an author-author pair pf objects. Recursively, Ti is linked to a child node, the
sub-TET given by

Ti1(P,P) = [cites(P,P)]

12 | Background

Notice that each sub-TET defines a TET per-se defined for its own set of free
variables.

We use the notation 7' (V) to indicate a TET which defines a feature for the
free variables V = Vi, ..., V,, but other free variables can be introduced in the
substructure of the TET. For an assignment v =v;, ..., v, T(V), the a TET-value
V(T (v)) is defined as follows:

Definition 2 Let T(V) be a TET with free variables V =Vy,...,Vi, V=1, ...,V
a k-tuple of entities and o.(V') the atom corresponding to the root of T. Given
an interpretation function I : a(v) — {t,f}, the TET-value V(T (v)) for an

assignement v is inductively defined as follow:

* Base step:
T(V)=[o(V)], then

— ifI(@(v)) = f then V(T(v)) = f
—ifl(a(v)) =t then V(T (v)) =t
* Inductive step:

T(V)=[a(V),(¥1,Ti(V.¥1)),.. .Y, Tn(V,¥)], then

= if (o(v)) = f then V(T (v)) = f
— ifI(a(v)) =t then

V(T(v) = (t,u(v.Y1,Th),.... (v, Y, Tn))

where u(v,Y;, T;) is a multiset of TET-values.

For the sake of synthesis, we use ¢, f for true and false evaluations of I and
the symbol ¥ to denote a TET-value. A multiset p(v,Y;,7;) contains all the
TET-values of the sub-TET with 7; as root, each value obtained by evaluating
the literal of 7; with instances v and all the instances of the objects in ¥;. Since
TETs model counts-of-counts features, we denote with {y; : ny,....% : m;} a
multiset containing n; copies of the TET-value ;.

Example 2 Consider the relational domain and TET-feature showed in Fig-
ure 2.1a,b respectively. We want to extract the TET-value for the author ay. By

Definition 2, the value V(T (ay)) = y(a1) becomes

Y(ar) = (6, {f:2,(t,{f 4,0 :1}):2,(¢,{f:2,¢:3}): 1},{f:2,¢:2})

2.4 Kernel Methods on Graphs | 13

Counting the number of false and true evaluations allow to define statistics
based on frequency, such as the fraction of f or ¢ values with respect to the total
number of counts, which can be used for instance to define a simple predictive
model [60]. However, one can consider only the positive evaluations of the
TET-value. Considering the ¢ values only is a valid strategy to construct the
feature, in that by the definition of TET-value if the interpretation function
evaluates the literal of an intermediate (non-leaf) node as false the inductive
step is no longer developed, therefore "pruning" branches of the TET-value.
A graphical representation of the TET-value showed in Example 2 containing

only true evaluations is illustrated in Figure 2.1b.

2.4 Kernel Methods on Graphs

Defining similarity measures between graphs is among the most investigated
tasks on this type of structures over the last twenty years. Later in this manuscript
we will propose a new class of distance functions that measure the dissimilar-
ity between tuples of graph entities, therefore we revise here some well known
techniques presented in the literature to define similarities, i.e. kernel functions
for graphs. We start by defining some early techniques, to arrive to recent deep
learning techniques to learn representations on graphs.

Support Vector Machines (SVMs) [17, 34] are among the most popular
classes of methods in machine learning. Initially developed during the ’90s,
they dominated the machine learning field for years thanks to their versatility,
efficiency, simplicity, and soundness. SVMs have been applied to solve many
different tasks, from character recognition to computational biology. There are
several reasons why SVMs became popular: the optimization problem is con-
vex, therefore, an optimal solution can always be found; they limit the number
of calculation steps required to classify new examples, as comparisons with
all data points is not needed, but just some vectors, called support vectors, are
useful to determine the final prediction. Finally, SVMs can be applied to solve
classification and regression tasks. SVMs belong to a class of machine learning
techniques called kernel methods [21]. The following definition of a positive

definite kernel is originally provided in [101]:

Definition 3 A symmetric function k : & x 2 — R which for allm € N, x; €

2 gives rise to a positive definite Gram matrix, i.e. for which for all c¢; € R

14 | Background

we have
m
Z cicjKij > 0, where K;j 1= k(x;,x;)
i,j=1

is called a positive definite kernel.

A kernel function is used as a substitution of the dot product. A kernel is a
function that acts as a norm and abstracts the concept of the dot product to
non-Hilbert spaces.

Definition 4 Consider a set of data objects x; belonging to an arbitrary space
2. Let k be a function that takes in input pairs of objects and returns a positive
scalar value, i.e. k: 2 x 2 — Rxq. Assume a mapping function ¢ : 2~ — RY
that projects the object into a Hilbert space Hy; exists, then

k(xi,xj) =< ¢(x;),9(x;) > is a valid kernel.

Note that the input space 2" can be any space, including Euclidean spaces.
The kernel application allows for what is referred to as the "kernel trick" [101].
The transformation ¢(x) that maps an object into a vector (usually in a high
dimensional space) can be expensive to compute. The advantage is that the
kernel computes the similarity directly on the objects input space without pass-
ing through the additional step of the transformation. Linear models usually
consist of finding a hyperplane that can efficiently separate two regions of the
space or interpolate the data points, minimizing some error measure. In most
scenarios, the data is not linearly separable, i.e., no hyperplane can perfectly
separate two classes of points without misclassification. Thanks to kernels, it
is possible to transform the data into a higher dimensional space, becoming lin-
early separable, allowing a hyperplane (in the transformed space) to precisely
divide the data. The following are some examples of kernels [47] for objects
belonging to some vector space x € R”":

e Linear: k(x;,x;) =< xj,x; >

* Polinomial: k(x;,x;) = (14+ < x;,x; >)’, pe N

oy I2
* Gaussian: k(x;,x;) = exp(— ||x12;2]\|), 0 €R

Moreover, kernel methods have been investigated to deal with complex data
structures such as trees [82, 131], sequences [10] and graphs [106, 62]. The
following sections of the chapter will provide a more detailed review of graph

2.4 Kernel Methods on Graphs | 15

kernels and in general machine learning methods for learning graph represen-

tation.

2.4.1 Weisfeiler-Lehman Graph Kernel

The problem of determining whether two graphs present an identical structure
is called the graph isomorphism problem (or graph isomorphism test). Two
graphs are isomorphic if there exists a bijection between the vertex of the first
graph and the vertex of the second graph. The two are identical if, for every
node of one graph, there is a unique node of the other graph that presents the
very same connections. This is a computationally hard problem, in fact it is
not known if there exists an algorithm that can solve it in polynomial time, nor
to be NP-complete [49]. However, beyond the complexity of the problem, us-
ing the isomorphism test as a similarity measure would be of limited practical
use. The test result is a binary value: true if the two graphs are identical, false
otherwise, instead of expressing a degree of similarity between the two. More-
over, complex structures present characteristics that makes it more difficult to
define such measures. When designing a similarity measure, or a kernel for
graphs, the main issue is the permutation invariance of the function, i.e., the
order of the input objects should not change the final output. In this section
we illustrate some state-of-the-art kernel methods that take advantage of differ-
ent concepts to formalize permutation invariant functions for graphs. Most of
them are based on the concept of isomorphism test introduced by Weisfeiler
and Lehman in 1968 [123]. The first algorithm we introduce is referred to in
the literature as the 1-dimensional Weisfeiler-Lehman (1-WL) test, also called
naive vertex refinement or color refinement algorithm. The color refinement
idea is to assign a label (color) to each node of the graph, and iteratively update
the labels by using the nodes neighbors’ label as local information. Eventu-
ally, the labels will terminate in a stable state (i.e., the labels distribution does
not change from the previous iteration), or it terminates when the number of
iterations corresponds to the number of nodes in the graph. Note that if the
two graphs have a different number of nodes, the test fails, therefore, to start
the iterative process the two graphs are required to have the same number of
nodes. The algorithm operates as follows. Consider a graph G = (V,E,L) and
a labeling function / : ¥* — X that calculates the labels of the nodes. X is the
alphabet of the labels, L, € X. At the initial step i = 0, the same label is as-

16 | Background

a a a a
a/ \a a/ \a a/ \a a/ \a
4 \/ a \ a \/ a \
\ a \ \a a \a
a/ a/ a/ a/
a) initial label @ a,a B a,aaa

. a,aa

' 9% g ® & giRa g0
e e

. d,b 8 b,bcc
‘ c,bb h b,bbc
. b,bcd (J) b,bbd

Fig. 2.2 Example of the iterations of the 1-dimensional Weisfeiler-Lehman al-
gorithm. Each quadrant shows the initial state of the labels at the beginning
of the iteration, and the relabeling step considering the different combinations
of nodes’ label and neighbors multiset. The algorithm stops at iteration 3: the
coloring of the nodes of the graphs is different.

signed to each node. Then, iteratively, each node is assigned with the multiset
of labels of its neighbors at the previous step. At the final step, the labeling
function produces the new labels for the nodes by considering the concatena-
tion of the node label and the multiset of the neighbors label. The relabelling
step is effective only if the ordering function of the multiset and the labeling
functions are injective, i.e., the nodes labels are the same if they share the same
labels and all the neighbors labels. However, an injective function on multisets
is required to be permutation invariant, i.e., the elements position does not in-
fluence the final result. One can alleviate this requirement by enforcing some
ordering of the multiset elements and then applying the labeling. We denote as
h(-) the function that operates on the multiset. Two graphs have an identical
structure if the multisets of the nodes’ label are the same under some canonical

representation, usually implemented as a partial ordering. Examples of canoni-

2.4 Kernel Methods on Graphs | 17

cal representation can be obtained using a lexicographical ordering or counting
the repetition of identical ordered labels. The complete labeling operation for

one node is performed as follows:
L, =1L (L e e A (0)}) 2.1)

At each iteration, this procedure yields two multisets of labels, {L] |v € V}
and {Lif |V € V'}, one for each graph, which are used to determine the iso-
morphism. The algorithm terminates when the canonical representations of
the multisets are different, or at most at step i* = |V/|. If the two graphs have
different representations, it can be concluded that they are not isomorphic; on
the contrary, if the representation is identical, it is not possible to state that they
are isomorphic. Although the test does not guarantee isomorphism when it suc-
ceeds, in practice it is a valid test for the majority of graphs [4]. An example
of the test is illustrated in Figure 2.2. Each iteration of the test yields a labeling
of the nodes G; = (V,E,L;) based on the labels at the previous iteration. The
concept behind general Weisfeiler-Lehman Graph Kernel (WLGK) kernel is to
utilize the representations of the two graphs obtained at each step j to measure
the similarity between them. Consider a positive semidefinite kernel on graphs
k(G,G’), which we call base kernel; a WLGK kernel can be constructed as
the weighted summation of the base kernel function for an arbitrary number of
steps h:
h
Ky (G,G') =Y wik(G;,G)) 2.2)
i=0

where w; > 0 can be every weight choice (e.g., a discount factor to assign differ-
ent importance to further steps of the algorithm). Note that being k{,‘v (G,G') a
linear combination of positive semidefinite kernels, it retains the characteristic
of being a positive semidefinite kernel. This framework for defining WLGK
kernels can assume any arbitrary number of iterations that can be adjusted on
fixed statistics of the problem, e.g., the graphs size, or can be learned or deter-
mined through some heuristic. However, the WLGK kernel limit as described
above is that it can only handle discrete alphabets of symbols for labeling the
nodes and not continuous assignments. Extensions that overcome this problem
are later discussed in Section 2.4.3.

18 | Background

2.4.2 WL Subtree Kernel

A novel implementation of the WLGK framework, named Weisfeiler-Lehman
subtree kernel [106], is defined over a feature mapping of the graphs states:
at each step i of 2.1, a function maps the label of the nodes to a new feature
representation and concatenates all the representations of the previous step k <
i with the map of i. The base kernel can be seen as the simple dot product on
this new feature maps. The mapping, as described in [106], works as follows.
Consider the multiset X; = {Gé, ey G|iz,-|} composed of the labels of the nodes
at step i with X; C X. The function ¢;(G, 0{) counts the number of occurrences
of the symbol o, k =1,...,

i|, of the multiset ¥;. The feature for a graph at
iteration j is computed by concatenating the counts of all label symbols at each

iteration step up to j:

01(G) = (0(G.07).....c0(G, O), ---,¢j(G.0)),....¢j(G 0k) (2.3)

The WL subtree kernel is obtained by computing the dot product of the feature
mapping of the two graphs at each iteration of the general WL kernel:

k‘j/VLsubtree(G7 G/) =< (Z)V]VL(G)7 ¢1{VL<G/) > (24)

The kwsubtree allows for a fine-grained comparison of the graphs obtained with
efficient time. Moreover, it is equivalent to the kw kernel if only the feature
mapping for one iteration is considered and the base kernel is a Dirac kernel
[106] returning 1 if the two mappings are the same, zero otherwise.

Example 3 Consider the two graphs in Example 2.2 and a number of iteration
Jj = 2. The feature mappings of the two graphs with the counting function
ci(G,0}) are:

(c1(G,a),c2(G,b),c2(G,c),c2(G,d))
=(6,3,2,1)
¢V2VL(GI) (C () CZ(G/7b)’CQ(GI7C)7CZ(Glad))
= (6,3,2,1)

ow(G) =

2.4 Kernel Methods on Graphs | 19

and the ky [supiree kernel (Equation 2.4) gives
k%VLsubtree =< ¢‘{VL(G)7 ¢JVL(G/) >=50

2.4.3 WL Kernels with continuous labels

A practical limitation of the methods described in the previous sections is that
they work only with a symbolic representation of the node and their connec-
tions, relying on discrete attribute labels to describe them. Kernels based on
sub-pattern similarities identify two identical nodes only if their local struc-
ture and neighbors’ labels match exactly, and do not consider more expressive
attribute representations that characterize the nodes. In many real-world tasks,
the nodes of the graphs represent objects associated with attribute-value vectors
with values possibly ranging in discrete and continuous domains. For instance,
in a social network graph, the users are described in terms of personal inter-
ests, the number of posts, and activeness; chemical structures have chemical
and physical properties; the intensity of traffic characterizes edges in road net-
works. The underlying concept between graph kernels that handle continuous
attributes is to define the similarity based on both structural similarities of the
local neighborhood and comparison of the attributes of the nodes and edges. A
common strategy to define structure similarity is to decompose the graph into
substructures or patterns that are then matched together via one (or more) base
kernels, and the kernel(s) evaluations are summed together. Kernels for graphs
that follow this scheme lie under the category of %Z-convolutional kernel. The
underlying kernel computation of this type follows the scheme

k(=Y Y k(mV)k(v) (2.5)

veV(G)V eV (G')

where k,,(v,V') determines the weight of the connection between the nodes (if
the edges of the graph are weighted, one can replace k,, with the edge weight)
and k,(v,v") measure the similarity between the attributes of the nodes. The
GraphHopper [45] and GraphlnvariantKernel [85] methods use this scheme
to define kernels on continuous attributes. GraphHopper defines a kernel over
families of shortest paths as the summation of path kernels. The base kernel
considers only paths of the same length. A path is defined as the ordered se-
quence of nodes to traverse in the graph from a starting vertex to an ending one,

20 | Background

i.e., T =[vy, -~ v]. Here k,(v,') counts the number of times v and v appear
at the same coordinate, or hop, of paths 7 and 7’. In GraphHopper, the k,,(v,V')
kernel represents the designer’s only variable choice, being it free of learnable
parameters. A more general approach is given in [85] where authors define the
weighting kernel as the combination of an vertex invariant kernel ki, (v,v') and
a rescaling factor based on nodes local neighborhood. The invariant function
assigns a higher value to two nodes when they appear in the same substructure
having the same structural role, allowing for a smoother similarity comparison
than hard matching function and avoiding unwanted correlation induced by the
structural ordering of the vertices.

Other kernels use different strategies to handle a continuous range of values.
Recent work proposed an approach named Waisserstein Weisfeiler-Lehman
Graph Kernels (WWLGK) [115] that uses the earth-mover’s distance (EMD)
to compare the distributions induced by the nodes representations. In a few
words, the earth-mover’s distance measure the (dis)similarity between two dis-
tributions by calculating the cost of transforming one distribution into the other.
More details on EMD are provided in Section 3.4. In WWLGK, the node’s at-
tributes are encoded into embeddings via a graph embedding function g : G —
RV I*™ where m is the number of dimensions of the embeddings. The output
matrix Xg contains the encoding of node v; at its i’ row. The earth mover’s
distance is then applied to the two graphs’ embeddings, essentially treating the
two matrices as the probability distribution over the nodes. As in the WL ker-
nel scheme, the embeddings of the nodes can be refined through an iterative
process, and the similarity of the graphs measured at each refinement step. To
obtain a new vector for a node, the vectors of the neighbors are averaged to-
gether and summed to the target node representation. As shown in further sec-
tions, the averaging operation is much similar to the propagation scheme used
in Graph Neural Networks, where the function for node aggregation plays a
fundamental role in defining the expressiveness of this methods.

2.4.4 Walks and paths kernels

As illustrated in the previous section, graph kernels that compare the structural
similarity of parts of the graphs are referred to as R-convolutional kernels. This
methods require the pattern structure to be specified in advance, or the size of

the subgraph to consider, usually relying on small size structures to be compu-

2.4 Kernel Methods on Graphs | 21

tationally efficient. An alternative to this class of methods is to compare the
sequences of vertex and edge labels encounter when traversing the graph. This
sequences can be defined as the shortest path between pairs of nodes, or as ran-
dom walks. Although computing all the shortest paths in a graph is a NP-Hard
problem, a shortest path can be computed in polynomial time. The shortest-
paths kernel introduced by Borgwardt and Kriegel [16] decomposes the graphs
into shortest paths between pairs of nodes, comparing the length of the paths
and the labels of the nodes traversed. The first step is to decompose a graph
G(V,E) into the shortest-paths between all pair of nodes, using an algorithm
such as Dijkstra or Floyd-Warshall. The result of the decomposition is a graph
S(V,E;) containing the same set of vertices of the original graph and a new set
of edges E;. An edge of e € E connects two nodes v; and v; in S if there is a
path connecting them in G, and it is labeled with the distance (number of hops)
of the path.

Definition 5 Let G = (V,E),G' = (V',E’) be two graphs, and S = (V,Ey),S' =
(V' El) be the shortest-path decomposition of G,G’ respectively. A shortest-
path kernel is defined as

kp(G,G) =Y. Y kpa(e,€) (2.6)

e€Ese EE’

if kparn is positive definite, then kg is also a positive definite kernel.

kpatn (e,€’') determines a kernel that compares the labels of the starting and end-
ing nodes of the path and the shortest distance between them. Let e = (u,v),
¢’ = (u'V'). Let also L,, L, be the labels of the nodes L., L], be the labels of the

edges. The k,qn(e,e’) kernel can be formulated as
kpa,h(e,el) = kl(Lu,L;) -kl(LV,L(,) -kd(Le,L/e) (2.7)

where k; 1s a kernel for comparing nodes’ labels and ., is a kernel comparing
the edges’ labels (i.e., the length of the paths). The complexity of the shortest-
path kernel is O(n*). Another strategy to decompose the graph into sequence
patterns is to perform random walks. A random walk is obtained starting from
a node and iteratively pick a node in the neighborhood and repeat the process
for the selected node. Similarly to the shortest paths setting, the feature space is
composed of the labels of nodes and the edges. Although the underlying idea is

22 | Background

similar to the shortest path method, i.e., to compare the labels of the nodes and
labels present in sequences, the random walk adopts another approach based
on the direct product graph.

Definition 6 The direct product of two labeled graphs G = (V,E) and G' =
(V',E"), denoted as G x G' = (¥, &), is defined as follows:

v ={(v)eVxV'IL,=L,}
&= {((u,u’),(v,vl)) € ﬂi/'(uvv) cEN (u/avl) S E//\L(mv) :L(u’,v’)}

A vertex (edge) in G x G' has the same label as the corresponding vertex (edge)
inGand G’

The following definition defines the direct product kernel

Definition 7 Let G,G’ be two graphs. Ay and V5 denote the adjacency ma-
trix and the vertices of the direct product graph G x G'. Given a sequence
of weights A = (A1, A2,...)|A € R,A, > 0,Vt € N, the direct product kernel is
defined as

7] e
kn(G.G) = Y, | LAl 2.8)
i,j=1 "1=0 LJ

To ensure the convergence of the algorithm the values A, < i where A, de-
notes the largest eigenvalue of the matrix A . The advantage of using the direct
product graph is that a random walk in G x G’ corresponds to take simultane-
ously random walks on G and G’. However, the computational time to create
the direct product graph is O(n®), making this method applicable only to small
scale graphs.

2.5 Deep Learning for Graphs

Neural architectures that operate on graphs take inspiration from recent Deep
Learning architectures to define new models for graph data. In the last decade,
the contributions to this field have seen a remarkable improvement. The moti-
vation behind this increment in the research activity is given by recent develop-
ments in the field of Deep Learning and to overcome the limitations imposed
by some previous methods as kernels. As with kernel methods, Graph Neu-
ral Networks (GNNs) can learn nodes representations to embed a graph via

2.5 Deep Learning for Graphs | 23

a mapping function, but instead of relying on a fixed mapping (as defined in
kernel methods), GNNs aims to apply a learnable function for producing the
mapping. This section focuses on GNNs techniques for supervised classifi-
cation on graphs, which are usually employed to solve three types of tasks:
node, edge, and graph classification. GNNs have adopted and adapted many
different concepts commonly used in Deep Learning, for instance, taking in-
spiration from recursive architectures (RecGNNSs) and convolutions strategies
(ConvGNNs), but also from mechanisms like attention [118] and variational
inference [69]. Early investigations implement recursive techniques to graph
data, starting at the middle of the ’00s with the works by Gori et al. [51] and
Scarselli et al. [98]. Since the introduction of this first neural network models,
the development of neural architectures to process graph data has dramatically
increased in the last years [52, 67, 70, 119, 127], reaching state-of-the-art per-
formances in applications like protein-protein interaction [52, 119], movie do-
mains [127], internet domains [52, 127] and citation networks [52, 70, 119].
Due to the incredible amount of research work published during the last years,
researchers questioned how powerful GNNs models are and their representa-
tion abilitie [127, 12]. In the Graph Neural Networks (GNNs) context, a node
or an edge of the graph is associated with a feature vector & € R”" that repre-
sents its state. The states of the components can be used to classify the nodes,
the edges, and the classification of the entire graph. We provide an overview
of some representative GNNs models.

2.5.1 The Graph Neural Network Model

The Graph Neural Network Model [98] firstly introduced the application of
neural networks to handle general graph structures, e.g., acyclic, cyclic, di-
rected, and undirected graphs. Graph Neural Network Model defines a class of
methods that recurrently update the state of the nodes by applying a parametriz-
able function to the local structure until a stable configuration for all the nodes
is reached. The model defines a local transition function, which, for a given
node, takes in input several local structural information and return a new state
h, and a local output function responsible for the final prediction given the state
of a node. To extend the model to graph prediction tasks, the authors also de-
fine a global transition function and a global output function that instead of
being applied to a single node take in input all the nodes’ state of the graph.

24 | Background

The GNN Model provides a general yet flexible framework due to its ability
to incorporate a high volume of information into its local transition function,
including neighbors and edges labels and states. Let L, be the label of the ob-
served node v, Ly, the labels of the edges connected to v, h_y(,) and L 4,
the neighbors states and labels respectively. The local transition function and

the output function are defined as follows:

h{/ = fW(LV7L‘€(v))hZT/1(V)7LJV(v))

(2.9)
05 = gW(hinLV)

where the functions f,, and g,, can be implemented as neural networks with
arbitrary layers, hence parametrized and fully derivable. The functions can be
extended in several ways, for instance, the set of neighbors can include nodes
that are n steps away to the observed node; additional structural information
(as the direction of edges in a directed graph) can be encoded in the form of a
matrix and added as input to f,,; alternatively to using a single f,, for all the
nodes, one can assign a specific function to each node. To ensure convergence,
the local transition function is required to be a contraction map with respect to
the node state, i.e. Iu,0 < u < 1s.t || fiw(x)— f(y)]| < p||x—y| where || - || is
a vector norm.

2.5.2 Graph Convolutional Networks

Graph Convolutional Network (GCN) [70] is a spectral based GNN that applies
the concept of convolution in CNNs to graph structures. The initial state of the
nodes is passed through several convolutional layers where learnable filters
determine the transformation of the states. In this setting, the resulting states
from the layer [are stacked into a matrix H' € RIVIxd w! represents the filter
and A is the adjacency matrix of the graph. The convolution operation at each

layer is defined as
H'™'=c(AH'W') (2.10)

where o(+) is a non-linear function. The adjacency matrix A allows for sum-
ming only over the neighbors’ nodes and not the entire set of nodes of the graph.
If the formulation of the convolutional layer would use the plain adjacency ma-

trix, two problems arise; 1) since the matrix is not normalized, nodes with a

2.5 Deep Learning for Graphs | 25

huge number of nodes will have high values while nodes with the restricted
neighborhood will have low values representing the state; 2)only the states of
the neighbors would be accounted in the transformation, not the state of the
node itself. To overcome this problems, the authors propose two solutions:
the first is to add self loops to each node, i.e. summing the identity matrix
A = A+1. The second solution is to normalize A by the diagonal matrix D
which encodes the node degree so that the rows of A sum up to 1. Rewriting
Equation 2.10 we obtain

H'' =06(D %HZW’) (2.11)
By adding the self-loops to the adjacency matrix, GCN convolution is directly
linked to the hash function used in the WL isomorphism test. However, the
convolution operation should learn an injective function to behave as the hash
in the WL test, but no injectivity guarantees are provided.

2.5.3 GraphSAGE

GraphSAGE is a type of spatial, graph convolutional network meant for induc-
tive learning representation of a graph’s nodes. The algorithm generates node
embeddings by sampling the neighbors’ nodes and then learning an aggrega-
tion function that combines the neighbors’ states into a single vector represen-
tation. Then, the state of the observed node is concatenated to the aggregated
representation, and the resulting vector is passed through a non-linear trans-
formation. This sampling and aggregation process takes place for an arbitrary
level of exploration K, for which it is defined the number of nodes to sample
s, a trainable aggregation function Aggr¥, a weight matrix W* and a nonlin-
earity function o. Algorithm 1 illustrates the steps for learning to generate the
embeddings.

Although there is no limitation for GraphSAGE to process all the nodes,
the sampling of the neighbors allows for computation on large scale graphs,
which might represent a limitation for other methods that use all the nodes of
the graph. Being created for inductive learning representation, GraphSAGE
also has the advantage of being applied to unseen nodes in the graph (i.e., in-
ductive setting) once the embedding functions are learned. A crucial aspect
in GraphSAGE is given by the choice of the aggregation functions used in

26 | Background

Algorithm 1 GraphSAGE embedding generation algorithm

Input: Graph G(V,E); input states {x,,Vv € V}; weight matrices W* k =
1,---,K; aggregation functions Agg/‘,k =1,---,K; non linear function
o,
Output: Node embeddings z,, VvinV
1: hg —Xx,,VvevV
2: fork=1,--- ,Kdo
3: forveVdo

4 Ky) Aggt (B Yue A (v))
5: R« o (W Concat(hlflah:k/(w))
6: k< hi/||hj]>, v eV

7: 2y <—h§,Vv eV

the architecture. Usually, GNNs models rely on the sum as the aggregation
function to condense the information of the neighbors, but this represents a
limitation since other functions like the max, mean and even more complex
statistics could leverage the representation ability of this models. Therefore,
GraphSAGE has been tested with three different types of aggregation function:
a mean aggregator, which computes the average element-wise of the neigh-
bors’ states, an LSTM aggregator and a Pooling aggregator that computes the
max-pooling of the neighbors. The LSTM can not be considered a reliable ag-
gregation function in that it is not permutation invariant; however, to provide
more stability to invariance, a random permutation is applied to the input set of

neighbors.

2.5.4 Graph Isomorphism Networks

The authors in the original publication [127] address the question of what is
the representational power of the GNNs models, proving that they are at most
as expressive as the WL isomorphism test. Specifically, they demonstrate that
for two non-isomorphic graphs G and G, if a GNN A : G — R maps the
two graphs with different embeddings, also the WL isomorphism test decides
they are not isomorphic. By adapting the labeling function of the WL test
(Equation 2.1), we can obtain a general formulation for GNN as follows:

By = ¢k f({R lue /(0)}) (2.12)

2.5 Deep Learning for Graphs | 27

Therefore, for a GNN to be as expressive as the WL test, it is necessary for the
functions ¢ and f to be injective. Note that the function f processes the multi-
set of the neighbors’ states; thus, it has to be injective and permutation invariant
to the set elements. A recent research work shows how to construct a permu-
tation invariant function to process a set of data using a sum-decomposition
strategy. The resulting framework for processing this data is called DeepSets

[128]. The sum-decomposition theorem states that

Theorem 1 A function f(X), with input a set X defined over a countable do-
main, is invariant to the permutation of instances {x1,--- ,x,} of X if and only

if it can be decomposed in the form p (Y. .cx ©(x)), for suitable transformations
p and @.

It is easy to note the correlation of Theorem 1 with the hash function of the
WL test, originally define also for a countable domain of labels. However, in
practice, the node vector components h, are defined over the domain of reals,
i.e., h, € R?, therefore Theorem 1 has minimal use in real-world applications.
The authors of [128] conjecture that the theorem also holds for uncountable
domains, however, they could only prove the theorem holds for sets of fixed
size. For constructing an invariant function for GNNs the sum-decomposition
theorem has been extended to multisets of data. To construct a GNN with the
sum decomposition properties, the functions p and ¢ are defined as an MLP
given that it can express compositions of function, in this case, p o ¢. Xu et al.
[127] define a GNN model called Graph Isomorphism Network that satisfy the
conditions of Equation 2.12 as

h’;zMLPk((1+ek)-h’;—1+ Y hﬁ—l) (2.13)
ue AN (v)

where € represents a parameter that can be fixed or learned during the process.

Chapter 3

Distance Measures Based On
TETS

3.1 Relational Data Structures

Machine learning models are often constructed on top of the data structure they
process. Perhaps the most common representation of data in machine learning
is that of attribute-value structure, in which data objects are characterized by
a finite set of characteristics that belong to a particular domain. This repre-
sentation gives the advantage to represent the data as a vector, i.e., as a point
in an n-dimensional Euclidean space. Such representation gives the advantage
of working with linear algebra tools, in which space transformations and hy-
perplane separation are the basic concepts for many established methods since
the rise of modern machine learning (e.g., SVM and perceptron). However,
despite the powerful mathematical tools used to process this data, the attribute-
value representation lacks a structural dependence among its elements. It is the
model’s job to discover this dependency, not an intrinsic characteristic of the
data itself. As we have seen in Chapter 2, FOL is a tool that instead models and
captures this dependency in a well-defined mathematical formalism. For this
reason, the terminology relational data usually refers to FOL or structures that
can be represented in FOL. For instance, relational databases can be expressed
in First Order Logic without any loss of generality, in which the tables of the
database represent the template (variables) for instance objects, which present
specific characteristics, and the connection between tables map to the relations

30 | Distance Measures Based On TETs

or predicates. These structural dependencies are very strongly correlated with
graphs or networks; in fact, FOL entities and relations can be represented as an
equivalent multi-relational graph. This type of graph differs in the diverse type
of nodes and connections that link the nodes. In the classical representation
of a graph, the nodes are homogeneously represented as instances of one class,
and the connections represent a very specific relation happening between the
objects. For instance, in a road network, the nodes are the intersection of the
roads, and the roads themselves are the edges of the graph. When representing
molecules as graphs, the nodes are the chemical elements and the edges are the
chemical bonds. In a multi-relational graph, there exists more than one node
type, and two nodes can have multiple connections, each connection potentially
belonging to a different type. For instance, in a social network, the nodes could
be both users and "pages", linked together by actions as the "like" or "follow"

representing the edges.

3.2 Logistic Evaluation Function | 31

3.2 Logistic Evaluation Function

The evaluation of a TET T(V) as V(T (v)) as defined in Section 2.3.1 leads
to a complex nested multiset structure of Boolean values. Jaeger et al. [60]
presented two approaches for using these values as the basis for prediction

tasks and similarity measures:

* by defining a discriminant function f that maps TET values V(T (v)) to
real numbers, and that can be used for binary classification tasks;

* by defining a metric d(V (T (v)),V(T(v'))) on TET values that can be used
for distance-based methods such as nearest-neighbor prediction.

These approaches have been tested on the artificial task of predicting the
binary attribute for an author having an h-index greater than 7. Although the
h-index 1s a deterministic function of the data, its combinatorial nature and dis-
continuity makes it non-trivial to be learned with perfect precision. Again, in
[60] the authors present the task of assigning a negative label to authors with h-
index < 7 and a positive one to h-index > 7. They report an F1 scores of 61.3%
and 91.2% for this prediction task when using the discriminant function and
nearest-neighbor prediction, respectively. These results indicate that the dis-
criminant function and metric definition of [60] are not flexible and powerful
enough to fully exploit the information given by a TET value V(7 (a)) to learn
how to solve the (& > 7) prediction task with 100% accuracy. For this reason,
we developed a rich class of evaluation functions 1B that map TET values to
real numbers and that are parameterized by an adjustable vector B. Addition-
ally, we define a metric on the nested multiset structure of real numbers that
is generated by the recursive evaluation of /8 on a TET value V(T (v)). The
evaluation function /B will be used in two different models as the discriminant
function for direct class prediction, and also as the basis for defining metrics
dB that can represent specific similarity concepts by adjusting the parameters
B of the underlying function.

We first define a parameterization of a TET:

Definition 8 Let T(V) be a TET. A weight assignment B for T assigns a non-
negative real number to all non-leaf nodes and all edges of T. A weight as-
signment can be written as (B§,B{,-..,Bn,B1, ---, B,,), where B is the weight

32 | Distance Measures Based On TETs

assigned to the root, B/ is the weight assigned to the edge from the root to its
ith child, and B, is the weight assignment to the ith sub-tree.

(-14.7) author(A)
(5. % N. 1)
(-14.7) author0f(A,P) coauthor(4,A")

(5.8) | P

cites(P',P)

Fig. 3.1 TET-feature for an author a. The numbers attached to the nodes and
the edges represent the weights of a possible parameter assignment f.

Given a weight assignment for TET, we define a function on TET values y

via a recursive definition over the nested multiset structure of y:

Definition 9 For a TET T with weight assignment B the logistic evaluation
function 1B is defined as follows. Let y =V (T (v)) be a value.

* Base step:
— Ify=f, define 1B (y) :=0.
— If y=t, define 1B(y) := 1.
* Inductive step:
- Ify=(t,l1,..., Uy), with multisets ; of values of sub-trees T;, define:
Pp=o (Bé + Y8 Y zﬁm)
=1 Yeu
where G is the sigmoid function o(x) = 1/(1+e~¥).

In other words, the evaluations of the values belonging to the multiset of the
sub-TET T;, i.e., Y € u;, are weighted by the parameter /. Then, the values
computed for all sub-TETs are summed together, with the root parameter [3]
acting as the bias weight. For the rest of the chapter we employ the sigmoid

3.2 Logistic Evaluation Function | 33

function as non-linear activation, in that for the definition of the distance func-
tion dP we need the values to be in [0, 1], but to use the evaluation function as
predictor there are no limitations on the choice of the activation function. By
storing the execution outputs of the function at each node, the recursive eval-
uation of a TET value 7y leads to a nested multiset structure of real numbers
that matches the same structure of y. We refer to this new structure of logistic

evaluation values as the logistic evaluation tree, denoted LB ().

Example 4 In this example we give a demonstration of the applicability of the
logistic evaluation function to determine the binary class of an author having
an h-index > 3. Consider the TET T (A) as shown in Figure 2.1 (b). The root
and the left sub-TET represents a sufficient feature to represent the h-index of
an author, therefore for computing this task we could eliminate the contribu-
tion of the right branch and still be able to recover the h-index. We introduce
a parametrization B for the TET T(A) as B = (—14.7,5.8,0.1,(—14.7,5.8))
in the notation of Definition 8. We apply the evaluation function to the TET
value V(T (ay)), starting from the leaf nodes up to the root. The evaluation of
each leaf node representing a true value returns a 1. The leaf nodes labeled
with false which are omitted in the figure all evaluate to 0. Now consider the
sub-value (t,{t : 3}) of the TET node author0f(A,P) at the middle level of
Figure 2.1 (b). We obtain:

[(F14T38) (1 {1 :3))) = 6(—14.7+5.8-(1+1+1)) =0.937

The omitted false values have no impact on this calculation, since they would
only add a number of 0 terms to the inner sum. Similarly, I=14738)((r {r
1}) =0.0001. Note that here we have m = 1, since the underlying TET has no
branching. Now, for the top-level we have to combine the evaluations of two

branches. From the evaluation of the root we then obtain:

1B(y) = 6(—14.7+5.8-(0.93+0.0001 +0.0001) +0.1- (1+1))
=0.0001

Figure 3.2 (middle) shows the logistic evaluation tree LB (7) induced by this
computation of 1B(y). The final value 1B (y) is the root of the tree.

34 | Distance Measures Based On TETs

t,{¢,{t:1}):2, (£, {t:31) :1}, {t:2})

//\t\t
/|

t t t t t

|

LA (y)
0.0001

A
N

1 1 111
)
M (vi)

{

1
1 A 1
3 v -
Vi V3
0 1
HEEN 2 V2
o Y 10 YO 11 Yo o Yo 1

Fig. 3.2 Graphical representation of the steps from a TET-value to its his-
tograms approximation. The value Yy is computed by the logistic evaluation
function which outputs the logistic evaluation tree LB (7). Then the multi-value
paths .# (v;) are constructed from LB (7). The histograms are computed for
nodes (from left to right) vo, vy, v2, vz with N = 4. Empty cells correspond
to zero count. A node v; with depth d; in the TET is represented by a d;-
dimensional histogram whose dimensions correspond to the TET nodes on the
path from the root to v;. Since all paths start with the same value (0.0001) in
the first component, and end with a 1 in the last component, only a single one-
dimensional slice in the 3-dimensional histogram is populated with nonzero

counts.

3.3 Histogram Approximation | 35

3.2.1 Neural network perspective and weight learning

In the preceding examples we have computed the recursively defined 1B (7) by
an inductive bottom-up propagation of sub-values. These computations are
similar to the forward propagation in a neural network with a sigmoid activa-
tion functions. Indeed, one can think of y as defining a neural network struc-
ture, and B as defining a neural network weights and biases. A given TET
T with logistic evaluation parameters B then can be seen as a template for
the construction of example-specific neural networks, and the TET formalism
represents a highly flexible and expressive way to define such templates. Un-
der this neural network perspective, the logistic evaluation tree in Figure 3.2b
shows the activations of the neural networks defined by the structure a) for the
parametrization . Note that here the inputs to the neural network are always
equal to 1 at all input (leaf) nodes. Given a supervised learning objective ex-
pressed by a differentiable loss function on the logistic evaluation values 1B (7).
one can apply standard backpropagation rules to compute the gradient of the
loss for a single example v with respect to B, and learn B using any of the many
available (stochastic) gradient descent techniques.

3.3 Histogram Approximation

The nested multiset structures of LB (V (T (v)) gives a detailed description of v
in terms of quantitative features of its relational neighborhood, as defined by T
and the parameters B of the logistic evaluation function. We now aim to use this
description as a basis for defining distances between entities v,v'. In large and
highly connected graphs, the full structure LB (V (T (v)) will become very large,
and not suitable to support fast distance computations, or to store pre-computed
LB(V (T (v)) for all v. We therefore introduce an approximation of LB (V (T (v))
by a collection of multi-dimensional histograms. The approximation will be
constant in size for all v, and independent of the size of the data graph.

As the first step towards this approximation, we approximate the full tree
structure of LB (V (T (v)) by multisets of value paths.

Definition 10 Let v be a node in the TET T, and r = vo,vi,... ,Vk_1,Vx =V the
path leading from the root r of T to v. Let Yy =V (T (v)) be the value of T for
entities v. A sequence Y, ..., Y is a value path for v in v, if

36 | Distance Measures Based On TETs

* Ww=2Y, andy; # f forall i.

e Fori<k:
if viy1 is the j(i)th child of viin T, and ; = (Wi 1, .. s K j(iys - - s Wi)»
then Yi11 € W; jy with multiplicity ki > 1.

The multiset of value paths for v is the multiset that contains the value path
Y, - - -, Y With multiplicity Hi.‘:_(} kiy1.

Example 5 For the TET in Figure 3.1 (top) let the be vo = author, vi = author0f,
vy = cites and vz = coauthor. Then the value y shown in Figure 3.2 (top) con-

tains for v, the value path

(0, (@, {r: 1)) = 2,(¢e,{r:3}) : 1},{r:2}),(t,{r:3}),¢

with multiplicity 3, since the root have by definition a multiplicity of 1, multi-
plied by the multiplicity of the sub-value (t,{t : 3}) which is 1, multiplied by
the multiplicity of the true values at the leaf, i.e. 3.

Let B be a parameter vector for the logistic evaluation function for 7. A
sequence of real numbers ?1,. .., is a logistic value path for v if there exists
a value path 7, ..., % for v such that #; = [B(y;). The multiset of logistic value
paths for v, denoted . (v) is the multiset that contains the logistic value path
,...,I with a multiplicity equal to the sum of multiplicities of value paths
Y, -- -, % that induce #q, ..., .

Example 6 Consider the nodes vy,vi,vy,v3 as in Example 5. Then for the

logistic evaluation tree in Figure 3.2 (middle):

A (vo) = {(0.0001) : 1}

A (vi) = {(0.0001,0.934) : 1,(0.0001,0.0001) : 2}

M (v2) = {(0.0001,0.934,1) : 3,(0.0001,0.0001,1) : 2}
A (v3) = {(0.0001,1) : 2}

We observe that while the value paths of a node v;; in some sense extend
the value paths of its parent v;, it is not the case that from .# (v,) the multiset
A (v;) can be constructed. The values of the logistic evaluation function lie
in the interval [0, 1]. The elements of a logistic value path multiset .# (v) are

3.3 Histogram Approximation | 37

vectors of a fixed length equal to the depth d of v in T (defining the depth of the
root to be 1), and hence are elements of [0, 1]¢. We partition the interval [0, 1]
into N equal-width bins, leading to a discretization of [0, 1]¢ into N cells. This
leads to an approximate representation of . (v) by a d-dimensional histogram,
which we call the node histogram h for v. Arranging the node histograms for
all nodes of T in a tree structure isomorphic to T leads to the node histogram
tree (NHT) as an approximation for the logistic value tree LB(V(T(v))). The
number of bins N is a hyperparameter that balances the accuracy of the values’

representation and compactness for computational efficiency.

Example 7 Figure 3.2 provides an overview of the steps from a TET-value 7y to
its histogram representation. Firstly, the logistic evaluation function computes
the values that compose LB (7). The logistic multi value paths are constructed
from the logistic values, and then, for a chosen value of N, the histograms are
created. The counts in the histograms represent the distribution of the logistic
values for different nodes in the TET, starting from the root (which contains a
single value) to the leafs. In the Example shown in Figure 3.2 the value of the
root is close to zero, hence its multiplicity (1) falls in the first bin. The second
histogram shows the 2-dimensional distribution of the values of vi. The values
are distributed along the dimension of the root node, showing that 2 papers
obtained values close to 0 and 1 paper with a value close to 1. Going down
to the node vy the values are distributed along the new dimension in the bin
closest to 1, being vy a leaf node, therefore, having values equal to 1. The
multiplicities at this level are multiplied by the multiplicities at the previous
node, so the single citation is multiplied by the number of papers that have that
single citation (2), whereas there is a single paper with 3 citations, therefore
the multiplicity in this case is 3. The last histogram is computed for the node

V3.

38 | Distance Measures Based On TETs

3.4 NHT Metrics

We now proceed to define a metric on NHTs. There can obviously be many
different approaches for defining such a metric, and in the following we make
a number of design choices. We will not be able to prove for each such choice
that it is the only possible or optimal one. However, they all are supported
by a few overall design objectives that we follow: based on the earth mover’s
distance, should be scale invariant, the model contains few parameters. In the

following we explore in detail the properties above.

» Earth mover’s distance (EMD): the earth mover’s distance is a well-established
metric on histograms representing discretized distributions of numerical
quantities. Formally, EMD is formulated as a linear programming prob-
lem solving a bipartite network flow problem, as for instance the trans-
portation problem. Consider / to be a set of suppliers and J a set of con-
sumers, where the amount of offer of the suppliers is equal or greater
than the amount of demand of the consumers, and ¢; ; is the cost to move
supplies from supplier i € I to consumer j € J. The solution to the trans-
portation problem is given by the set of flows f; ; that minimize the overall

Y Y cijfi (3.1)

icl jeJ

cost of transportation:

subject to the following constraints:

fij=0, ieljeJ (3.2)
Y fii=yi, JjeJ (3.3)
i€l
Y fij<x, i€l (3.4)
jeJ

where x; represents the total offer capacity of supplier i, and y; is the total
demand capacity of consumer j. The positivity constraint 3.2 enforces the
flows to go from the suppliers to consumers only, whereas constraint 3.3
forces a consumer to take only the amount of supplies needed. Constraint
3.4 states that a supplier can only ship for the amount that is in its stock.
The final EMD distance is the optimal transport cost normalized by the

3.4 NHT Metrics | 39

total mass capacity of the consumers:

. Yicl Zje] Cij fij
ZjeJ)’j

EMD(x,y) (3.5)
In our case, the suppliers and the consumers are the bins of the histograms,
having a transportation cost from i to j equivalent to the distance between
the two cells of the histograms indexed by the two indices. Other metrics
on discrete probability distributions (e.g. x2, Pearson or Bhattacharyya
distances) or generic distances on vectors (e.g. Euclidean or cosine dis-
tance) would not take the similarity of values in nearby bins into account.
EMD has proved extremely effective in tasks like image retrieval [36]
requiring distances between quantized distributions. Therefore EMD is
therefore the canonical choice for measuring distances between node his-
tograms.

* Scale invariance: given two NHTs Hy,H>: if H{, H, are obtained by multi-
plying all entries in all histograms of H;, H> by a constant ¢, then we want
to obtain d(H,H,) = d(Hj,Hj). In the context of count data, this seems
more appropriate than location invariance (defined as invariance under ad-

dition of a common constant).

» Few parameters: the NHT metric should depend only on a small number
of tunable parameters and work well under a simple default setting of these
parameters. It is the intention that different behaviors of the final metric
can be implemented by modifying the TET structure and the B weights of
the logistic evaluation function. Adding further tunable parameters to the
definition of the NHT metric would to some extent only duplicate capabil-
ities we already have through the construction of customized NHTs.

The construction of the NHT metric has two parts: defining a metric be-
tween node histograms of a common dimension, and combining these individ-
ual metrics into a metric on NHTs.

3.4.1 Node Histogram Metric

The first part is the more important one, as it is here where we have to incorpo-
rate the EMD. EMD is most naturally defined on histograms that have an equal

40 | Distance Measures Based On TETSs

total number of counts (usually normalized to a probability distribution over the
histogram bins). For histograms with unequal total mass, the early definition
given in [95] does not lead to a proper metric. A modified definition of EMD
for distributions with unequal total mass has been proposed in [88] (similarly
also in [77]). The modification essentially consists of adding to the histogram
with lower total count a virtual bin that has a constant distance to all other bins,
and is assigned the difference of total counts in the two histograms. Then stan-
dard EMD is applied to the two now equal-sized histograms. If the constant
distance of the virtual bin is at least 1/2 of the maximal distance between any of
the original bins, then the result is again a proper metric [88]. This existing ap-
proach for dealing with histograms with unequal counts is not very well suited
for our purpose, since it does not lead to a scale-invariant measure, and in the
case of histograms with widely different total counts, the differences in total
counts dominate the computed distance, which then becomes less sensitive to
the differences in the distributions over the histogram bins.

We therefore introduce a different approach for dealing with histograms of
unequal mass that leads to a proper scale-invariant metric, and that allows us to
better calibrate the contributions to the overall distance of differences in total
counts, and differences in the distributional patterns.

In the following, /& denotes the individual node histogram, and H the entire
NHTs. For a histogram /& we use c(h) for representing the sum of all cell counts
in h. Let hy,hy be two histograms of equal dimensions (i.e., h1,h, represents
the histograms for the same TET-feature node, threrefore having the same di-
mensionality and number of bins, but coming from two different TET-values).

Then the relative count distance is defined as:

Definition 11 Given two histograms hy,hy of same dimensionality and same

number of bins:
° ifC(h]) = C(//lz) =0, dr-count(hth) =0

e ifc(h))=1and c(h;) =0

orc(hy) =0and c(hy) =1, drcount(h1,h2) =1
* else)
min(c(hy),c(hy))

dr—count(hlahz) =1-
c(h) - c(ha)

(3.6)

3.4 NHT Metrics | 41

Proposition 1 d;coun is a scale-invariant pseudo-metric with values in [0, 1].

Proof. The minimum of two counts is a positive semi-definite kernel, called
histogram intersection kernel [6]. The normalization is called cosine normal-

ization, and the result is also a kernel [102]. Let us refer to this kernel as

min(C(hl);C(h2)>'
c(h)-c(h2)

k(hy,hy) =

A kernel induces a pseudo-metric

d(hi,hy) = \/k(hy,hy) +k(hy, hy) — 2k(hy,).

For the normalized histogram intersection kernel we have that 0 < k(h;,h;) <1
and k(h],h]) = k(hz,hz) = 1, thus d h],hz = 2—2k(h1,h2). The count
distance is obtained as d;. couns(h1,h2) = ld (hy, hz) a simplified version of the
distance which preserves its properties. The scale invariance property states
that the distance between the histograms should remain the same under scalar
multiplication. We indicate the newly obtained histograms as jh; and jh, when

thery are multiplied by the constant j. We can therefore rewrite the kernel as

min(c(jhy),c(jh2))
Ve(jh)-c(jha)

k(.]hl 7jh2) =

The count operation on the scaled version is equivalent to multiplying j to the
count of the unscaled histograms, and the minimum of the scaled histograms
is equivalent to multiplying j to the minimum of the unscaled ones. Therefore
the equation becomes

j-min(c(hy),c(hy))

N om0

The constants at the enumerator and denominator cancels out, therefore ob-

k(.]hla.]hZ)

taining again the unscaled form of the kernel. As for a proper metric, non-
negativity and symmetry are preserved, its demonstrations is trivial. For tri-
angle inequality d(h1,h3) < d(hi,hy) + d(hy,h3) implies that od (hy,h3)?

a(d(hi,hy) +d(ha,h3))? < ad(hy,h2)? + ad(hy,h3)? for any a > 0. Finally,
dy-count 18 @ pseudo-metric because any two distinct histograms having same
counts have zero distance. One of the properties a metric should satisfy is

42 | Distance Measures Based On TETSs

the identity of indiscernibles, i.e., d(hi,hy) = 0if fh; = hy. A pseudo-metric
differs from a proper metric by relaxing this assumption, therefore allowing
d(hl,hz) =0 for hl 75 hz.

Now let i = h/c(h) be the probability distribution on histogram bins ob-
tained by normalizing 4. The earth mover’s distance between these normalized
histograms is defined in terms of an underlying ground distance between his-
togram bins [95]. We take the Manhattan metric as the ground distance, be-
cause this is a very commonly used distance on histogram bins, and because
it supports a computationally efficient approximation to the EMD that we will
introduce in Section 3.4.3 below. Note however that our exact formulation is
generic and can be used with any ground distance, provided an appropriate nor-
malization is introduced. To ensure a common scale for all EMDs, regardless
of the dimensionality (D) and granularity (N) of the histograms involved, we
divide the raw Manhattan distance by D(N — 1), so that all distances between
histogram bins fall into the interval [0,1]. The EMD distance d,,,;(h1,h2)
between two normalized histograms then is defined (and computed) as the so-
lution of a linear program in M? variables, where M is the number of bins in
each histogram.

Combining the count and the EMD distances via a simple mixture construc-
tion, we define:

1 -
dC-emd(hlahZ) = E(dr-counz(hlahz) +d€md(h17h2)) 3.7)

This definition gives equal weight to the d;.coun: and d,,;,; components. In the
experimental section we will provide results on the application of d,._,,,,; with
equal weights for the components as well as two versions in which only one of

the two components is activated.
Proposition 2 d,._,,,; is a scale-invariant metric with values in |0, 1].

The fact that d,,,; on normalized histograms is a proper metric, and the
observation that if /1; # hy then c¢(hy) # c(h2), in which case d;.count(h1,h2) >0,
or hy # hy, in which case d,,,(h1,h2) > 0. Thus, d._,, 4 is a metric, even
though its components only are pseudo-metrics.

3.4 NHT Metrics | 43

3.4.2 Histogram Tree Metric

The last part involves the combination of the node histogram metrics to obtain a
metric for histogram trees. Consider two NHTs H;, H, obtained as approxima-
tions of logistic evaluation trees LB (V (T (v;))) and LB (V (T (v,))) for entities
v1 and v,. Since both trees are derived from the same underlying TET T with
nodes (vo, ..., V), they have identical structure, and consist of node histograms
(h1,0,--.,h1x) and (h2,...,h k). The combination of the node metrics should
be carefully calibrated in order to avoid unwanted behaviours. For instance,
performing the plain summation of the node metrics is undesirable, in that
branches with many children would dominate the overall distance value. In
order to prevent this effect, we scale d,._,,,,4(h1 i, h2,;) by a factor 1 /si, where s;
1s the number of siblings of v; in 7. This leads to the following definition of a
metric between NHTs, which we also denote as d._,;,4:

k

1

de-ema(H1, Ha) Z s_dc emd(M1.ish2i). (3.8)
i=1"!

Proposition 3 d,._,,,; is a scale-invariant metric on node histogram trees.

3.4.3 Marginal EMD

The computation of d._,,,4(H1,H>) with H; = (h; 1, ..., h;) requires the com-
putation of kK EMDs. For a pair of node histograms, the computation consists
of a linear optimization problem in N2 variables, with N the number of bins in
the histograms. Assuming a fixed granularity of N bins in each dimension, this
computation becomes exponential in the dimensionality of node histograms. In
contrast, EMD for 1-dimensional histograms assuming the Manhattan distance
as underlying distance can be computed without the use of linear optimization
simply by summing over the absolute difference of the cumulative distribu-
tion function [25]: for normalized 1-dimensional histogram hy,hy with N cells
and cell values h;(1),...,h;(N) (i = 1,2), define the cumulative cell counts
filk) ;== X5 hi(j) (k=1,...,N;i=1,2). Then

N
doma(h1,h2) = Z |fi(k k)|. (3.9)

44 | Distance Measures Based On TETSs

We can approximate d,,,,s(h1,hy) by considering the 1-dimensional marginals
of the h; as follows: for a D-dimensional normalized histogram i with N bins
in each dimension, and 1 < k < D let A** denote the marginal of h in the kth
dimension, i.e., #*f is the 1-dimensional histogram whose count in the jth bin
is the sum of all counts in /& over bins with index j in the kth dimension. For
a two-dimensional histogram, for instance, this corresponds to computing row
and column sums.

We then define the marginal EMD distance between hy, hy as

doma (1, 712) - Z d g (Rt 155, (3.10)

Proposition 4 d,,, ., is a pseudo-metric with dy,pp0 < demd-

It should be emphasized that the inequality d,,,,,,,7 < d,,;,4 depends on our
use of the Manhattan distance as the underlying metric in the EMD definition.
For other metrics on histogram bins, this inequality need not hold.

3.4.4 Baseline Count Distance

In the preceding sections we have introduced a quite sophisticated metric that
starts with the underlying counts-of-counts feature represented by the TET
value 7y, applies the customizable feature transformation through the logistic
evaluation function, and then uses a combination of count based and distri-
bution based metrics on the histogram representations of the resulting logistic
value paths. However, a comparison with simpler distance functions defined on
the counts of histogram values would provide a fair comparison and insights
on our more complex metric. Therefore we introduce here a baseline distance
function on node histograms and a baseline function on node histrogram trees,
constructed in analogy to the functions presented earlier:

dp-count(h1,h2) = (c(hy) —c(hy))? (3.11)

k
db-count(HlaHZ) = Z db-count(hlm h2,i) (312)
i=1

Note that dj_couns 1s independent of the distribution of counts over the bins in

the histogram, and thereby does not depend on the logistic evaluation function

3.5 Metric Tree Retrieval | 45

that induces this distribution. Moreover, dj_cou,; disregards the nested counts-
of-counts structure represented in the underlying TET value 7, and only con-

siders “flat” counts.

3.5 Metric Tree Retrieval

Part of the experiments in Section 3.6 focus on efficient nearest neighbor re-
trieval according to the NHT metric. Computing exact nearest neighbor can
become expensive with a large number of data points, therefore we mitigate
this problem using an approximate retrieval strategy. Methods that perform ap-
proximate nearest neighbor search are conceived for Euclidean spaces [121], re-
lying on tree-decomposition [31] or locality-sensitive-hashing [121, 122] tech-
niques. We use a simple metric tree (MT) structure based on generalized hy-
perplane decomposition [116] for performing the nearest neighbors search. In
many information retrieval contexts it is not strict to retrieve all the nearest
neighbors, instead, the prediction is based on the k best matches for a given
query. The procedure to construct the MT structure is shown in Algorithm 2
The MT is built from a dataset of node histogram trees, by recursively splitting

Algorithm 2 Metric Tree search.

procedure MTSEARCH (MN,H k)
if ISLEAF(MN) then
sorted = SORT(MN.bucket, H)
return sorted[1:k]

1:
2
3
4:
5: if DIST(H,MN.z1) < DIST(H,MN.z2) then
6
7
8

return MTSEARCH(MN .left,H k)
else
return MTSEARCH(MN.right,H ,k)

data until a stopping condition is met. The parameters of the algorithm are
the maximal tree depth (d,,4x) and the maximal bucket size (7,,4y), the current
depth (initialized at d = 1) and the data to be stored (data), one histogram tree
for each entity. The MT is composed of internal nodes and leaf nodes. The
internal nodes store a single value (in this case, a histogram tree) and has two
branches, whereas the leaf nodes contain a set, or bucket, of entities. The MT
construction proceeds by splitting data and recursively calling the procedure
over each of the subsets, until a stopping condition is met. If the maximal tree

46 | Distance Measures Based On TETSs

depth is reached, or the current set to be splitted is not larger than the maximal
bucket size, a leaf node is returned. If the stopping condition is not met, two
entities z1 and z2 are chosen at random from the set of data (making sure they
have a non-zero distance), and data are splitted according to their distances to
these entities. Data that are closer to z1 go to the left branch, the others go to the
right one, and the procedure recurses over each of the branches in turn. Once
the MT has been built, the fastest solution for approximate k-nearest-neighbor
retrieval for a query instance H amounts to traversing the tree, following at
each node the branch whose corresponding entity is closer to the query one,
until a leaf node is found. The entities in the bucket contained in the leaf node
are then sorted according to their distance to the query entity, and the k nearest
neighbors are returned. case [76, 83].

Both algorithms have as additional implicit parameter the distance function
over NHTs, which can be the exact EMD-based NHT metric or its approxi-
mate version based on marginal EMD. Notice that for large databases, explic-
itly storing the NHT representation of each entity in the leaf buckets can be
infeasible. In this case buckets only containt entity identifiers, and the cor-
responding NHTs are computed on-the-fly when scanning the bucket for the
nearest neighbors. Standard caching solutions can be implemented to speed up
this step.

3.6 Experiments | 47

3.6 Experiments

We performed a number of experiments to investigate the usefulness of our
metrics, and the quality and efficiency of nearest neighbor retrieval when facil-
litated by the MEMD approximation, and the MT data structure.

3.6.1 Data and Experimental Setup
Datasets

Our first application domain is bibliometrics. We employed the AMiner dataset!,
which consists of a citation network comprising a total of 1,712,433 authors,
2,092,356 papers and 8,024,869 citations. From this large dataset, we extracted
the 103,658 authors with A-index > 2, where the h-index (or Hirsch index) of
an author is defined as the largest number £ of papers having received at least
h citations each. In our experiments we are retrieving nearest neighbors for
certain fest entities from a given training dataset. For the AMiner dataset, we
split our whole set of 103,658 authors into 2/3 (69,106) for training, and 1/3
(34,552) for testing. For all the experiments, we used N = 5 as the number of
histogram bins. For the MT, we used d,,, = 12 as the maximum tree depth,
and n,,,, = 30 as the maximal bucket size. The number of histogram bins is
an arbitrary choice of the authors, whereas the values of the hyperparameters
of the MT retrieval are set to balance the time needed for the construction of
the tree and the comparison between the query and the node histogram trees in
the leaves of the MT. We performed several tests in order to balance the time
needed to construct the tree (d,,,,) and later the time to perform the pairwise
comparisons between an object and all the NHTs grouped into a leaf (r,,,4y).
The values reported above refer to what we found was the best combination of
resources allocation (time and computational) and the final performance of the
KNN retrieval. We used the publicly available code from [60] for the computa-
tion of TET values for data stored in a MySQL database.
The second application domain we considered is the Internet Movie Database

(IMDb).? We collected the version dated February 17, 2017, from which we ex-
tracted tables regarding movies, genres, actors, and business. We built a dataset

https://aminer.org/aminernetwork
http://www.imdb.com/

https://aminer.org/aminernetwork
http://www.imdb.com/

48 | Distance Measures Based On TETSs

of 246,285 movies (those having at least one genre attribute), and considered
9,601 actors (those appearing in more than 20 of those movies). Based on an
actor’s billing position in the movie’s credits we constructed actor-movie rela-
tions lead(a,m) if actor a appears in billing position 1 or 2 of movie m, and
support(a,m) if a’s billing position is greater than 2. Furthermore, we use a
generic role(a,m) relation when a appears in m, whether or not billing infor-
mation is available. As for the business information, we assigned each movie
having budget information to one of three categories: large_budget(m) con-
tains movies with a budget in the top 3% within their decade, medium_budget
contains the next 20% of most expensive movies, and small_budget the re-

maining movies.

TET parameters

For each experiment we define a TET and a parameter assignment for the lo-
gistic evaluation function. We compare three strategies to initialize the weights

B, from manually defining the parameters to learning them from the data.

Default: all “bias” parameters [y are set to 0, and all “weight” parameters
Bi,...,Bm aresetto 1.

Manual: the weights are set manually in such a way that the evaluation val-
ues lay in the linear part of the sigmoid, avoiding all the values to be concen-
trated in the saturation areas. This enforce the values to be spread across the
bins of the nodes’ histogram to effectively prove the advantage of using metrics

based on the earth mover’s distance.

Learned: we learn the parameters by applying a loss function on top of the
logistic evaluation function, as introduced in Section 3.2.1. In the case of
classification we use the cross-entropy loss, whereas for regression we use the
mean squared error loss. We use ADAM [68] as stochastic gradient descent
technique, for a maximum of 200 iterations and performing 20 random restarts.
The best model is chosen according to the loss on the validation set, having

10% of the points of the training set.

3.6 Experiments | 49

Table 3.1 Overview of methods and notations

Notation Definition

TET (def) default parameter assignment
. (man) manual parameter assignment
weight .
assignment (I-cla) parameters learned with cross-entropy loss

(I-mse) parameters learned with mean squared error
loss

C-EMD combined relative count and EMD distance:
equation (3.7)

Distance =~ C-MEMD equation (3.7) with d,,; replaced by d,;,,,,4-

Metrics RCOUNT relative count distance as defined by (3.6)

MEMD marginal EMD as defined by (3.10)

BCOUNT baseline count distance as defined by (3.3)

WL-GK Weisfeiler-Lehman graph kernel

NN re-...+MT use of metric tree data structure for fast re-
trieval trieval of (approximate) nearest neighbors
Non NN CLA Classificaton based on logistic evaluation func-
methods tion value
REGR Regression based on logistic evaluation func-
tion value

Before introducing the experimental results, an explanation on the notation
is needed. Table 3.1 summarize the NHT metric, the parameter assignments 8
and the predictors based solely on the logistic evaluation function. The only
two metrics not based on TETs are BCOUNT and WL-GK, referring to the
baseline count distance defined in Equation 3.3 and the Weisfleiler Lehman
Graph Kernel respectively. TET based metrics are expressed in conjunction
with the initialization method for B employed and if the approximate retrieval
is applied, e.g., C-MEMD+MT (I-cla) denotes the use of the combination of the
count distance and the marginalized emd, using the Metric Tree to perform the
retrieval and with parameters learned on the classification task for the logistic
evaluation function.

3.6.2 H-index classification

We consider the binary classification task of predicting whether an author has
an h-index greater than 7, using the citation TET of Figure 2.1 (a) with differ-
ent methods for setting its weights. For this task the manually defined weights

50 | Distance Measures Based On TETs

author(A)
P
author0f(A,P)
i
cites(P,P)

a)
actor(A)

M
role(A,M)

AN

comedy(M)
drama(M)
western(M)

b)

actor(A)

M_— ‘M ~M
lead(A,M) support(A,M) role(A.M)

—
—
—
—
—
—

NN N NN N N N SN
=== === SS3
T E P PP P PP
[0 O N0 O O O O O O
b0 b0 o b0 b0 b0 b0 b0 ko
T T T T T T T T O
|2 3 3 | 33 S 3 3
'QI 'QI FQI 'Ql 'QI 'DI FQI FQI '—QI
(O =] (O =] O 8
0 3 — 0 3 — &0 3 —
4 A o 4 A o 4 A o
g o g g T g g T g
— O M — O W — O WM
=] =] g
C)

Fig. 3.3 TETs used for AMiner a) and IMDDb data b),c).

3.6 Experiments | 51

1 99.4 100.0 100.0
w00 g 96.0 96.5 952 949 EEE C-MEMD-+MT (I-cla)
C-MEMD (I-cla)
B C-MEMD+MT (man)
80 C-MEMD (man)
C-MEMD+MT (def)
C-MEMD (def)
g 60 mmm BCOUNT
£ = BCOUNT+MT
g e WL _GK
<
40
20
° 100.0
99.2 98.9 99.9 .
100 %89 95.4 96.4 95.9 95.9 96.0 mmm C-MEMD+MT (l-cla)
CLA (l-cla)
BN C-MEMD+MT (man)
80 s MEMD+MT (man)
CLA (man)
C-MEMD+MT (def)
g 60 CLA (def)
g mmm BCOUNT
g == BCOUNT+MT
<
40 RCOUNT+MT
20

0

Fig. 3.4 Results on the bibliometrics classification task. We compare the accu-
racy of the considered methods on the reduced data set (top) and on the full
data set (bottom). See Table 3.1 for a definition of the different methods being
compared.

52 | Distance Measures Based On TETs

are set to approximate a step function going from near 0 at x = 7 to near 1 at
x =8, thus allowing to achieve perfect classification. We performed for the test
authors a k-nearest neighbor prediction based on the k£ = 10 nearest neighbors
in the training set, retrieved by C-MEMD+MT. We compare this approach to
several alternatives. Some of these alternatives do not scale to our full dataset,
and we therefore perform some experiments on a reduced dataset containing
10,000 authors for training, and 1,000 authors for testing. Our first compari-
son is against C-MEMD to assess the impact of the MT approximation on the
prediction accuracy. The second comparison is against nearest-neighbor pre-
diction, when nearest neighbors are determined based on similarity defined by
the WL graph kernel (WL-GK). The WL graph kernel expects graphs with a
single node attribute and single undirected edges between node pairs. In order
to match this format, we represented the relational neighborhood information
of an author entity that our citation TET exploits as an undirected graph with
nodes representing ground atoms, atom types as node labels and edges connect-
ing ground atoms according to the TET structure. The TET based similarity
d..mema and the WL-GK based similarity are thus based on the same selection
of raw relational data. We used a publicly available graph kernel implemen-
tation® for this experiment. We set the number of iterations parameter to 1,
which we found to give the best results. Our third comparison is with the base-
line count metric described in Section 3.4.4. We ran this baseline using both
exhaustive nearest neighbor search (BCOUNT) and metric tree approximation
(BCOUNT+MT).

Figure 3.4 (top) reports classification accuracy of the methods we tested on
the reduced dataset. The first relevant insight is that there is basically no differ-
ence between results of the d,._,,,,,; metric using exhaustive or approximate
neighbor search. Comparing different weight settings, we see that manually
adjusted weights give rise to perfect classification, and that parameter learning
finds nearly optimal parameters, substantially better than default ones. Com-
petitors lag clearly behind. The WL-GK is performing the worst, most likely
because its aggregation strategy fails to compute the relevant counts-of-counts
statistics. The BCOUNT baselines do a reasonable job, but are substantially
outperformed by the d.._;,,,,,4 metric with an appropriate weight setting (man-

ual or learned).

3https://github.com/mahito-sugiyama/graph-kernels

https://github.com/mahito-sugiyama/graph-kernels

3.6 Experiments | 53

Figure 3.4 (bottom) reports the results of a second set of experiments where
we use the whole training/test split of the dataset. In this case we compare
C-MEMD+MT with different weight settings against three alternatives. The
first alternative is given by the same count baselines used in the experiments
with the reduced dataset. Results are also very similar, with count baselines
achieving the same accuracy as in the reduced dataset. The second alternative
consists of simplified versions of the metric in which only the counting com-
ponent (RCOUNT+MT) or only the memd component (MEMD+MT) is used.
In both cases, results are substantially worse than those achieved with the com-

bined metric, confirming the need for considering both aspects of the similarity.

Results achieved with the direct classification model CLA and parameter set-
tings (man) and (l-cla) are very similar to those achieved with nearest-neighbor
classification. Both of these parameter settings are optimized for using the lo-
gistic evaluation function as a discriminant in this classification task. Under
the (def) parameter setting the logistic evaluation always is > 0.5, and there-
fore CLA (def) classifies all examples as positive, leading to an accuracy of
only 14.2. It is noteworthy that even under this parameter setting the similarity
based method C-MEMD+MT (def) performs reasonably well, indicating some
robustness of the approach with respect to the parameter values.

To summarize, the main insights from the classification experiment are:

* The C-MEMD metric is expressive enough to capture under a suitable
parameterization B the concept h-idx > 7 precisely.

* The classification performance of the metric is quite robust under changes

of the parameterization

* Supervised parameter learning under a classification loss function here
finds parameters that lead to high classification accuracy, both in the direct
classification setting (CLA), and in conjunction with C-MEMD nearest

neighbor prediction.

* The counts-of-counts based C-MEMD metric outperforms the flat count
metric BCOUNT, where the margin of difference varies with how well the
C-MEMD parameters are optimized.

54

Distance Measures Based On TET's

RMSE

C-MEMD-+MT (I-mse) 85

C-MEMD (I-mse)

C-MEMD+MT (man)

C-MEMD (man)

C-MEMD+MT (def)

C-MEMD (def)

BCOUNT

BCOUNT+MT 5.5
WL_GK

0.6
0.40.40.40.4; ~ 0-5 0505

h-idx g-idx e-idx i10-idx

N C-MEMD+MT (I-mse)
REGR (I-mse) 1371
BN C-MEMD+MT (man)
W MEMD+MT (man) 743
REGR (man)
C-MEMD+MT (def)
REGR (def)
W BCOUNT
s BCOUNT+MT 23.2
RCOUNT+MT

38.7

4.8
4.5

3.9

2.8

15

0.5

0.50.5 0.5

h-idx g-idx e-idx i10-idx

Fig. 3.5 Results on the bibliometrics regression task. We compare the RMSE
of the considered competitors on the reduced data set (top) and on the full
data set (bottom). See Table 3.1 for a definition of the different methods being
compared.

3.6 Experiments | 55

3.6.3 H-index regression

We then addressed a regression task, where the goal is to exactly predict some
bibliometric index of an author. We employed £, g, e, and i10 indices [55, 43,
130] to investigate the capability of our metric to represent relevant similarity
for a broader range of prediction tasks. As before, we use the citation TET
of Figure 2.1 (a), with different methods for setting its parameters. Note that
in the 1-mse weight setting, distinct parameters are learned for each index to
be predicted. In the nearest neighbor based approaches, we predict each bib-
liometric index by the average value of the index in the 10 nearest neighbors.
We compare this approach with the same alternatives used for the classification
task, both in the reduced and full dataset settings.

Figure 3.5 (top) reports the root mean squared error (RMSE) of the meth-
ods we tested on the reduced dataset. A comparison of the performances of
C-MEMD and C-MEMD+MT shows that for this more complex task, the MT
approximation does produce some performance degradation, albeit differences
are rather limited. In terms of weight settings, manual parameters again achieve
the best results, and learned weights are very competitive, with almost undis-
tinguishable results in the exact search case. In general, the metric is robust
with respect to the choice of parameters, as the default weight setting is also
quite competitive. In terms of alternative methods, again the WL-GK is per-
forming the worst, and the BCOUNT baselines do a reasonable job but are
outperformed by C-MEMD, especially when combined with exact search.

Figure 3.5 (bottom) reports the root mean squared error (RMSE) of the meth-
ods we tested on the full dataset. In this case we compare C-MEMD+MT
with different weight settings againts three alternatives. The first alternative is
given by the the same count baselines used in the experiments with the reduced
dataset. Results are also similar, as C-MEMD+MT with manual parameters
outperforms the baselines in all but the e-idx prediction (where they perform
the same). The second alternative consists of the same simplified versions of
the metric used for the classification case. As in that case, the counting and
MEMD components of the metric alone give rise to substantially inferior per-
formance than those achieved with the combined metric. With the direct regres-
sion approach REGR we only obtain competitive results with the 1-mse weight
setting, which substantially outperforms both manual and default parameter
settings. This shows the feasibility of weight learning by backpropagation.

56 | Distance Measures Based On TETs

However, even under this optimized setting of the weights, the performance of
REGR is substantially worse than what we obtain from similarity-based near-
est neighbor regression. To summarize, the main insights from the regression

experiment are:

* C-MEMD+MT gives competitive results for all three weight setting ap-
proaches, demonstrating a certain robustness of C-MEMD based predic-

tion under variations of the weights.

* Similarity-based nearest-neighbor prediction (C-MEMD and BCOUNT)
greatly outperforms direct regression (REGR).

* The strong results of C-MEMD+MT under the manual weight setting is
evidence for a potential of further improvements that could be obtained
by weight optimization using a metric learning (rather than regression)
approach.

3.6.4 Retrieval

We consider a task where an objective evaluation criterion can be defined.
Named “recasting”, this task is designed as follows: the IMDb website* lists
cases where an actor turned down a role in a major movie, and also states
which other actor subsequently filled that role. We can view this as a retrieval
problem for a director or casting agent: find for the initially chosen actor (the
query actor) a similar replacement actor. We denote as farget actor the actor
that ultimately played the role. The IMDb website lists a total of 20 of such
query/target pairs of male actors. We omit from our experiments two pairs of
actors, reducing the list to 18 pairs. Each target actor is chosen from a set of
9,601 actors. The replacement for a query actor will usually match that query
actor both with respect to the type of movies they usually perform in, as well
as with respect to commercial aspects as represented by our business TET. We
therefore construct a TET incorporates both the actor genre profile and the busi-
ness information of the film production, as shown in Figure 3.3 b) and c¢). We
construct a TET with a vacuous root set to ¢, connected to the two sub-TETSs
describing the profile and business information (b) and c) respectively. Since

candidate replacement actors should be active in the same time period as the

“https://www.imdb.com/poll/pOHuVFrAcR4/

https://www.imdb.com/poll/p0HuVFrAcR4/

3.6 Experiments | 57

query actor, we need to consider only movies in a time interval immediately
preceding the release date of the query movie. This can be done by adding a
temporal feature to the TET, giving a ¢ evaluation if the movie has been pro-
duced in a specific temporal window. We use the default parameters for the
C-MEMD metric for this experiment. The recasting works as follows: given
the query actor, the exhaustive nearest neighbor computation is performed (i.e.,
without the support of the MT retrieval), thereby defining a distance score for
each possible actor in the dataset. This score is used to rank all the actors from
most similar to less similar. We compared our C-MEMD metric against the
alternative metric based only on the pure count statistics, namely BCOUNT.
The rankings obtained by the two metrics correspond to the two columns in
Table 3.2. Considering the large number of possible replacement actors, and
the fact that the eventual replacement actor (our target) may be the result of
many compromises and contingencies faced in the casting process, one should
not expect that the target already appears in the top 10, or so, of the nearest
neighbor list. In our results, in 11 cases the target actor is in the top 10% of the

ranking, whereas in 9 cases he is in the top 5%.

58 | Distance Measures Based On TETs

Query actor Target actor Movie C-MEMD BCOUNT

Al Pacino Chazz Palminteri The Usual Sus- 714 1825
pects

Burt Reynolds Harrison Ford Star Wars: Episode 1545 2263
v

Daniel Day-Lewis Viggo Mortensen Lord of the Rings: 1604 9163
the Fellowship of

the Ring
Denzel Washington Brad Pitt Se7en 32 10
Hugh Jackman Daniel Craig Casino Royale 276 8020
Jack Nicholson Al Pacino The Godfather 2195 2573
James Caan Jack Nicholson ~ One Flew Over the = 348 547
Cuckoo’s Nest
John Travolta Tom Hanks Forrest Gump 17 105
Johnny Depp Matthew Broderick Ferris ~ Bueller’'s 8467 6170
Day Off
Kevin Costner Tim Robbins The Shawshank 256 129
Redemption
Leonardo DiCaprio Mark Wahlberg ~ Boogie Nights 1635 2077
Leonardo DiCaprio Christian Bale American Psycho 235 109
Matt Damon Sam Worthington Avatar 3850 3308

Sean Connery Ian McKellen The Hobbit: anUn- 953 5640
expected Journey

Sylvester Stallone Brad Pitt Se7en 247 399
Tom Hanks Tom Cruise Jerry Maguire 2 27
Tom Selleck Harrison Ford Indiana Jones and 162 348
the Temple of
Doom
Will Smith Keanu Reeves The Matrix 1502 9262

Table 3.2 Results on the recasting experiment. For each movie, we report the
ranking of the target actor within the list of the nearest neighbors of the query
actor.

3.7 Metric Learning | 59

3.7 Metric Learning

In this section, we present an extension to the previously defined class of
metrics. As described in the previous section, the logistic evaluation func-
tion parameters are instantiated following three strategies: default, manual and
learned assignments. The experiments in which the parameters were manually
assigned obtained the best performances in both classification and regression
tasks and performed slightly better than the learned parameters setting. This
is not surprising in that the manually assigned parameters were specifically de-
signed to exploit some characteristics of the data to produce meaningful logistic
evaluation values and, consequently, histograms. Although manually assigning
the parameters is a sensible approach to evaluating the performances, it lacks
practical use when the task is more complex and the discriminant rules are
harder to define, making it useful for the evaluation but not for the application
in real scenarios. In the previous sections, we showed how learning the weights
B of the logistic evaluation function is performed as a supervised learning task.
The output value at the root of the logistic evaluation tree LBis compared to the
true value via a loss function, and then the parameters are updated via gradient
descent. Once the supervised learning task is completed, the best performing
model parameters are used for constructing the histograms and comparing two
evaluation trees. Although this two-step strategy has been proven effective for
calculating the h-index class of an author, an approach in which the parameters
are learned via direct application of the metric is desirable. Therefore, here we
investigate some possible strategies to perform metric learning based on the
TET metrics. Metric learning is the task of learning distance functions from
a set of data by exploiting supervised or unsupervised learning techniques, be-
coming a popular task since early two thousands [8]. In the literature, metric
learning has been used in many different tasks, e.g., dimensionality reduction,
semi-supervised clustering [13, 39, 124], image retrieval [56] and more gener-
ally to improve the performances of distance-based classifiers. The vast ma-
jority of research is focused on linear metric learning for vectorial data, by
learning the covariance matrix of the Mahalanobis distance [126, 37, 124] or a
generalized cosine similarity function [90, 27, 7]. Non-linear metric learning
has been proposed by kernelizing linear metric learning approaches [104, 26]

or performing non-linear projections using, e.g., deep neural networks [30, 97]

60 | Distance Measures Based On TETs

or regression trees [64]. Metric learning on structured data has received much
less attention due to the challenge given by the combinatorial nature of struc-
tured data. A simple option consists of mapping structured objects to feature
vectors via kernels on structured data [54] and perform metric learning in fea-
ture space. This is, however, highly problematic due to the typically very high-
dimensional nature of the feature space and the loss of structural information
produced by the feature mapping. Existing works for direct structured metric
learning have mostly focused on edit distance learning, where the task is to
learn the cost of edits. Initially developed for strings [93], these approaches
have been later adapted to deal with trees [18] and graphs [84]. However, these
approaches are conceived for measuring distances between entire structures
and are extremely expensive when applied to relational data.

3.8 The TETRIC

Our goal is to adapt the TET metrics based on the earth mover’s distance to
perform metric learning, i.e., learning the parameters of the logistic evaluation
while directly measuring the distance between objects. In order to avoid confu-
sion, we call the new adaptated metric introduced here TETRIC, the composi-
tion of the nouns TET and metRIC. As for the previous metrics, also the TET-
RIC defines a distance between two logistic evaluation trees, Lf ,Lg obtained
from the logistic evaluation function. However, for defining the TETRIC we
discard the computation of histograms to balance the model complexity in fa-
vor of a simpler strategy. The advantage of using histograms is to fully exploit
the earth mover’s distance on multidimensional representations. However, re-
lying on the less expressive representation obtained with the marginalization
of the histograms, allows for a faster computation while obtaining remarkably
good results, as shown in the classification and regression experiments of Sec-
tion 3.6. Moreover, computing the earth mover’s distance involves solving an
optimization problem for which computing the derivative would become ex-
tremely costly. Another modification we apply in the TETRIC involves the
construction of the . (v), i.e. the multiset of logistic value paths. Computing
the value path for a node v; different from the root .# (v;) means that all the
values from the root to the observed node are replicated during the top down
construction procedure, with the cardinality of values in the path correspond-

3.8 The TETRIC | 61

ing to the dimensions of the histogram, and the actual values determining the
position of the cell in the histogram. The marginalization eliminates this po-
sitioning, flattening the histograms to a series of bins in a single dimension.
Therefore, here we can discard the repetition of the value path in favor of sim-
pler multisets of logistic values, i.e. we do not consider the path of values from
the root to the node. To distinguish the multisets of logistic value paths (. (v))
from the multisets of logistic values we use the new notation M(v). We con-
struct the TETRIC using as base components a variation of the pseudo metrics
on multisets dcoun; and d,,,, 4, defined over pairs M, (v),M>(v). The first is just
based on the cardinalities of the two multisets:

_ min(|M,(v)], [Ma(v)|)'
VIM (V)]- [My(v)]

dcount(Ml (V)7M2(V)) = (3.13)

For the second measure, let P, be the probability distributions on [0, 1] defined
by normalizing the multiplicities in M; to probabilities, and let F; be their cu-
mulative distribution functions. Then

Ao (M1 (v) / Iy (x) — Fa(x)]dx. (3.14)

1s the earth-mover’s distance between P; and P> (with Euclidean distance as the
underlying base metric) [25]. We have that d¢ou and d,,,, 4 are pseudo-metrics
on multi-sets of real numbers, and for any coefficients A;,A; > 0 the weighted
combination Adcoun: + A2d,,,,4 is @ proper metric. A metric between full value
trees now is obtained as a linear combination of the d.,un: and d,,,; distances
for all nodes:

TETRIC(L1,L2) := Y, (Weount(V)deoun: (M1 (v), M2 (v))

veT

+Weomd(V)dema(Mi(v),Ma(v))), (3.15)

where Weount(V), Wepg(v) > 0 are node-specific weights for the two distance
measures. The TETRIC, thus, is parameterized by the weights defining the lo-
gistic evaluation function, and the metric component weights Weoun:(V), Worma(V)-
We typically constrain the metric component weights to sum up to one, so that
TETRIC is normalized to the range [0, 1]. For a given weighted TET T and two
entities x,y we write TETRIC(T,x,y) for TETRIC(Ly, L), where L,,L, are the

62 | Distance Measures Based On TETs

value trees obtained from evaluating 7 for x,y. This notation can be expanded
to TETRIC(T, B,w,x,y) to make explicit the dependence on the weights of the
logistic evaluation function, denoted by B, and the metric component weights
w.

The following proposition states two fundamental properties.

Theorem 2 For any weighted TET T, TETRIC(T,-,-) is a pseudo-metric on
domain entities. If h: V — V is a multi-relational graph automorphism with
x—= X, andy—y, thend(x,y) =d(X',y') and d(x,xX') =d(y,y’) =0

3.9 TETRIC Learning

We aim at learning for a given TET T the weights B of the logistic evaluation
function, and the metric component weights w. We assume that supervision is
available in the form of triplet constraints [105, 9], i.e. triplets of entities A, f, c
for which the target distance d should satisfy

d(h,c) <d(h,f). (3.16)

Triplet constraints are quite flexible, and many forms of supervision can be
translated into such constraints. Below we will generate triplet constraints from
class label information. In contexts other than classification, they might be gen-
erated from qualitative user feedback expressing judgements of relevance or
preference. The overall learning process then consists of two parts: generation
of training tiplets, and finding weights that satisfy the constraints. We first turn
to the second part.

Given a set C of triplet constraints, we use a standard hinge loss

I(B,w)=) max(6— (TETRIC(T,B,w,h,f)
(hye,f)eC

— TETRIC(T, B,w,h,c)),0), (3.17)

where § is a margin hyperparameter. We are here not adding a regularization
term, because we are only learning quite low-dimensional parameter vectors,
with a low risk of over-fitting. It is our goal to minimize the loss using a stan-

dard batch stochastic gradient descent approach. The critical issue for this is

3.9 TETRIC Learning | 63

the computation of the gradients with regard to B of d,,,,; terms (3.14), where
M, M, now are multisets in the value trees obtained by evaluating some v € T
for h and f (or i and c) under the current parameters B. Let M; = X115 X0y
My =Xx31,...,x2,,, and let x; < xp < ... < Xy, 40, be the sorted union of M,
and M,. The integral in (3.14) can then be written as

ni+ny

; |Fi(xi(B)) — F2(xi(B))|(xi(B) —xi—1(B)), (3.18)

where we also make the dependence on B explicit. We first note that the car-
dinalities |M;| = n; (i = 1,2) are determined by the structure of the relational
neighborhoods of 4, f,c, and do not depend on B. The weights B only af-
fect the values x; ; = x; j(B), and, hence their ordering in the joint sequence
x1 < ... < Xp+n,- Now consider an infinetisimal increment vector €. Then
|F1(xi(B+€))— F2(xi(B + €))| can only differ from |F (x;(B)) — Fa(xi(B))| if

* there exists x1_j, (B) = x2,(B) =xi (j1 < ni, j2 < ny), and

* Xx; j, is obtained by evaluating the node v € T for entity tuples x; (i = 1,2),
such that the relational structures on which the evaluation of v depends are

not isomorphic for x; and x;.

In other words, the difference |Fy (x;(B)) — Fa(xi(B))] is locally constant in B,
unless B happens to return at v € T identical values for two non-isomorphic
relational sub-structures.

Even though we here do not develop a fully rigorous formulation and deriva-
tion of this statement, we conclude that |F; (x;(B)) — F>(x;(B))]| is locally con-
stant almost everywhere in the parameter space of B, and, thus, can be treated

as a constant when computing the gradient of (3.18). Thus,

9 mim g 9
Wdemd(Ml(B)aMZ(ﬁ)) = l; (ﬁxz-(ﬂ)—%xu(ﬁ))a (3.19)

where the gradients on the right-hand side just require partial derivatives of the
logistic evaluation function. Note, however, that this expression requires that
the values x; .(B),x2..(B) are sorted according to the current value of B.

We next turn to the question of generating training triplets from labeled data.

The simplest approach is to randomly sample a reference entity A, and then

64 | Distance Measures Based On TETs

Algorithm 3 TETRIC learning.

1: procedure TETRIC _LEARN (TET T ,training data D, validation set V')
2: for number of restarts do
B,w=GET_NEXT_INITIALIZATION()
while not converged do
C=GENERATE_TRIPLETS(T, D, B,w)
GRADIENT_DESCENT(T, B,w,C)

EVALUATE(T, B,w,V)
return best restart result

A

sample ¢ randomly from the entities of the same class as 4, and f randomly
from entities with a different class. However, in preliminary experiments we
found that training on data generated in this way leads to a poor correlation
between the loss function, and the actual accuracy achieved on the validation
set. In previous work [103, 35] it was suggested that many of such random
triplet constraints will be too easy, and one should bias the triplet generation
towards hard examples. Specifically, 103 suggest to select for a given A:

f =argmind(h,-), c = argmaxd(h,-), (3.20)

where argmin and argmax are taken over the instances with a different, respec-
tively the same, class as 4. Generating training triplets in this manner implies
an objective that all entities of the same class should be closer to each other
than to entities of other classes. However, we find it more realistic, and suffi-
cient for achieving good accuracy in nearest neighbor classification, that a class
(according to the target metric) may consist of several coherent clusters. Then
it is only required that the nearest neighbor of / belongs to the same class of 4,

and training triplets can be constructed for a random #/ by
f =argmind(h,-), ¢ = argmind(h,-). (3.21)

This may again generate triplets that are too easy. In particular, it may be the
case that d(h, f) —d(h,c) > 8. Then the triplet A, f,c would not contribute
to the loss function, and is omitted. If 0 < d(h, f) — d(h,c) < &, on the other
hand, the triplet is retained. Both (3.20) and (3.21) make the triplet generation
dependent on the current metric d, and are potentially very expensive due to

the minimization/maximization operators. To mitigate these complexities, we

3.9 TETRIC Learning | 65

use a metric tree construction for fast, approximate nearest neighbor retrieval,
and/or compute the argmin only over a random sub-sample of entities.

Algorithm 3 summarizes our approach. Random initial values for B,w are
sampled using latin hypercube sampling (line 3). The main loop of lines 4-7
then is a batch stochastic gradient descent, where a batch of training triplets
is generated according to the approach described above, one gradient descent
step 1s performed, and the updated weights are evaluated by the accuracy of
nearest neighbor classification on the validation set.

66 | Distance Measures Based On TETs

3.10 Experiments on Metric Learning

3.10.1 Data and Experimental Setup

We explore the TETRIC application in several scenarios, providing a compar-
ison with the TET metric d,,,,; and state-of-the-art techniques for supervised
learning on relational data. To effectively apply the learning procedure based
on triplet constraints, we focused on binary classification tasks. The construc-
tion of the triplets is performed considering the labels of the examples, as de-
scribed in Section 3.9. The reference element /4 and the element closer to the
reference, i.e., ¢, belong to the same class, whereas f is an example of the other
class. In theory, the triplets could be constructed also in a multi-class setting, as
long as some concept of "closeness" among the classes can be defined in order
to determine the tuples of close and far examples used in the hinge loss. We
test our metric learning task on different datasets with increasing relation com-
plexity, initially evaluating our method on a synthetic one then moving to some

real domains such as movies recommendation and restaurant classification.

3.10.2 Synthetic Dataset

We constructed a synthetic dataset with specific characteristics to asses the abil-
ity of the TETRIC to learn meaningful metrics under the constraints imposed
by the triplet loss function. This dataset comprises entities of a single type,
and three binary attributes characterize the nodes. Each entity of the dataset
expresses only one of the three attributes, to which we simply refer to as A,B
and C. The number of entities per attribute in the dataset is balanced, for a
total of 1000 entities, and each entity represents a node in the relational graph.
The relational signature contains one predicate defined on couples of entities,
1.e., edges (N,N’), which evaluates to ¢ (true) if an edge connects two entities,
f (false) otherwise, and three single-variable predicates A(N), B(N) and C(N)
which evaluate to ¢ if the entity expresses that attribute. Figure 3.6 shows the
TET used to encode the relational features in this experimental setting, extract-
ing, for a given node, the distribution of the three attributes among its neighbors.
The task is a binary classification problem, therefore each node is attached with
a positive or negative label. The label of a node is determined by the following

rule:

3.10 Experiments on Metric Learning | 67

e positive if 0.5 < [A(N")|/max(|B(N")| + |c(N")],0.01 x |[V]) < 1
* negative otherwise

where [A(N')

A, B and C respectively, whereas |V| is the total number of nodes in the graph.

,B(N")| and |c(N")| are the number of neighbors showing attribute

The dataset is split into 689 training examples and 311 test examples, using

(0) T(N)
W |V
(0) edges(N,N')

(9/(2)\ \@
)

AN B(N') C(N')

Fig. 3.6 TET for a node of the synthetic dataset. The numbers attached to the
nodes and the edges represent the weights of the logistic functions that allow
for accurate classification using the d,._,,,.,n,q metric.

20% of the training for validation. For the training, we constructed 1.378
triplets such that each train example is present at least twice in the set of triplets,
applying the same strategy to the validation set. The TETRIC is trained using
the loss introduced in Section 3.9 for 100 iterations, with a learning rate of
0.01. The expectation of this experiment is that the learned TETRIC should
be able to assign lower values when measuring the distance of entities belong-
ing to the same class with respect to entities of the opposite class, in order to
achieve perfect prediction when using it as the base metric in the KNN classi-
fication algorithm. We use several alternatives of TET-based metrics defined
in the previous Section. Our baseline is given by the d._ g metric presented
in Section 3.4.3, for which we know a parametrization of the logistic function
(figure 3.6) that allows to reach 100% accuracy with KNN classification. The
assignment in the figure is only a possible solution to achieve perfect predic-
tion, therefore we do not expect the TETRIC to learn precisely this assignment,
but we know for sure that at least one solution is possible, therefore expecting
the TETRIC to be able to learn an assignment that leads to the same results.
As we showed in the experimental Section 3.6, we can use both the inner met-
rics of the TETRIC or disable one of the two. We propose again the same

68 | Distance Measures Based On TETs

concept here by using the full TETRIC, i.e., EMD and count (TETRIC,,,,s),
the EMD part only (TETRIC,,,;) and the count part only (TETRIC,.,,,4). A
possible argument against the last two variations is that the main use of the
TETRIC is when both the inner metrics are applied, because the flexibility of
the TETRIC permits to adjust the contribution given by each one, having as
extreme case to totally disable one of the two. This is indeed true, however the
previous applications of TET metrics based solely on the EMD or count metric
has not been performed under the triplet constraints setting with the hinge loss,
therefore justifying this experimental evaluation. Our assumptions were vali-
dated, obtaining an accuracy score of 100% with TETRIC,,,,; and TETRIC,,,,,
whereas reaching only 94% with TETRIC,,,,,;,. We also perform the classifica-
tion using only the logistic evaluation function as predictor, applying a cross
entropy classification loss, naming this method TET;,. This method performs

the worst with an accuracy score of just 72%.

3.10.3 Real-world Datasets

As real-world applications, we employed several datasets from different do-
mains. The first benchmark is the AMiner dataset in the same setting as pre-
sented in Section 3.6.2 in its reduced version; the second dataset comes from
the PAKDD15 competition in which the task is to predict the users’ gender by
analyzing e-commerce data. In total the dataset contains 30,000 users, divided
into 24,000 users for training and 6,000 users for testing. The third benchmark
comes from the Yelp challenge, in which we predict if a restaurant sells chi-
nese of mexican food from the reviews of the users. The restaurants in the
datasets can belong only to one of the two classes, therefore no restaurant can
sell both chinese and mexican food, and it comprises 3,526 restaurants in the
training set and 881 restaurants in the test set. Finally, we predict the gender of
users in the movie domain with the Movielens 1M dataset. From the original
datasets, all the movies that are not action or dramas genre and that have not
been reviewed were removed. Ultimately, the number of users that reviewed
the reduced set of movies is 6,040, divided into 4832 users for training and
1208 users for testing. We compare the TETRIC with several alternatives. Be-
ing the TETRIC constructed as a variation of the d._;,,,,,4 metric, we run the
latter with parameters B learned by applying the logistic evaluation function
with the classification loss. We used three variants of the TETRIC in this ex-

3.10 Experiments on Metric Learning | 69

periments; in the first two implementations, we consider the du, or the d,,;, 4
metric only, represented with the names TETRIC,,,,,,; and TETRIC,,,; respec-
tively. Then we make use of both the full TETRIC as shown in Equation 3.15
calling it TETRIC,,,,,4. In this experiment, we also consider the performance
of applying as a discriminant function only the logistic evaluation function as
done in the experiments of Section 3.6.2, referring to it as TET,;,. We compare
our methods against some recent techniques for entity prediction in relational
graphs. The first competitor is called Relational Graph Convolutional New-
tork [100] (R-GCN), a new class of graph convolutional networks that use the
spatial information of a node’s relational neighborhood to construct its embed-
ding. A technique similar to the logistic evaluation function for performing
classification and regression tasks is presented by Kazemi et al. in [63], called
Relational Neural Networks (ReINN), that use hierarchical evaluation of logi-
cal groundings to predict a numerical value. While ReINN and R-GCN operate
directly on the data structure to obtain a certain response, other approaches try
to obtain meaningful latent representations of the graph vertices. An efficient
and powerful strategy to obtain such representations is RDF2VEC [94], which
extracts random walks from the graph and uses the Skipgram model [81] to
produce embeddings of the graph entities, which are then used in a learning
model that operates on vectors. In this case, we used a linear SVM as the
learning model on top of the entity embeddings. The dataset have all been
split in 80% of the examples for training and 20% for testing, following the
same strategy used in [63]. We used a different experimental setting for train-
ing RDF2VEC, R-GCN, and RelNN with respect to and the TETRICS. Being
this methods quite different in their methodology, setting the same learning
hyperparamters for all of them would lead to an unclear picture on the actual
capabilities of the models. Therefore, for training the TETRICS we let the
training algorithm run for a maximum of 100 iterations with a learning rate of
0.05 and performing early stopping on the validation set, which corresponds
to the 20% of the training set. The results of the classification tasks on the
real world datasets are reported in Table 3.3. On the AMiner dataset, the im-
plementation of RDF2VEC run out of memory, therefore we cannot provide
its accuracy score. In general the models based on TETs perform better than
the competitors, apart for the gender prediction task in Movielens in which
RDF2VEC with linear SVM is superior. Considering the hindex prediction in

70 | Distance Measures Based On TETs

MODEL |AMINER|PAKDD|YELPMOVIELENS]
RDF2VEC | NA 86.7 | 61.5 81.87

R-GCN 85.8 87.1 |66.4 77.4
RELNN 98.77 | 88.53 |69.27 79.02
TET, 99.6 88.6 |71.73 80.31

TETRIC,,,s | 99.14 | 86.63 [75.36 76.57
TETRIC oun| 95.97 | 89.06 [73.89 73.67
TETRIC epmqg| 98.83 | 89.03 [76.73 74.42

Table 3.3 Experiments on metric learning on real datasets. The best perfor-
mance for each dataset is highlighted in bold.

AMiner, using the logistic evaluation function only we can achieve almost per-
fect prediction with 99.6% of accuracy. The TETRIC is the best performer in
the case of the YELP and PAKDD datasets. The performances of all methods
in PAKDD are quite close to each other, although with the TETRIC we can see
a slight improvement over the other methods. It is interesting to see how the
best performer here is TETRIC,,,,; and the second best at only 0.06% distance
is TETRIC,,,,4, whereas the TETRIC,,,; is the overall worse, indicating that in
this case the learned weights that balance the two metrics in TETRIC,,,,,; were
in fact ignoring the evaluation of the EMD in favor of the plain count distance.
Moreover, this can be seen in all the other benchmarks, where the TETRIC,.,,,,4
places in between the two variants. A significant improvement by using both
the EMD and count distance is given in the YELP dataset, in which the com-
bination of both yeld a significant improvement over all the TETRIC variants

and the other methods, even the classification model of TET .

3.11 Remarks | 71

3.11 Remarks

This chapter illustrates a new class of metrics defined over relational data. The
underlying counts-of-counts features constructed from the relational graph al-
low for the definition of complex hierarchical structures, upon which neural-
like functions can be applied on and that can be exploited to construct multi
dimensional histograms. We showed how the earth mover’s distance is a per-
fect candidate to measure the dissimilarity between this histograms and how
we can combine EMD and other count metrics to effectively compute similar-
ities between tuples of relational entities. Moreover, we showed how we can
perform metric learning tasks by modifying the metrics to better adapt to com-
plex domains. The evaluation on both synthetic and real-world datasets proved
the effectiveness of the methods.

Chapter 4

Learning Aggregation
Functions

74 | Learning Aggregation Functions

4.1 The problem of aggregation

Since the early two thousand, the developments in the machine learning field
highlighted how aggregating information has become a relevant part of many
learning models, such as fuzzy logic, graph neural networks and, more in gen-
eral, every technique that operates on sets of data. A large body of literature
in recommendation systems uses aggregations to make predictions, e.g., group
recommendation, multi-criteria decision making, and score prediction systems.
The need to aggregate representations is therefore ubiquitous in deep learning.
Some recent examples include max-over-time pooling used in convolutional
networks for sequence classification [67], average pooling of neighbors in
graph convolutional networks [70], max-pooling in Deep Sets [128], in (gener-
alized) multi-instance learning [114] and in GraphSAGE [53]. In all the above
cases (except for LSTM-pooling in GraphSAGE) the aggregation function is
predefined, i.e., not tunable, which may be in general a disadvantage [57]. Sum-
based aggregation has been advocated based on theoretical findings showing
the permutation invariant functions can be sum-decomposed [128, 127]. How-
ever, recent discoveries [120] showed that the universal function representation
guarantee requires either highly discontinuous (and thus poorly learnable) map-
pings, or a latent dimension equal to the maximum number of elements in the
set. This suggests that the learning of accurate functions on sets of large cardi-
nality is difficult. Inspired by previous work on learning uninorms [80], in this
chapter we propose a new parametric family of aggregation functions that we
call LAF, for learning aggregation functions. A single LAF function can ap-
proximate standard aggregators like sum, max, or mean, and it can model more
complex functions with non-standard behaviour. Besides, LAF layers with mul-
tiple aggregation units can approximate higher-order moments of distributions
like variance, skewness, or kurtosis. In contrast, other authors [33] suggest em-
ploying a predefined library of elementary aggregators to be combined. Since
LAF can represent sums, it can be interpreted as a smooth version of the class
of functions that are shown in [128], retaining the universality results in rep-
resenting set functions. Our empirical findings show that our model is able to
generalize over large sets better than other static methods. In particular, we run
an extensive experimental analysis showing that LAF layers can learn a wide

range of aggregators (including higher-order moments) on sets of scalars with-

4.2 Learning Aggregation Functions | 75

out background knowledge on the nature of the aggregation task. Moreover,
LAF layers on the top of traditional layers can learn the same wide range of
aggregators on sets of high dimensional vectors (MNIST images). Our method
outperforms state-of-the-art set learning methods such as DeepSets and PNA
on real-world problems involving point clouds and text concept set retrieval.
LAF performs comparably to PNA on random graph generation tasks, outper-
forming several graph neural networks architectures including GAT [119] and
GIN [127].

4.2 Learning Aggregation Functions

4.2.1 The Learnable Aggregator

We use x = {x1,...,xy} to denote finite multisets of real numbers x; € R. An
aggregation function agg is any function that returns for any multiset x of arbi-
trary cardinality N € N a value agg(x) € R. Note that directly taking x to be
a multiset, not a vector, means that there is no need to define properties like
exchangeability or permutation equivariance for operations on x. An aggrega-
tion function agg is any function that returns for any multiset x of arbitrary
cardinality N € N a value agg(x) € R. A simple approach to model standard
aggregation functions like the mean or the max is to model them in the form of

a Lp-norm.

Definition 12 Given a real number p > 0, an L, norm is defined as

1/p
Ly(x) = (Zﬂ’) 4.1)

For instance, the maximum value of a set can be computed with the maximum-
norm in which p = c. However, we are interested in developing a family
of functions that comprehend L,-norms as a a of possible solutions, but that
can represent a larger space of possible functions. A simple modification to
the L,-norm allows for expanding the set of representable functions, and this
modification consists in representing the inner exponent and the outer exponent
of the function with two separate variables. We therefore build our parametric

LAF-aggregator around generalized L,-norms.

76 | Learning Aggregation Functions

Name Definition | a b| ¢ d| e f| g hljo B yd|limits
constant ceR 01 - -01/- -c010

max max; X; I/rrf- -0 1| - -[1010jr—e
min min; x; 0 11/rrf 0 1] - -[1-110[r — oo
sum Yixi 1 1,- -01 - -1010
nonzero count {i:x;#£0} |10 - -|0 1| - -[1010

mean I/NY;x;, |11 --10--1010

kth moment I/NLxE |1 k- -1 0--1010

Ith power of kth moment (1/NY,;x5)! | I k| - -| 1 0 - -[1010
min/max min; x;/ max;x;) 0 1]1/rr{l/ss| - -|1 1 10|r,s — oo
max/min max;x;/ min;x;|1/rr] - - 0 1]1/ss|1 0 11{r,s — oo

Table 4.1 Different functions achievable by varying the parameters in the for-
mulation in Eq. 4.3

Definition 13 A LAF-aggregator for an input set x = {x1,...,X, } is a function
parametrized by two values a, b of the form

Lop(x) = (Zﬂ’) (a,b) > 0. 4.2)

L, is invariant under the addition of zeros: L, »(x) = L, ,(xU0) where 0 is
a multiset of zeros of arbitrary cardinality. In order to also enable aggregations
that can represent conjunctive behavior such as min, we make symmetric use
of aggregators of the multisets 1 —x := {1 —x;|x; € x}. For L,;,(1—x) to
be a well-behaved, dual version of L, ,(x), the values in x need to lie in the
range [0,1]. We therefore restrict the following definition of our learnable

aggregation function to sets x whose elements are in [0, 1]:

Definition 14 Let x = {x1,...,x,} a set of input values x; € [0,1],i =1,...,n.
A Learnable Aggregation Function is defined as
oL, b(x) + ﬁLc,d(l _ x)

LAF(x) := yLe,}(x) + 8Ly 4(1—x) (4.3)

where a,...,h >0, and «, ..., € R represent tunable parameters.

Table 4.1 shows how a number of important aggregation functions are spe-
cial cases of LAF (for values in [0, 1]). We make repeated use of the fact that
Lo 1 returns the constant 1. For max and min LAF only provides an asymptotic

4.2 Learning Aggregation Functions | 77

approximation in the limit of specific function parameters (as indicated in the
limits column of Table 4.1). In most cases, the parameterization of LAF for
the functions in Table 4.1 will not be unique. Being able to encode the powers
of moments implies that e.g. the variance of x can be expressed as the dif-
ference 1/NY,;x? — (1/N ¥,;x;)? of two LAF aggregators. Since LAF includes
sum-aggregation, we can adapt the results of [128] and [120] on the theoretical

universality of sum-aggregation as follows.

Proposition 5 Let Z° C R be countable, and f a function defined on finite mul-
tisets with elements from 2 . Then there exist functions ¢ : 2~ — [0,1], p: R —

R, and a parameterization of LAF, such that f(x) = p(LAF (¢x); @, B,7,06,a,b,c,d),
where ¢x is the multiset {¢ (x)|x € x}.

Proof. Let 2" = {x0,x1,...}. Fori > 0 let r; be a random number sampled
uniformly from the interval [0, 1]. Define ¢ (x;) :=r;. Letx={a;: x;|i € J}, X' =
{a}, : xp|h € J'} be two finite multisets with elements from 2", where J,J' are
finite index sets, and g;,a), denote the multiplicity with which elements x;,x;,
appear in x, respectively x’. Now assume that x # x’, but

Y aio(xi) =Y a,0(x), (4.4)

ieJ helJ’

1.€.,

Z (aj—a})rj:O, 4.5
jeJut’

where now a;, respectively a’; is defined as 0 if j € J"\ J, respectively j € J\J'.
Since x # x/, the left side of this equation is not identical zero. Without loss
of generality, we may actually assume that all coefficients a; — a’j are nonzero.
The event that the randomly sampled values {r;|j € JUJ'} satisfy the linear
constraint (4.5) has probability zero. Since the set of pairs of finite multisets
over 2 is countable, also the probability that there exists any pair x # x’ for
which (4.4) holds is zero. Thus, with probability one, the mapping from multi-
sets x to their sum-aggregation), ¢ (x) is injective. In particular, there exists
a set of fixed values rp,rq,..., such that the (deterministic) mapping x; — r;
has the desired properties. The existence of the “decoding” function p is now

guaranteed as in the proofs of [128, 120].

78 | Learning Aggregation Functions

Clearly, due to the randomized construction, the theorem and its proof have
limited implications in practice. This however, already is true for previous
results along these lines, where at least for the decoding function p, not much
more than pure existence could be demonstrated. A proof in [120] for a very
similar proposition used a mapping from 2" into the reals. Our requirement
that LAF inputs must be in [0, 1] requires a modification of the proof, which
for the definition of ¢ relies on a randomized construction.

Proposition 5 shows that we retain the theoretical universality guarantees
of [128], while enabling a wider range of solutions based on continuous encod-
ing and decoding functions.

Fig. 4.1 LAF functions with randomly generated parameters

Despite the ability of LAF to incorporate some widely used aggregation
functions as special cases, this is not its primary purpose. Indeed the concept
of learning is not restricted to enforce LAF to achieve the functions in Table 4.1
but instead, due to its learnable parameters, LAF can represent a continuum of
possible aggregators, capable to enable hybrid complex aggregations. An ex-
ample of several LAF functions that can be obtained with different parametriza-

4.2 Learning Aggregation Functions | 79

tions is shown in Figure 4.1. The input space is the unit square [0, 1] x [0, 1],
1.e., the functions are evaluated over sets of size 2. Parameters «, ...,y were
randomly sampled in the interval [0, 1]; parameters b, d, f, h are randomly sam-
pled from the integers O, ..., 5, and a, c, e, g are obtained as 1 /i with i a random
integer from 0,...,5. The figure illustrates the rich repertoire of aggregation
functions with different qualitative behaviors already for non-extreme parame-
ter values.

4.2.2 LAF Architecture

Unlike other aggregation functions like uninorms [80], LAF is continuous and
its derivative can be computed in a closed form, making it amenable to be
easily used as a module of any other architecture suitable for learning on sets.
Since large portion of machine learning models operate on vectors and not
on single scalar values, we describe how to construct a LAF layer that aggre-
gates a set of vector x = {xi,...,xy} where x; € R?. The aggregation layer
can comprise one or several LAF units that can be combined as shown in Fig-
ure 4.2. A layer with » LAF units takes as input d-dimensional vectors and
produces a vector of size r x d as output. Each LAF unit performs an element-
wise aggregation of the vectors in the set such that Ly ; = LAF({x; j,...,xn j};
0%, B, Yis Ok> Ak bi, ciydy) for k=1,....rand j = 1,...,d. The output vector

To next layer

LAF({z),zs,...,zx}) € RY

x; ERd

{2131,132, . .,J)N}
from previous layer

Fig. 4.2 End-to-end LAF architecture.

80 | Learning Aggregation Functions

Min

.

1071 ¢

Sum Count

.

2

%f%ff%&

fff++ffw3

MAE

105 107

o
Hi M

1 3 6 9 12 1518 21
Mean

i Shdiiis

0

1 3 6 9 12 1518 21
Lth Power Kth Moment

1 3 6 9 121518 21
Min/Max
‘. .

0! i

L]

2x

4
++++%+101
6x10°2
1 3 6 9 121518 21
LAF Units

101
1 1 101
1072 +
. . Sk
£ 10
10~ 102

1073

.
%++$%%+

1 3 6 9 121518 21
LAF Units

1 3 6 9 121518 21
LAF Units

1 3 6 9 121518 21
LAF Units

Fig. 4.3 Trend of the MAE obtained with an increasing number of LAF units
for most of the functions reported in Table 1. The error distribution is obtained
performing 500 runs with different random parameter initializations. A linear
layer is stacked on top of the LAF layer with more than 1 unit. The y axis is
plot in logaritmic scale.

can be then fed into the next layer. We remark that the values of the input vec-
tors should be in [0, 1], therefore when this condition is not satisfied we enforce

it by applying a sigmoid before the layer aggregation.

4.2.3 LAF Layer

Learning the functions depicted in Table 4.1 can, in principle, be done by a sin-
gle LAF unit. However, learning complex aggregation functions might require
a larger number of independent units, in that the final aggregation is the result
of the combination of simpler aggregations. Moreover, a LAF layer should
be able to approximate the behaviour of simpler functions also when multiple
units are used. Therefore, we explored the application of multiple LAF units
to some of the known functions in Table 4.1.

To perform this analysis, we formulate the task of learning some of the tar-
get functions described in Table 4.1. We construct a simple architecture similar
to the aggregation layer presented in Section 4.2.1, in which the aggregation
is performed using one or more LAF units where, in the case of multiple ag-

gregators, their outputs are combined using a linear layer. We also discard any

4.2 Learning Aggregation Functions | 81

non-linear activation function before the aggregation because the input sets are
composed of real numbers in the range [0, 1], with a maximum of 10 elements
for each set. We consider 1,3,6,9,12,15,18 and 21 LAF units in this setting. For
each function and each number of units, we performed 500 random restarts.
The results are shown in Figure 4.3, where we report the MAE distributions.
Let us initially consider the cases when a single unit performs the aggregation.
Note first that the functions listed in Table 4.1 can be parametrized in an infinite
number of alternative ways. For instance, consider the sum function. A possi-
ble solution is obtained if L, learns the sum, L, y = 1 and a = 7. If instead
Lyp=sumand L, f = Lg , = 1, it is sufficient that Y+ 6 = « to still obtain the
sum. This is indeed what we found when inspecting the best performing mod-
els among the various restarts. The following are the parametrization, learned

for the sum, max and mean, that produced the lowest error with a single unit.

C1751(Ex!000)1.000 1 ,000(x(1 — x)0-000)0-560

Sy, 909 (Y. x0-244)0.000 (.841 (Y (1 — x)0-364)0.000
. 1-010(2960 000)0.995 4 0.944(2(x)O 000)1.006
count 1.076(x0466)0.000 4 0.878(2(x)l 21)0.000
1.515(X x!-000)1.000 1 9 000 (¥ (1 — x)0-618)0-000

mean :

0.000(Y x0-296)0-000 1 1 5715(y (1 — x)0-000)1.000

On the other hand, the evaluation clearly shows that learning a function with
just one LAF unit is not trivial. In some cases, LAF was able almost perfectly
to match the target function, but to be reasonably confident to learn a good
representation many random restarts are needed, since the variance among dif-
ferent runs is quite large. The error variance reduces when more than one LAF
unit is adopted, drastically dropping when six units are used in parallel, still
maintaining a reasonable average error. Jointly learning multiple LAF units
and combining their outputs can lead to two possible behaviours giving rise
to an accurate approximation of the underlying function: in the first case, it is
possible that one “lucky” unit learns a parametrization close to the target func-
tion, leaving the linear layer after the aggregation to learn to choose that unit
or to rescale its output. In the second case, the target function representation is
“distributed” among the different units. Here the linear layer is responsible for
obtaining the function by combining the LAF aggregation outputs. In the fol-

lowing, we show another example of a learned model, for a setting with three

82 | Learning Aggregation Functions

LAF units. Here the target function is the count.

nit] - 0. 809(Zx0.875)0.372 + 0. 799(2(1 _x)0.736)0.721
1.189(Y x0-192)0.719 4 1 177 (¥ (1 — x)0-000)0.619

- 1.426(y x0-000Y1.102 1§ 308(y (] — x)0-010)0.739
" 0.636(Y.x0-848)0.000 4 (622 (Y (1 — x)0-456)0.000
i3 0.835(Lx0-866Y0-374 4 0.767(¥ (1 — x)0-122)0.000
" 1.167(L.x0:692)0859 4] 216(Y (1 — x)0-000)0.165

linear : 0.0175 + (—0.1265 x unit 1) + +(0.5027 % unit2) 4+ (—0.0681 * unit3)

In this case, the second unit learns a function that counts twice the elements of
the set. The output of this unit is then halved by the linear layer, which gives
minimal weights to the other units’ outputs.

Although using only one function is sometimes sufficient to approximate
the target function significantly, the error variance among different runs is rel-
atively high, indicating that the optimization sometimes fails to converge to a
good set of parameters. Multiple units provide more stability while performing
better than a single unit aggregation in some cases. We, therefore, construct the
LAF architecture for the experimental section by using multiple aggregators,
computing the final aggregation as a linear combination of the units’ aggrega-
tion.

4.3 Experiments | 83

4.3 Experiments

In this section, we present and discuss experimental results showing the LAF
framework’s potential on both synthetic and real-world datasets. Synthetic ex-
periments are aimed at showing the ability of LAF to learn a wide range of
aggregators and its ability to generalize over set sizes (i.e., having test-set sets
whose cardinality exceeds the cardinality of the training-set sets), something
that alternative architectures based on predefined aggregators fail to achieve.
We use DeepSets [128], PNA [33], and LSTM as representatives of these archi-
tectures. The LSTM architecture corresponds to a version of DeepSets where
an LSTM layer replaces the aggregation function. Experiments on diverse
tasks, including point cloud classification, text concept set retrieval, and graph
properties prediction, aim to show the potential of the framework on real-world

applications.

4.3.1 Scalars Aggregation

This section shows the ability of the LAF framework to learn simple and com-
plex aggregation functions where constituents of the sets are simple numerical
values. In this setting we consider sets made of scalar integer values. The train-
ing set is constructed as follows: for each set, we initially sample its cardinality
K from a uniform distribution taking values in {2, M}, and then we uniformly
sample K integers in 0, ...,9. For the training set we use M = 10. We construct
several test sets for different values of M (M = 5,10, 15,20, 25,30, 35,40,45,50).
This implies that models need to generalize to larger set sizes. Contrarily to the
training set, each test set is constructed in order to diversify the target labels
it contains, so as to avoid degenerate behaviours for large set sizes (e.g., max-
imum constantly equal to 9). Each synthetic dataset is composed of 100,000
sets for training, 20,000 set for validating and 100,000 for testing. The number
of aggregation units is set as follows. The model contains nine LAF (Equa-
tion 4.3) units, whose parameters {ay,..., A}, k =1,...,9 are initialized ac-
cording to a uniform sampling in [0, 1] as those parameters must be positive,
whereas the coefficients {@,...,0} are initialized with a Gaussian distribution
with zero mean and standard deviation of 0.01 to cover also negative values.
The positivity constraint for parameters {a,b,...,h} is enforced by projection

during the optimization process. The remaining parameters can take on nega-

84 | Learning Aggregation Functions

Count Max Mean le-1 Min 1e-1 Max - Min

175 —e— LAF

1.50 DeepSets
s —®— PNA

100 —* LSTM

Mean Absolute Error
8 &% 8 3
: b

1e-1 Inverse Count Median

e-1 Min/Max le-1 Variance o le-1 Skewness Kurtosis

o r =

1.0
04 2

05

' O—HM

0.0 0 0.0

50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

Mean Absolute Error
° =
°

10 20 30

Fig. 4.4 Test performances for the synthetic experiment with integer scalars
on increasing test set size. The x axis of the figures represents the maximum
test set cardinality, whereas the y axis depicts the MAE error. The dot, star,

diamond and triangle symbols denote LAF, DeepSets, PNA, and LSTM re-
spectively.

tive values. DeepSets also uses nine units: three max units, three sum units,
and three mean units and PNA uses seven units: mean, max, sum, standard
deviation, variance, skewness and kurtosis. Preliminary experiments showed
that expanding the set of aggregators for PNA with higher order moments only
leads to worse performance. Each set of integers is fed into an embedding layer
(followed by a sigmoid) before performing the aggregation function. DeepSets
and PNA do need an embedding layer (otherwise they would have no parame-
ters to be tuned). Although LAF does not need an embedding layer, we used it
in all models to make the comparison more uniform. The architecture details
are reported in the supplementary material. We used mini-batches of 64 sets
and trained the models for 100 epochs. We use Adam as parameter optimizer,
setting the initial learning rate to le—> and apply adaptive decay based on the
validation loss, and the loss function is the Mean Absolute Error (MAE). The
algorithm is trained for 100 epochs. Again, each element in the dataset is a set
of scalars x = {x1,...,xy}, x; € R and the learning architecture we designed is

the following: Network architecture:

x — EMBEDDING(10,10) — SIGMOID
— LAF(9) — DENSE(10 x 9, 1)

4.3 Experiments | 85

Figure 4.4 shows the trend of the MAE error for the three methods for in-
creasing test set sizes, for different types of target aggregators. As expected,
DeepSets manages to learn the identity function and thus correctly models ag-
gregators like sum, max and mean. Even if LAF needs to adjust its parameters
in order to properly aggregate the data, its performance are competitive with
those of DeepSets. When moving to more complex aggregators like inverse
count, median or moments of different orders, DeepSets fails to learn the latent
representation. One the other hand, the performance of LAF is very stable for
growing set sizes. While having in principle at its disposal most of the target
aggregators (including higher order moment) PNA badly overfits over the car-
dinality of sets in the training set in all cases (remember that the training set
contains sets of cardinality at most 10). The reason why LAF substantially
outperforms PNA on large set sizes could be explained in terms of a greater
flexibility to adapt to the learnt representation. Indeed, LAF parameters can
adjust the laf function to be compliant with the latent representation even if the
input mapping fails to learn the identity. On the other hand, having a bunch
of fixed, hard-coded aggregators, PNA needs to be able to both learn the iden-
tity mapping and select the correct aggregator among the candidates. Finally,
LSTM exhibits generally poor results when compared to the other methods,
particularly in the case of the count and the sum.

4.3.2 MNIST digits

In this section, we modify the previous experimental setting to process MNIST
images of digits. The dataset is the same as in the experiment on scalars, but
integers are replaced by randomly sampling MNIST images for the same digits.
Instances for the training and test sets are drawn from the MNIST training and
test sets, respectively. This experiment aims to demonstrate the ability of LAF
to learn from more complex representations of the data by plugging it into
end-to-end differentiable architectures. The architecture details are the same
of the experiment on scalars, the difference is that the elements of the sets in
input are vectors, i.e., x = {x,...,xy}, x; € R’ Contrarily to the model

of the previous section, here we use three dense layers for learning picture

86 | Learning Aggregation Functions

10t Count %102 Sum Max Mean Max - Min

30 —®— LAF e 10 0 14
s DeepSets 12 25 12
—— PNA 10 o¢
20 1.0
20 —a— LSTM 08 e
1.5 08
0.6
10 e 0.4 10 06
0.4
02 02 0.5
02
00 Coo sttt o 0—0-0—0—0—0':*&:

0 20 30 40 50 0 20 30 40 10 20 30 40 50 0 20 30 40 50 0 20 30 40 0 20 30 40
x10- Inverse Count Median x10-t Min / Max Variance Skewness Kurtosis

25
‘\\‘_‘\‘_‘“—‘ 35
20 30
25
15
, 10 15
10
1 05
05
0 00 0.0

10 20 30 40 10 20 30 40 10 20 30 40 50 10 20 30 40 50 10 20 30 40 10 20 30 40

Mean Absolute Error
o -

Mean Absolute Error
s

Fig. 4.5 Test performances for the synthetic experiment on MNIST digits on in-
creasing test set size. The x axis of the figures represents the maximum test set
cardinality, whereas the y axis depicts the MAE error. The dot, star, diamond
and traingle symbols denote LAF, DeepSets, PNA and LSTM respectively.

representations before performing the aggregation:

X — DENSE(784,300) — TANH
— DENSE(300,100) — TANH
— DENSE(100,30) — SIGMOD
— LAF(9) — DENSE(30 x 9, 1000) — TANH
— DENSE(1000,100) — TANH — DENSE(100,1)

Figure 4.5 shows the comparison of LAF, DeepSets, PNA, and LSTM in
this setting. Results are quite similar to those achieved in the scalar setting,
indicating that LAF is capable of effectively backpropagating information so
as to drive the learning of an appropriate latent representation, while DeepSets,
PNA, and LSTM suffer from the same problems seen in aggregating scalars.

Furthermore, Figure 4.6 provides a qualitative evaluation of the predictions
of the LAF, DeepSets, and PNA methods on a representative subset of the target
aggregators. The images illustrate the correlation between the true labels and
the predictions. LAF predictions are distributed over the diagonal line, with no
clear bias. On the other hand, DeepSets and PNA perform generally worse than
LAF, exhibiting higher variances. In particular, for inverse count and kurtosis,
DeepSets and PNA predictions are condensed in a specific area, suggesting an

overfitting on the training set.

4.3 Experiments | 87

Max Inverse Count

LAF DeepSets PNA LAF DeepSets PNA
20 x

o 2 4 6 8 o 2 4 6 8 o 2 4 6 8 000 025 050 075 100 000 025 050 075 100 000 025 050 075 100
Median Kurtosis

LAF DeepSets PNA DeepSets PNA
3

Fig. 4.6 Scatter plots of the MNIST experiment comparing true (x axis) and
predicted (y axis) values with 50 as maximum test set size. The target aggre-
gations are max (up-left), inverse count (up-right), median (bottom-left) and
kurtosis (bottom-right).

4.3.3 Point Cloud

In order to evaluate LAF on real-world dataset, we consider point cloud clas-
sification, a prototype task for set-wise prediction. Therefore, we run experi-
mental comparisons on the ModelNet40 [125] dataset, which consists of 9,843
training and 2,468 test point clouds of objects distributed over 40 classes. The
dataset is preprocessed following the same procedure described by [128]. We
create point clouds of 100 and 1,000 three-dimensional points by adopting the
point-cloud library’s sampling routine developed by [96] and normalizing each
set of points to have zero mean (along each axis) and unit (global) variance.
We refer with P100 and P1000 to the two datasets. For all the settings, we con-
sider the same architecture and hyper-parameters of the DeepSets permutation
invariant model described by [128]. For LAF, we replace the original aggrega-
tion function (max) used in DeepSets with 10 LAF units, while for PNA we
use the concatenation of max, min, mean, and standard deviation, as proposed
by the authors. For PNA we do not consider any scaler, as the cardinalities of
the sets are fixed. For more details about the training setting, refer to [128].
Results in Table 4.2 show that LAF produces an advantage in the lower reso-
lution dataset (i.e. on P100), while it obtains comparable (and slightly more
stable) performances in the higher resolution one (i.e. on P1000). These re-

sults suggest that having predefined aggregators is not necessarily an optimal

88 | Learning Aggregation Functions

METHOD P100 P1000

DEEPSETS 82.0+2.0% 87.04+1.0%
PNA 82.9+0.7% 86.4+0.6%
LSTM 78.7+£1.1% 82.2+1.7%
LAF 84.0+0.6% 87.0+£0.5%

Table 4.2 Results on the Point Cloud classification task. Accuracies with stan-
dard deviations (calculated on 5 runs) for the ModelNet40 dataset.

choice in real world cases, and that the flexibility of LAF in modeling diverse

aggregation functions can boost performance and stability.

4.3.4 Set Expansion

Following the experimental setup of DeepSets, we also considered the Setr Ex-
pansion task. In this task the aim is to augment a set of objects of the same
class with other similar objects, as explained in [128]. The model learns to pre-
dict a score for an object given a query set and decide whether to add the object
to the existing set. Specifically, [128] consider the specific application of set
expansion to text concept retrieval. The idea is to retrieve words that belong to
a particular concept, giving as input set a set of words having the same concept.
We employ the same model and hyper-parameters of the original publication,
where we replace the sum-decomposition aggregation with LAF units for our
methods and the min, max, mean, and standard deviation aggregators for PNA.

We trained our model on sets constructed from a vocabulary of different
size, namely LDA-1K, LDA-3K and LDA-5K, having respectively 17k, 38k and
61k words. We used the same training setting as detailed in [128]. Table 4.3
shows the results of LAF, DeepSets and PNA on different evaluation metrics.
We report the retrieval metrics recall@K, median rank and mean reciprocal
rank. We also report the results on other methods the authors compared to in
the original paper. More details on the other methods in the table can be found
in the original publication. Briefly, Random samples a word uniformly from
the vocabulary; Bayes Set [50]; w2v-Near computes the nearest neighbors in
the word2vec [81] space; NN-max uses a similar architecture as our DeepSets
but uses max pooling to compute the set feature, as opposed to sum pooling;
NN-max-con uses max pooling on set elements but concatenates this pooled

4.3 Experiments | 89

LDA-1k (VOCAB = 17k) LDA-3k (VOCAB = 38k) LDA-5k (VOCAB = 61k)
METHOD RECALL(%) RECALL(%) RECALL(%)

@10 @100 @1k MRRMED. /619 @100 @1k MRR MED. |G 19 @100 @ 1k MRR MED.
RANDOM 0.06 0.6 5.9 0.001 8520/0.02 0.2 2.6 0.00028635/0.01 0.2 1.6 0.000 30600
BAYES SET |1.69 11.9 37.2 0.007 2848 |2.01 14.5 36.5 0.008 3234 [1.75 12.5 34.5 0.007 3590
W2V NEAR [6.00 28.1 54.7 0.021 641 [4.80 21.2 43.2 0.016 2054 [4.03 16.7 35.2 0.013 6900
NN-MAX 478 22.5 53.1 0.023 779 |5.30 24.9 54.8 0.025 672 |4.72 21.4 47.0 0.022 1320
NN-SUM-CON |4.58 19.8 48.5 0.021 1110|5.81 27.2 60.0 0.027 453 |4.87 23.5 53.9 0.022 731
NN-MAX-CON|3.36 16.9 46.6 0.018 1250|5.61 25.7 57.5 0.026 570 |4.72 22.0 51.8 0.022 877
DEEPSETS |5.53 24.2 54.3 0.025 696 |6.04 28.5 60.7 0.027 426 |5.54 26.1 55.5 0.026 616
DEEPSETS* |5.89 26.0 55.3 0.026 619 |7.56 28.5 64.0 0.035 349 |6.49 27.9 56.9 0.030 536
PNA 5.56 24.7 53.2 0.027 753 |7.04 27.2 58.7 0.028 502 |5.47 23.8 52.4 0.025 807
LSTM 429 21.5 52.6 0.022 690 |5.56 25.7 58.8 0.026 830 |4.87 23.8 55.0 0.022 672
LAF 6.51 26.6 54.5 0.030 650 |8.14 32.3 62.8 0.037 339 [6.71 28.3 56.9 0.031 523
Table 4.3 Results on Text Concept Set Retrieval on LDA-1k, LDA-3k, and

LDA-5k. Bold values denote the best performance for each metric.

representation with that of query for a final set feature; NN-sum-con is similar
to NN-max-con but uses sum pooling followed by concatenation with query
representation. For the sake of fairness, we have rerun DeepSets using the
current implementation from the authors (indicated as DeepSet® in Table 4.3),
exhibiting better results than the ones reported in the original paper. We have
trained the methods under the same setting of the original implementation, we
do not have any satisfying explanation for this phenomenon. Nonetheless, LAF
outperforms all other methods in most cases, especially on LDA-3K and LDA-
5K.

4.3.5 Multi-task graph properties

[33] defines a benchmark consisting of 6 classical graph theory tasks on artifi-
cially generated graphs from a wide range of popular graph types like Erdos-
Renyi, Barabasi-Albert or star-shaped graphs. Three of the tasks are defined
for nodes, while the other three for whole graphs. The node tasks are the
single-source shortest-path lengths (N1), the eccentricity (N2) and the Lapla-
cian features (N3). The graph tasks are graph connectivity (G1), diameter (G2),
and the spectral radius (G3). For more details about the experimental settings
please refer to [33].

We compare LAF against PNA by simply replacing the original PNA ag-
gregators and scalers with 100 LAF units (see Equation 4.3). Table 4.4 shows

90 | Learning Aggregation Functions

METHOD N1l N2 N3 Gl G2 G3

BASELINE -1.87-1.50-1.60-0.62-1.30-1.41
GIN -2.00-1.90-1.60-1.61-2.17-2.66
GCN -2.16-1.89-1.60-1.69-2.14-2.79
GAT -2.34-2.09-1.60-2.44-2.40-2.70
MPNN (MAX) -2.33-2.26-2.37-1.82-2.69-3.52
MPNN (SUM) -2.36-2.16-2.59-2.54-2.67-2.87
PNA (NO SCALERS) -2.54-2.42-2.94-2.61-2.82-3.29
PNA -2.89-2.89-3.77-2.61-3.04 -3.57
LAF -2.13-2.20-1.67-2.35-2.77-3.63

Table 4.4 Results on the Multi-task graph properties prediction benchmark. Re-
sults are expressed in log 10 of mean squared error.

that albeit these datasets were designed to highlight the features of the PNA
architecture, that outperforms a wide range of alternative graph neural network
approaches LAF produces competitive results, outperforming state-of-the-art
GNN approaches like GIN [127], GCN [70] and GAT [119] and even improv-

ing over PNA on spectral radius prediction.

4.3.6 SetTransformer with LAF aggregation

In this section we investigate the combination of LAF aggregation with atten-
tion mechanisms on sets as proposed in the SetTransformer framework [74].
Briefly, SetTransformer consists of an encoder and a decoder. The encoder
maps a set of input vectors into a set of feature vectors by leveraging atten-
tion blocks. The decoder employs a pooling multihead attention (PMA) layer,
which aggregates the set of feature vectors produced by the encoder. In the
following experiment we replace PMA by a LAF layer.

Inspired by one of the tasks described in [74], we propose here to approx-
imate the average of the unique numbers in a set of MNIST images. Solving
the task requires to learn a cascade of two processing steps, one that detects
unique elements in a set (which can be done by the transformer encoder, as
shown in the experiment by [74]) and one that aggregates the results by aver-
aging (which LAF is supposed to do well). The set cardinalities are uniformly
sampled from {2,3,4,5} and each set label is calculated as the average of the
unique digits contained in the set. We trained two SetTransformer models: one

4.3 Experiments | 91

ST-PMA - MAE:1.70 ST-LAF - MAE:0.74

8 38 -5

6 » 6 e o o o :‘_‘!,: 3
R 2 “
!‘.:4}55 ° ° i;{j‘o;" J—
4 o 4 g x
° ° e e 0 0 000 . ° ‘ ’ E_;‘?. ’ _3

2 2 YL
0 -2
0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5

Fig. 4.7 Distribution of the predicted values for ST-PMA and ST-LAF by set
cardinalities. On the x-axis the true labels of the sets, on the y-axis the pre-
dicted ones. Different colors represent the sets’ cardinalities |x|.

with PMA (ST-PMA) and the other with LAF (ST-LAF). We used mini-batches
of 64 sets and trained the models for 1,000 epochs. We use Adam as parameter
optimizer, setting the initial learning rate to 5e~*. Each element in the dataset
is a set of vectors x = {xi,...,xn}, x; € R784, This is a detailed description of

the architecture of the network:

x — DENSE(784,300) — RELU
— DENSE(300,100) — RELU
— DENSE(100,30) — SIGMOD
— SAB(64.,4) — SAB(64,4)
— PMA,(64,4) OR LAF(10)
— DENSE(64 x kOR 9, 100) — RELU
— DENSE(100,1)

Please refer to [74] for the SAB and PMA details. Quantitative and qualitative
results of the evaluation are shown in Figure 4.7, where we report the MAE
for both methods'. ST-LAF exhibits a nice improvement over ST-PMA for this
particular task. Note that for ST-PMA only 25% of the sets (red points in the

scatter plot), corresponding to sets with maximum cardinality, approximates

'We run several experiments by changing the number of seeds k of PMA. All of them
exhibited the same behaviour. For this experiment we used k£ = 1.

92 | Learning Aggregation Functions

well the average, while for all other cardinalities (the remaining 75% of the
sets) ST-PMA predicts a constant value equal to the average label in the train-
ing set. ST-LAF instead clearly captures the distribution of the labels, general-
izing better with respect to the set sizes. We performed the same experiment
substituting the average with the sum, obtaining similar results.

4.4 Remarks | 93

4.4 Remarks

In this chapter we observed how the task of aggregating set information rep-
resents a relevant problem in many learning models, and how the choice of
the aggregator for a specific problem is ambiguous. Fixed aggregation func-
tions perform well in many cases, but using library-based strategies with many
aggregators can potentially produce a loss in the performances of the model,
and poorly adapt to diverse set sizes. On the other side, recent discoveries on
sum-decomposition as a universal framework for defining set functions demon-
strate that it does not necessarily provide a template for practical solutions. Our
solution is LAF, a flexible framework for learning aggregation functions that
use a new class of parametric aggregator to effectively explore a rich space of
possible aggregations. LAF is able to approximate widely used functions as
special cases and also has the ability to learn complex functions such as higher-
order moments. We evaluated the generalization ability of the framework on
synthetic settings as well as real-world datasets, providing comparisons with
state-of-the-art sum-decomposition approaches and recently introduced tech-
niques. LAF can be used as off-the-shelf learnable aggregator which uses few
parameters and needs little adjustments to be used as aggregation component
in any differentiable machine learning model, enhancing the expressivity of

architectures and models that deal with unstructured data.

Chapter 5

Applications in
recommendation systems

The final goal of a recommendation system is to suggest one or more items
that produce positive feedback or response in a user. Recommender systems
have been intensively studied in the last decades by the artificial intelligence
community, and have become a core component in the industry for their ap-
plicability in diverse areas such as e-commerce, search engines, decision aid
systems, personalized retail solutions, and advertisement. When a user is faced
with a choice, e.g. a movie to watch or a product to buy, the system helps her
filter out irrelevant products by discovering and suggesting items that suit her
interests. The strategy the recommender system adopts to select the items to
propose is indeed the central aspect of such systems. For instance, techniques
such as Collaborative Filtering [72, 111] recommend items preferred by users
similar to the target user, relying on some definition of distance between users.
Other techniques based on user information are Demographic Filtering tech-
niques [15], in which users are classified according to their demographic infor-
mation, and the preferences are computed according to the user-user similarity
with other users that fell in the same category. In Content Based Filtering
[87, 22] the proposed objects are extracted by measuring the item-item simi-
larity with other objects the user has liked in the past. Another category of
recommendation systems is the Knowledge Based [109] systems, which jus-
tify their recommendation building an explicit knowledge of the domain, and

the Hybrid Recommender[20], which combine elements of the different recom-

96 | Applications in recommendation systems

mendation techniques described above to solve specific recommendation tasks.
Moreover, the recommendation can also be performed by gathering aggregate
information from sets of entities, as it happens in group recommendation[11, 5]
or score prediction[91]. In this section, we explore possible applications of the
methods described in Chapter 3 and 4 in recommendation systems.

5.1 Constructive Preference Elicitation Model

In this section we present the core concepts of Constructive Preference Elic-
itation [42], a class of recommendation techniques that combine Preference
Elicitation [28] procedures with Constructive Recommendation [40], and how
we can extend these recommenders with the methodologies introduced in this
manuscript. Preference Elicitation is the process of modeling and understand-
ing the preferences of a user, or decision-maker, interactively. In this process,
the two players, the user and the system, exchange information about the rec-
ommended objects until a satisfactory choice is made. The user is responsible
for providing feedback on the items recommended by the system. On the other
hand, the system’s job is to update the user’s preference model according to the
received feedback and recommend increasing interest items. If the proposed
item is not chosen from a set of possible items but instead is configured from
scratch by the system, the system solves a Constructive Recommendation prob-
lem. Constructive Recommendation techniques aim to synthesize new items or
configurations by considering some limitations imposed by the context (mod-
eled as constraints) and the user’s preference model. Items are represented as
tuples of attributes of different domains, i.e. x = (x1,...,xy) wWhere N is the
total number of attributes, and each attribute comes from a specific domain,
i.e. x; € X; and X is equal to the cartesian product of all the domains. The
user’s quantitative evaluation of an item can be expressed as a utility function
u(x), which assigns a score to the item x. A simple type of utility function is
called Additive Independent utility [40], which decomposes the overall utility
u(x) into the summation of the subutilities u;(x;)

ulx) =y wui(x;) (5.1)

T=

5.1 Constructive Preference Elicitation Model | 97

The recommender’s goal is to discover the object to which the user would give
the highest possible score among all the available objects. To obtain the optimal
recommendation for the user, i.e. x*, the recommender solves an optimization

problem maximizing the utility function’s score as follows:
*
x* = argmax,cxu(x) (5.2)

The preferences of the user can be modeled by using a binary preference rela-
tion =€ X x X, indicating the preference for an item with respect to another
item, i.e. x 3= x’ if item x is "equally preferred or better" than item x’. The utility
function expresses the preference of the user in that x 5= x" iff u(x) > u(x'). In
the Preference Elicitation process, the preferences’ model is iteratively updated
until an optimal object is found. During this process, the user is presented with
a recommendation, provides feedback on the proposed object, and the system
uses this feedback to update its model. A core part of the process is given by the
feedback from the user, the fundamental piece of information the system uses
to learn the preferences. Several approaches for modeling the user feedback
has been proposed. For instance, in the Pairwise Preference [48] approach, the
user is proposed with two objects, and pick the one that better suits her prefer-
ences. Alternatively, in Set-wise Preference [113] the user choose the best in a
set of objects. Other non-rank based alternatives are Coactive Learning [107],
in which the user provides as feedback an improved version of the proposed
object, or Coactive Critiquing [112], where the user specify the reasons why
she likes the object or not.

In a Constructive Recommendation System, the object is not chosen but
rather synthesized from scratch. In knowledge-based systems terminology, the
type of recommendation we exploit lays in the category of Constraint-Based
recommendations. The constructive approach we follow is similar to the one
presented in Learning Modulo Theories [86], a framework for learning and
reasoning over complex domains that allows describing the structured object
as the combination of several attributes, bounded by some hard constraints that
define the space of feasible objects. In a structured prediction task, the goal
is to learn a mapping function f: 2 — % between the input space and the

structured output space. Examples are given as pairs (x;,y;) € 2" X %, and the

98 | Applications in recommendation systems

output object is obtained by solving the following optimization problem

f(x) = argmax(w, ¢ (x,y)) (5.3)
ey

where w is the parameter vector to be learned from the set of examples, and
¢ (x,y) is the feature mapping the pairs into a joint input-output space, ¢ :
X x % — R™. Therefore, a constructive framework able to create new ob-
jects is definitely more flexible than a recommendation system that simply se-
lects an object from a given set of possible solutions. A notable implementa-
tion of a Constructive Preference Elicitation model in a real world scenario is
called Smart Plan [41]. Smart Plan constructs bundles of telecommunication
products (called "plans") tailored to the user interest, which provides her feed-
back via Coactive Learning. This work represents the first application of this
type, showing how these type of interactive approaches to recommendation can
significantly improve user satisfaction while maintaining the cognitive cost of
discovering the optimal solution low.

5.1.1 Extension with Relational Metrics

The feature definition and the relational metric can be employed to help a con-
structive recommender to discover more easily the preferences of a user. Con-
structive recommendation is a content based approach that during the initial
phase it could suffer of a cold start, i.e., recommendations at the beginning of
the process might be not so relevant, due to the little information of the user’s
preferences. In the following part we give the description of an Hybrid rec-
ommender system, that combine the content based approach of constructive
recommendation with a collaborative filtering approach we exploit using the
TET relational metric introduced in Chapter 3. We add to the utility function a
component which weights the score of the utility function of other users u’ to
an object x. Consider a user u as an entity of a relational domain. Therefore,
we can construct a TET that models the relational feature of u and, by applying
the logistic evaluation function, extract the logistic evaluation tree L,. We also
denote a generic TET-based distance function as d(L,L’). We define the utility
score for an object x as a linear combination of the user’s utility function and

the utility scores of other users on x. The contribution of each user «’ in the

5.1 Constructive Preference Elicitation Model | 99

relational domain to the score of f,(x) is weighted by the similarity of user u
with user i/, defined as follow:

i W
) =wlo(w) + 7Y % (5.4)

If we rewrite the above equation by grouping the feature representation of
the object x, the equation becomes

. T
J w;
()= [1Y 4w, | 9 5.5

where ¥ is an additional parameter we introduce to tune the overall contri-
bution of other users w.r.t. the base utility of u, and d(L,L’) is a distance value
between two users. The collaborative filtering component in the formulation is
pretty clear, as we integrate the distance between users to determine the prefer-
ence model. The role of the weight 7 is crucial during the preference elicitation
process. If the user u is a new user in the system, the value of ¥ should be high,
in fact the system doesn’t have much information about the preferences of u, so
recommendations are mostly based on the preferences of similar users. How-
ever, the contributions of other users decay as the system learns the preferences
of u, thus also 7y value decrease. Finally, to recommend a new object to the user
based on her preferences, we maximize the score of the utility function.

100 | Applications in recommendation systems

5.2 Group Recommendation

The challenge faced by a recommendation system is usually to suggest the best
option to a single user. However, on many occasions, users participate collec-
tively to decide, for instance, which movie to watch, list of songs to listen to,
in which restaurant to eat or to plan the next travel, arising a new set of rec-
ommendation problems in which the recommendation should consider all the
group members’ preferences, not only one user. On a different scale, also in
social media users naturally form groups of people who share common inter-
ests, beliefs, political views or simply discuss about some arguments, or just
for having fun with some memes [71]. Examples of these groups are, for in-
stance, users that follow the same page on Facebook [3], or the same subreddit
in Reddit, or users that listen to the same playlist on Spotify. Identifying and
understanding this group’s behavior has been a relevant topic in the recommen-
dation systems community, referring to the task of modeling the preferences of
multiple users all together as Group Recommendation. The main challenge of a
group recommendation system is to model the users’ preferences in an effective
way such that the newly obtained preferences reflect the characteristics of the
entire group. Groups are usually defined as homogeneous, i.e. group members
share common interests, or heterogeneous. There are two main approaches to
model group recommendations. In the first strategy the group profile is created
by aggregating the individual preferences of the users into a single representa-
tion, and then the items are recommended based on this aggregated profile [66].
The second strategy is to generate the recommendations for the members and
then aggregating them into a single group recommendation [65]. In the first
strategy the aggregation step happens before the recommendation, while in the
second the recommendation precedes the aggregation. Some of the most used
strategies to aggregate come from the group decision making theory [29, 79].
Some functions aggregate information from only a subset of group members,
e.g. in Least Misery the recommended items is the one that obtains the high-
est score among all lowest evaluations of the users, or in the case of the Most
Respected Person, in which the evaluation is selected based on the most "im-
portant" user in the group. Functions that consider all the members equally are
called democratic functions. These can also be quite sofisticated functions, but

they rely on some aggregations functions such as the average or the sum of

5.2 Group Recommendation | 101

the users evaluations to select an item. Methods like Average Without Misery,
Multiplicative, Additive Utilitarian belong to this class. The choice of this ag-
gregation strategies influence heavily the performance of the recommendation
system. Therefore, a strategy to directly learn the aggregation while optimiz-
ing the recommendations could be beneficial for this type of systems. In this
context, LAF (Chapter 4) could be applied as substitute for the strategies pre-
sented above. Consider an evaluation function that determines the preference
score a user u would give to an item ¢ in the form e, = e(u,t). If s has an up-
per bound on the produced score, e.g. the star scoring system for products in
e-commerce or for movies, then we can normalize this value to lay in the range
[0, 1]. Therefore, we can collect this evaluations of a group G for an item ¢ as
the set e = {ey,,...,e,, } composed of all the single evaluations made by the
users:

sG;: = LAF (e) (5.6)

By performing this operation for each item, the system can list the items in
decreasing order based on the calculated s score, obtaining a ranking of the
items for the group. In order for LAF to be applied in this context, some sort
of supervision is needed, therefore the use of a loss function to measure how
much the proposed rank of items differ from the perfect one. There are several
differentiable ranking loss that can be employed in this case, such as Bayesian
Personalized Ranking [24] or other pairwise loss functions [23].

Chapter 6

Conclusions

This manuscript introduced several new methodologies to learn on relational
structures and provided some possible applications of the proposed methods in
the recommendation systems domain. Specifically, we introduce a new class
of metrics that exploit counts-of-counts statistics to determine the similarity
between two entities in a relational graph. This framework allows to combine
attributes of the entities with the attributes and the structural properties of their
relational neighborhood. We showed how this method outperforms other so-
lutions based on graphs kernel in classification and regression tasks, and its
capability in the task of information retrieval. Additionally, we showed how
performing metric learning on this metric can improve the performances of a
KNN classifier to perform competitively with neural architectures for relational
data. An interesting research direction would be to convert the distance func-
tion into a similarity function by transforming it into a kernel, and applying it
in other models such as SVM. In the second research work, we defined a new
learnable aggregator, which includes as special cases some widely used aggre-
gation functions, while learning more complex functions as higher moments.
We provided an extensive experimental evaluation on some graph tasks and
set learning tasks, compared with recent solutions and state-of-the-art models,
outperforming them in most of the tasks. The flexibility of the model com-
bined with its expressiveness makes it an exceptional candidate that can be
employed in any end-to-end differentiable model due to its flexibility and easy
applicability. In this sense, the most promising research direction would be to
employ LAF into different models, to assess its expressiveness and learning

ability. Finally, we proposed an extension to a recommendation system based

104 | Conclusions

on Constructive Preference Elicitation that uses the relational metrics to define
the prior preferences of a user in a relational domain. We also proposed LAF
as possible alterative to aggregate information in Group Recommendation Sys-

tems.

References

[1] Alshehhi, R. and Marpu, P. R. (2017). Hierarchical graph-based segmenta-
tion for extracting road networks from high-resolution satellite images. IS-
PRS journal of photogrammetry and remote sensing, 126:245-260.

[2] Amatriain, X. and Basilico, J. (2015). Recommender systems in industry:
A netflix case study. In Recommender systems handbook, pages 385—419.
Springer.

[3] Baatarjav, E.-A., Phithakkitnukoon, S., and Dantu, R. (2008). Group rec-
ommendation system for facebook. In OTM Confederated International
Conferences" On the Move to Meaningful Internet Systems", pages 211-219.
Springer.

[4] Babai, L. and Kucera, L. (1979). Canonical labelling of graphs in linear av-
erage time. In 20th Annual Symposium on Foundations of Computer Science
(sfcs 1979), pages 39—46. IEEE.

[5] Baltrunas, L., Makcinskas, T., and Ricci, F. (2010). Group recommenda-
tions with rank aggregation and collaborative filtering. In Proceedings of the
fourth ACM conference on Recommender systems, pages 119-126.

[6] Barla, A., Odone, F., and Verri, A. (2003). Histogram intersection kernel
for image classification. In Proceedings 2003 International Conference on
Image Processing (Cat. No.03CH37429), volume 3, pages [II-513-16 vol.2.

[7] Bellet, A., Habrard, A., and Sebban, M. (2012). Similarity learning for
provably accurate sparse linear classification. In Proceedings of the 29th

International Coference on International Conference on Machine Learning,
ICML12.

[8] Bellet, A., Habrard, A., and Sebban, M. (2013a). A survey on metric learn-
ing for feature vectors and structured data. CoRR, abs/1306.6709.

[9] Bellet, A., Habrard, A., and Sebban, M. (2013b). A survey on metric learn-
ing for feature vectors and structured data. arXiv preprint arXiv:1306.6709.

[10] Ben-Hur, A. and Noble, W. S. (2005). Kernel methods for predicting
protein—protein interactions. Bioinformatics, 21(suppl_1):138—146.

[11] Berkovsky, S. and Freyne, J. (2010). Group-based recipe recommenda-
tions: analysis of data aggregation strategies. In Proceedings of the fourth
ACM conference on Recommender systems, pages 111-118.

106 | References

[12] Bianchini, M. and Scarselli, F. (2014). On the complexity of neural net-
work classifiers: A comparison between shallow and deep architectures.
IEEE transactions on neural networks and learning systems, 25(8):1553—

1565.

[13] Bilenko, M., Basu, S., and Mooney, R. J. (2004). Integrating constraints
and metric learning in semi-supervised clustering. In Proceedings of the
twenty-first international conference on Machine learning, page 11.

[14] Blockeel, H. and De Raedt, L. (1998). Top-down induction of first-order
logical decision trees. Artificial Intelligence, 101(1):285 — 297.

[15] Bobadilla, J., Ortega, F., Hernando, A., and Gutiérrez, A. (2013). Recom-
mender systems survey. Knowledge-Based Systems, 46:109 — 132.

[16] Borgwardt, K. M. and Kriegel, H.-P. (2005). Shortest-path kernels on
graphs. In Fifth IEEE international conference on data mining (ICDM’05),
pages 8—pp. IEEE.

[17] Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). A training algorithm
for optimal margin classifiers. In Proceedings of the fifth annual workshop
on Computational learning theory, pages 144—152.

[18] Boyer, L., Habrard, A., and Sebban, M. (2007). Learning metrics between
tree structured data: Application to image recognition. In Machine Learn-
ing: ECML 2007, 18th European Conference on Machine Learning, Warsaw,
Poland, September 17-21, 2007, Proceedings, pages 54—66.

[19] Bronstein, M. M., Bruna, J., Cohen, T., and Velickovié, P. (2021). Geo-
metric deep learning: Grids, groups, graphs, geodesics, and gauges. arXiv
preprint arXiv:2104.13478.

[20] Burke, R. (2002). Hybrid recommender systems: Survey and experiments.
User modeling and user-adapted interaction, 12(4):331-370.

[21] Campbell, C. (2002). Kernel methods: a survey of current techniques.
Neurocomputing, 48(1):63 — 84.

[22] Cantador, 1., Bellogin, A., and Vallet, D. (2010). Content-based recom-
mendation in social tagging systems. In Proceedings of the fourth ACM
conference on Recommender systems, pages 237-240. ACM.

[23] Cao, D., He, X., Miao, L., An, Y., Yang, C., and Hong, R. (2018). Atten-
tive group recommendation. In The 41st International ACM SIGIR Confer-
ence on Research & Development in Information Retrieval, pages 645—654.

[24] Cao, D., Nie, L., He, X., Wei, X., Zhu, S., and Chua, T.-S. (2017). Em-
bedding factorization models for jointly recommending items and user gen-
erated lists. In Proceedings of the 40th International ACM SIGIR Conference
on Research and Development in Information Retrieval, pages 585-594.

[25] Chan, T., Esedoglu, S., and Ni, K. (2007). Histogram based segmentation
using Wasserstein distances. In International Conference on Scale Space
and Variational Methods in Computer Vision, pages 697-708. Springer.

References | 107

[26] Chatpatanasiri, R., Korsrilabutr, T., Tangchanachaianan, P., and Kijsirikul,
B. (2010). A new kernelization framework for mahalanobis distance learn-
ing algorithms. Neurocomputing, 73(10-12):1570-1579.

[27] Chechik, G., Shalit, U., Sharma, V., and Bengio, S. (2009). An online al-
gorithm for large scale image similarity learning. In Bengio, Y., Schuurmans,
D., Lafferty, J. D., Williams, C. K. L., and Culotta, A., editors, Advances in
Neural Information Processing Systems 22, pages 306-314.

[28] Chen, L. and Pu, P. (2004). Survey of preference elicitation methods.
Technical report.

[29] Chevaleyre, Y., Endriss, U., Lang, J., and Maudet, N. (2007). A short
introduction to computational social choice. In International Conference on
Current Trends in Theory and Practice of Computer Science, pages 51-69.
Springer.

[30] Chopra, S., Hadsell, R., and LeCun, Y. (2005). Learning a similarity
metric discriminatively, with application to face verification. In Proceedings
of the 2005 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’05), CVPR °05, pages 539-546.

[31] Clarkson, K. L. (2006). Nearest-neighbor searching and metric space di-
mensions. In In Nearest-Neighbor Methods for Learning and Vision: Theory
and Practice. MIT Press.

[32] Codd, E. F. (2002). A relational model of data for large shared data banks.
In Software pioneers, pages 263—-294. Springer.

[33] Corso, G., Cavalleri, L., Beaini, D., Lio, P., and Velickovi¢, P. (2020).
Principal neighbourhood aggregation for graph nets. arXiv preprint
arXiv:2004.05718.

[34] Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine
learning, 20(3):273-297.

[35] Cui, Y., Zhou, F,, Lin, Y., and Belongie, S. (2016). Fine-grained catego-
rization and dataset bootstrapping using deep metric learning with humans
in the loop. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1153—-1162.

[36] Datta, R., Joshi, D., Li, J., and Wang, J. Z. (2008). Image retrieval: Ideas,
influences, and trends of the new age. ACM Computing Surveys, 40(2):5:1-
5:60.

[37] Davis, J. V., Kulis, B., Jain, P.,, Sra, S., and Dhillon, I. S. (2007).
Information-theoretic metric learning. In Proceedings of the 24th Interna-
tional Conference on Machine Learning, ICML *07.

[38] De Raedt, L. and Kersting, K. (2008). Probabilistic inductive logic pro-
gramming. In Probabilistic Inductive Logic Programming, pages 1-27.
Springer.

108 | References

[39] Dhillon, P. S., Talukdar, P. P., and Crammer, K. (2010). Inference-driven
metric learning for graph construction. In 4th North East Student Collo-
quium on Artificial Intelligence.

[40] Dragone, P. (2017). Constructive recommendation. In Proceedings of
the Eleventh ACM Conference on Recommender Systems, RecSys ’17, page
441-445, New York, NY, USA. Association for Computing Machinery.

[41] Dragone, P., Pellegrini, G., Vescovi, M., Tentori, K., and Passerini, A.
(2018a). No more ready-made deals: constructive recommendation for telco
service bundling. In Proceedings of the 12th ACM Conference on Recom-
mender Systems, pages 163—171. ACM.

[42] Dragone, P., Teso, S., and Passerini, A. (2018b). Constructive preference
elicitation. Frontiers in Robotics and Al, 4:71.

[43] Egghe, L. (2006). Theory and practise of the g-index. Scientometrics,
69(1):131-152.

[44] Fan, W., Ma, Y., Li, Q., He, Y., Zhao, E., Tang, J., and Yin, D. (2019).
Graph neural networks for social recommendation. In The World Wide Web
Conference, pages 417-426.

[45] Feragen, A., Kasenburg, N., Petersen, J., de Bruijne, M., and Borgwardt,
K. (2013). Scalable kernels for graphs with continuous attributes. Advances
in neural information processing systems, 26:216-224.

[46] Fey, M., Lenssen, J. E., Weichert, F., and Miiller, H. (2018). Splinecnn:
Fast geometric deep learning with continuous b-spline kernels. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 869-877.

[47] Filippone, M., Camastra, F., Masulli, F., and Rovetta, S. (2008). A sur-
vey of kernel and spectral methods for clustering. Pattern Recognition,
41(1):176 — 190.

[48] Fiirnkranz, J. and Hiillermeier, E. (2003). Pairwise preference learning
and ranking. In European conference on machine learning, pages 145-156.
Springer.

[49] Garey, M. R. and Johnson, D. S. (1979). Computers and intractability,
volume 174. freeman San Francisco.

[50] Ghahramani, Z. and Heller, K. A. (2006). Bayesian sets. In Advances in
neural information processing systems, pages 435—442.

[51] Gori, M., Monfardini, G., and Scarselli, F. (2005). A new model for
learning in graph domains. In Proceedings. 2005 IEEE International Joint
Conference on Neural Networks, 2005., volume 2, pages 729-734. IEEE.

[52] Hamilton, W., Ying, Z., and Leskovec, J. (2017a). Inductive representa-
tion learning on large graphs. In Advances in Neural Information Processing
Systems, pages 1024—1034.

References | 109

[53] Hamilton, W. L., Ying, Z., and Leskovec, J. (2017b). Inductive representa-
tion learning on large graphs. In Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems
2017, 4-9 December 2017, Long Beach, CA, USA, pages 1024-1034.

[54] Haussler, D. (1999). Convolution kernels on discrete structures. Technical
Report UCSC-CRL-99-10, University of California, Santa Cruz.

[55] Hirsch, J. E. (2005). An index to quantify an individual’s scientific re-
search output. Proceedings of the National Academy of Sciences of the
United States of America, 102(46):16569.

[56] Hoi, S. C., Liu, W., Lyu, M. R., and Ma, W.-Y. (2006). Learning dis-
tance metrics with contextual constraints for image retrieval. In 2006 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’06), volume 2, pages 2072-2078. IEEE.

[57] Llse, M., Tomczak, J. M., and Welling, M. (2018). Attention-based deep
multiple instance learning. In Proceedings of the 35th International Con-
ference on Machine Learning, ICML 2018, Stockholmsmdssan, Stockholm,
Sweden, July 10-15, 2018, pages 2132-2141.

[58] Jaeger, M. (2006). Type extension trees: a unified framework for rela-
tional feature construction. In Proceedings of Mining and Learning with
Graphs (MLG-06).

[59] Jaeger, M. (2007). Parameter learning for relational bayesian networks.
In Proceedings of the 24th International Conference on Machine Learning,
ICML °07, page 369-376, New York, NY, USA. Association for Computing
Machinery.

[60] Jaeger, M., Lippi, M., Passerini, A., and Frasconi, P. (2013). Type exten-
sion trees for feature construction and learning in relational domains. Artifi-
cial Intelligence, 204:30-55.

[61] Jaeger, M., Lippi, M., Pellegrini, G., and Passerini, A. (2019). Counts-of-
counts similarity for prediction and search in relational data. Data Mining
and Knowledge Discovery, pages 1-44.

[62] Kang, U., Tong, H., and Sun, J. (2012). Fast random walk graph kernel.
In Proceedings of the 2012 SIAM international conference on data mining,
pages 828—-838. SIAM.

[63] Kazemi, S. M. and Poole, D. (2018). RelNN: A deep neural model for
relational learning. In Thirty-Second AAAI Conference on Artificial Intelli-
gence.

[64] Kedem, D., Tyree, S., Sha, F., Lanckriet, G. R., and Weinberger, K. Q.
(2012). Non-linear metric learning. In Advances in Neural Information
Processing Systems 25, pages 2573-2581.

[65] Kim, H.-N. and El Saddik, A. (2015). A stochastic approach to group
recommendations in social media systems. Information Systems, 50:76-93.

110 | References

[66] Kim, J. K., Kim, H. K., Oh, H. Y., and Ryu, Y. U. (2010). A group
recommendation system for online communities. International journal of
information management, 30(3):212-219.

[67] Kim, Y. (2014). Convolutional neural networks for sentence classification.
In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A
meeting of SIGDAT, a Special Interest Group of the ACL, pages 1746—1751.

[68] Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic opti-

mization. In Proceedings of the 3rd International Conference on Learning
Representations (ICLR).

[69] Kipf, T. N. and Welling, M. (2016). Variational graph auto-encoders.
arXiv preprint arXiv:1611.07308.

[70] Kipf, T. N. and Welling, M. (2017). Semi-supervised classification with
graph convolutional networks. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings.

[71] Kompan, M. and Bielikova, M. (2014). Group recommendations: Survey
and perspectives. Computing and Informatics, 33(2):446—476.

[72] Koren, Y. and Bell, R. (2015). Advances in Collaborative Filtering, pages
77-118. Springer US, Boston, MA.

[73] Krishna, S. (1992). Introduction to database and knowledge-base systems,
volume 28. World Scientific.

[74] Lee, J., Lee, Y., Kim, J., Kosiorek, A. R., Choi, S., and Teh, Y. W. (2019).
Set transformer: A framework for attention-based permutation-invariant
neural networks. In Proceedings of the 36th International Conference on
Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California,
USA, pages 3744-3753.

[75] Lippi, M., Jaeger, M., Frasconi, P., and Passerini, A. (2011). Relational
information gain. Machine Learning, 83:219-239.

[76] Liu, T., Moore, A. W., Yang, K., and Gray, A. G. (2005). An investigation
of practical approximate nearest neighbor algorithms. In Saul, L. K., Weiss,
Y., and Bottou, L., editors, Advances in Neural Information Processing Sys-
tems 17, pages 825-832. MIT Press.

[77] Ljosa, V., Bhattacharya, A., and Singh, A. K. (2006). Indexing spatially
sensitive distance measures using multi-resolution lower bounds. In Infer-
national Conference on Extending Database Technology, pages 865—883.
Springer.

[78] Ma, H., Zhou, D., Liu, C., Lyu, M. R., and King, I. (2011). Recommender
systems with social regularization. In Proceedings of the Fourth ACM Inter-
national Conference on Web Search and Data Mining, WSDM ’11, pages
287-296, New York, NY, USA. ACM.

References | 111

[79] Masthoff, J. (2011). Group recommender systems: Combining individual
models. In Recommender systems handbook, pages 677—702. Springer.

[80] Melnikov, V. and Hiillermeier, E. (2016). Learning to aggregate using
uninorms. In Machine Learning and Knowledge Discovery in Databases -
European Conference, ECML PKDD 2016, Riva del Garda, Italy, September
19-23, 2016, Proceedings, Part I, pages 756-771.

[81] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013).
Distributed representations of words and phrases and their compositionality.
In Advances in neural information processing systems, pages 3111-3119.

[82] Moschitti, A. (2006). Making tree kernels practical for natural language
learning. In I 1th conference of the European Chapter of the Association for
Computational Linguistics.

[83] Muja, M. and Lowe, D. G. (2014). Scalable nearest neighbor algorithms
for high dimensional data. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 36(11):2227-2240.

[84] Neuhaus, M. and Bunke, H. (2007). Automatic learning of cost functions
for graph edit distance. Information Sciences, 177(1):239-247.

[85] Orsini, F., Frasconi, P., and De Raedt, L. (2015). Graph invariant kernels.
In Proceedings of the twenty-fourth international joint conference on artifi-
cial intelligence, volume 2015, pages 3756-3762. IICAI-INT JOINT CONF
ARTIF INTELL.

[86] Passerini, A. (2016). Learning modulo theories. In Data Mining and
Constraint Programming, pages 113-146. Springer.

[87] Pazzani, M. J. and Billsus, D. (2007). Content-based recommendation
systems. In The adaptive web, pages 325-341. Springer.

[88] Pele, O. and Werman, M. (2008). A linear time histogram metric for im-
proved SIFT matching. In Forsyth, D. A., Torr, P. H. S., and Zisserman, A.,
editors, Computer Vision - ECCV 2008, 10th European Conference on Com-
puter Vision, Marseille, France, October 12-18, 2008, Proceedings, Part
III, volume 5304 of Lecture Notes in Computer Science, pages 495-508.
Springer.

[89] Pellegrini, G., Tibo, A., Frasconi, P., Passerini, A., and Jaeger, M. (2020).
Learning aggregation functions. arXiv preprint arXiv:2012.08482.

[90] Qamar, A. M., Gaussier, E., Chevallet, J., and Lim, J. H. (2008). Sim-
ilarity learning for nearest neighbor classification. In 2008 Eighth IEEE
International Conference on Data Mining.

[91] Ricci, E., Rokach, L., and Shapira, B. (2011). Introduction to recom-
mender systems handbook. In Recommender systems handbook, pages 1-35.
Springer.

112 | References

[92] Richardson, M. and Domingos, P. (2006). Markov logic networks. Ma-
chine Learning, 62(1):107-136.

[93] Ristad, E. S. and Yianilos, P. N. (1998). Learning string-edit dis-
tance. IEEE Transactions on Pattern Analysis and Machine Intelligence,
20(5):522-532.

[94] Ristoski, P. and Paulheim, H. (2016). Rdf2vec: Rdf graph embeddings
for data mining. In International Semantic Web Conference, pages 498-514.
Springer.

[95] Rubner, Y., Tomasi, C., and Guibas, L. J. (1998). A metric for distribu-
tions with applications to image databases. In Computer Vision, 1998. Sixth
International Conference on, pages 59—66. IEEE.

[96] Rusu, R. B. and Cousins, S. (2011). 3d is here: Point cloud library (pcl).
In 2011 IEEE international conference on robotics and automation, pages
1-4. IEEE.

[97] Salakhutdinov, R. and Hinton, G. (2007). Learning a nonlinear embed-
ding by preserving class neighbourhood structure. In Meila, M. and Shen,
X., editors, Proceedings of the Eleventh International Conference on Artifi-
cial Intelligence and Statistics, volume 2, pages 412-419.

[98] Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini,
G. (2008). The graph neural network model. IEEE Transactions on Neural
Networks, 20(1):61-80.

[99] Schafer, J. B., Konstan, J. A., and Riedl, J. (2001). E-commerce recom-
mendation applications. Data Mining and Knowledge Discovery, 5(1):115-
153.

[100] Schlichtkrull, M., Kipf, T. N., Bloem, P., Van Den Berg, R., Titov, L.,
and Welling, M. (2018). Modeling relational data with graph convolutional
networks. In European semantic web conference, pages 593—607. Springer.

[101] Scholkopf, B. (2001). The kernel trick for distances. In Advances in
neural information processing systems, pages 301-307.

[102] Scholkopf, B. and Smola, A. (2002). Learning with Kernels. The MIT
Press, Cambridge, MA.

[103] Schroff, F., Kalenichenko, D., and Philbin, J. (2015). Facenet: A unified
embedding for face recognition and clustering. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 815-823.

[104] Schultz, M. and Joachims, T. (2004a). Learning a distance metric from
relative comparisons. In Thrun, S., Saul, L. K., and Schélkopf, B., editors,
Advances in Neural Information Processing Systems 16, pages 41-48.

[105] Schultz, M. and Joachims, T. (2004b). Learning a distance metric from
relative comparisons. Advances in neural information processing systems,

16:41-48.

References | 113

[106] Shervashidze, N., Schweitzer, P., Van Leeuwen, E. J., Mehlhorn, K., and
Borgwardt, K. M. (2011). Weisfeiler-lehman graph kernels. Journal of
Machine Learning Research, 12(9).

[107] Shivaswamy, P. and Joachims, T. (2015). Coactive learning. Journal of
Artificial Intelligence Research, 53:1-40.

[108] Silva, N. B., Tsang, R., Cavalcanti, G. D., and Tsang, J. (2010). A
graph-based friend recommendation system using genetic algorithm. In
IEEE congress on evolutionary computation, pages 1-7. IEEE.

[109] Smyth, B. (2007). Case-Based Recommendation, pages 342-376.
Springer Berlin Heidelberg, Berlin, Heidelberg.

[110] Stark, C., Breitkreutz, B.-J., Reguly, T., Boucher, L., Breitkreutz, A.,
and Tyers, M. (2006). Biogrid: a general repository for interaction datasets.
Nucleic acids research, 34(suppl_1):D535-D539.

[111] Su, X. and Khoshgoftaar, T. M. (2009). A survey of collaborative filter-
ing techniques. Advances in artificial intelligence, 2009.

[112] Teso, S., Dragone, P., and Passerini, A. (2017). Coactive critiquing:
Elicitation of preferences and features. In AAAI, pages 2639-2645.

[113] Teso, S., Passerini, A., and Viappiani, P. (2016). Constructive
preference elicitation by setwise max-margin learning. arXiv preprint
arXiv:1604.06020.

[114] Tibo, A., Frasconi, P., and Jaeger, M. (2017). A network architecture
for multi-multi-instance learning. In Machine Learning and Knowledge Dis-
covery in Databases - European Conference, ECML PKDD 2017, Skopje,
Macedonia, September 18-22, 2017, Proceedings, Part I, pages 737-752.

[115] Togninalli, M., Ghisu, E., Llinares-L6pez, F., Rieck, B., and Borgwardt,
K. (2019). Wasserstein weisfeiler-lehman graph kernels. In Advances in
Neural Information Processing Systems, pages 6439-6449.

[116] Uhlmann, J. K. (1991). Satisfying general proximity / similarity queries
with metric trees. Information Processing Letters, 40(4):175 — 179.

[117] Van Assche, A., Vens, C., Blockeel, H., and DZeroski, S. (2006). First or-
der random forests: Learning relational classifiers with complex aggregates.
Machine Learning, 64(1-3):149-182.

[118] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A. N., Kaiser, L., and Polosukhin, 1. (2017). Attention is all you need. In
Advances in neural information processing systems, pages 5998—6008.

[119] Velickovié, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., and
Bengio, Y. (2018). Graph attention networks. In ICLR’18.

[120] Wagstaft, E., Fuchs, F. B., Engelcke, M., Posner, 1., and Osborne, M.
(2019). On the limitations of representing functions on sets. arXiv preprint
arXiv:1901.09006.

114 | References

[121] Wang, J., Shen, H. T., Song, J., and Ji, J. (2014). Hashing for similarity
search: A survey. CoRR, abs/1408.2927.

[122] Wang, J., Zhang, T., Song, J., Sebe, N., and Shen, H. T. (2017). A survey
on learning to hash. IEEE Transactions on Pattern Analysis and Machine
Intelligence, PP(99):1-1.

[123] Weisfeiler, B. and Lehman, A. A. (1968). A reduction of a graph to
a canonical form and an algebra arising during this reduction. Nauchno-
Technicheskaya Informatsia, 2(9):12—-16.

[124] Wu, L., Jin, R., Hoi, S. C., Zhu, J., and Yu, N. (2009). Learning breg-
man distance functions and its application for semi-supervised clustering. In
Bengio, Y., Schuurmans, D., Lafferty, J. D., Williams, C. K. L., and Culotta,
A., editors, Advances in Neural Information Processing Systems 22.

[125] Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., and Xiao, J.
(2015). 3d shapenets: A deep representation for volumetric shapes. In Pro-

ceedings of the IEEE conference on computer vision and pattern recognition,
pages 1912-1920.

[126] Xing, E. P, Ng, A. Y., Jordan, M. 1., and Russell, S. (2002). Distance
metric learning, with application to clustering with side-information. In Pro-
ceedings of the 15th International Conference on Neural Information Pro-
cessing Systems.

[127] Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2019). How powerful are
graph neural networks? In International Conference on Learning Represen-
tations.

[128] Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov,
R.R., and Smola, A.J. (2017). Deep sets. In Guyon, 1., Luxburg, U. V., Ben-
gio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors,
Advances in Neural Information Processing Systems 30, pages 3391-3401.
Curran Associates, Inc.

[129] Zesch, T., Miiller, C., and Gurevych, I. (2008). Extracting lexical seman-
tic knowledge from wikipedia and wiktionary. In LREC, volume 8, pages
1646—-1652.

[130] Zhang, C.-T. (2009). The e-index, complementing the h-index for excess
citations. PLoS One, 4(5):e5429.

[131] Zhou, G., Zhang, M., Ji, D., and Zhu, Q. (2007). Tree kernel-based
relation extraction with context-sensitive structured parse tree information.
In Proceedings of the 2007 Joint Conference on Empirical Methods in Nat-

ural Language Processing and Computational Natural Language Learning
(EMNLP-CoNLL), pages 728-736.

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Contributions
	1.2 Outline of the Thesis

	2 Background
	2.1 First Order Logic
	2.2 Graphs
	2.3 Relational Features
	2.3.1 Type Extension Trees

	2.4 Kernel Methods on Graphs
	2.4.1 Weisfeiler-Lehman Graph Kernel
	2.4.2 WL Subtree Kernel
	2.4.3 WL Kernels with continuous labels
	2.4.4 Walks and paths kernels

	2.5 Deep Learning for Graphs
	2.5.1 The Graph Neural Network Model
	2.5.2 Graph Convolutional Networks
	2.5.3 GraphSAGE
	2.5.4 Graph Isomorphism Networks

	3 Distance Measures Based On TETs
	3.1 Relational Data Structures
	3.2 Logistic Evaluation Function
	3.2.1 Neural network perspective and weight learning

	3.3 Histogram Approximation
	3.4 NHT Metrics
	3.4.1 Node Histogram Metric
	3.4.2 Histogram Tree Metric
	3.4.3 Marginal EMD
	3.4.4 Baseline Count Distance

	3.5 Metric Tree Retrieval
	3.6 Experiments
	3.6.1 Data and Experimental Setup
	3.6.2 H-index classification
	3.6.3 H-index regression
	3.6.4 Retrieval

	3.7 Metric Learning
	3.8 The TETRIC
	3.9 TETRIC Learning
	3.10 Experiments on Metric Learning
	3.10.1 Data and Experimental Setup
	3.10.2 Synthetic Dataset
	3.10.3 Real-world Datasets

	3.11 Remarks

	4 Learning Aggregation Functions
	4.1 The problem of aggregation
	4.2 Learning Aggregation Functions
	4.2.1 The Learnable Aggregator
	4.2.2 LAF Architecture
	4.2.3 LAF Layer

	4.3 Experiments
	4.3.1 Scalars Aggregation
	4.3.2 MNIST digits
	4.3.3 Point Cloud
	4.3.4 Set Expansion
	4.3.5 Multi-task graph properties
	4.3.6 SetTransformer with LAF aggregation

	4.4 Remarks

	5 Applications in recommendation systems
	5.1 Constructive Preference Elicitation Model
	5.1.1 Extension with Relational Metrics

	5.2 Group Recommendation

	6 Conclusions
	References

