For a given projective variety $X$, the high rank loci are the closures of the sets of points whose $X$-rank is higher than the generic one. We show examples of strict inclusion between two consecutive high rank loci. Our first example is for the Veronese surface of plane quartics. Although Piene had already shown an example when $X$ is a curve, we construct infinitely many curves in $mathbb P^4$ for which such strict inclusion appears. For space curves, we give two criteria to check whether the locus of points of maximal rank 3 is finite (possibly empty).

Strict inclusions of high rank loci / Ballico, Edoardo; Bernardi, Alessandra; Ventura, Emanuele. - In: JOURNAL OF SYMBOLIC COMPUTATION. - ISSN 0747-7171. - 2022/109:(2022), pp. 238-249. [10.1016/j.jsc.2020.07.004]

Strict inclusions of high rank loci

Edoardo Ballico;Alessandra Bernardi;
2022-01-01

Abstract

For a given projective variety $X$, the high rank loci are the closures of the sets of points whose $X$-rank is higher than the generic one. We show examples of strict inclusion between two consecutive high rank loci. Our first example is for the Veronese surface of plane quartics. Although Piene had already shown an example when $X$ is a curve, we construct infinitely many curves in $mathbb P^4$ for which such strict inclusion appears. For space curves, we give two criteria to check whether the locus of points of maximal rank 3 is finite (possibly empty).
2022
Ballico, Edoardo; Bernardi, Alessandra; Ventura, Emanuele
Strict inclusions of high rank loci / Ballico, Edoardo; Bernardi, Alessandra; Ventura, Emanuele. - In: JOURNAL OF SYMBOLIC COMPUTATION. - ISSN 0747-7171. - 2022/109:(2022), pp. 238-249. [10.1016/j.jsc.2020.07.004]
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0747717120300596-main.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 399.43 kB
Formato Adobe PDF
399.43 kB Adobe PDF   Visualizza/Apri
Revision_Strict-inclusion-of-high-rank-loci (1).pdf

Open Access dal 09/07/2022

Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Creative commons
Dimensione 318.21 kB
Formato Adobe PDF
318.21 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/318199
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact