The postulate of gauge invariance in nature does not lend itself directly to implementations of lattice gauge theories in modern setups of quantum synthetic matter. Unavoidable gauge-breaking errors in such devices require gauge invariance to be enforced for faithful quantum simulation of gauge-theory physics. This poses major experimental challenges, in large part due to the complexity of the gauge-symmetry generators. Here, we show that gauge invariance can be reliably stabilized by employing simplified local pseudo generators designed such that within the physical sector they act identically to the actual local generator. Dynamically, they give rise to emergent exact gauge theories up to timescales polynomial and even exponential in the protection strength. This obviates the need for implementing often complex multi-body full gauge symmetries, thereby further reducing experimental overhead in physical realizations. We showcase our method in the Z2 lattice gauge theory, and discuss experimental considerations for its realization in modern ultracold-atom setups.

Stabilizing Lattice Gauge Theories Through Simplified Local Pseudo Generators / Halimeh, Jad C.; Homeier, Lukas; Schweizer, Christian; Aidelsburger, Monika; Hauke, Philipp Hans Juergen; Grusdt, Fabian. - ELETTRONICO. - (2021), pp. 1-14.

Stabilizing Lattice Gauge Theories Through Simplified Local Pseudo Generators

Philipp Hauke;
2021

Abstract

The postulate of gauge invariance in nature does not lend itself directly to implementations of lattice gauge theories in modern setups of quantum synthetic matter. Unavoidable gauge-breaking errors in such devices require gauge invariance to be enforced for faithful quantum simulation of gauge-theory physics. This poses major experimental challenges, in large part due to the complexity of the gauge-symmetry generators. Here, we show that gauge invariance can be reliably stabilized by employing simplified local pseudo generators designed such that within the physical sector they act identically to the actual local generator. Dynamically, they give rise to emergent exact gauge theories up to timescales polynomial and even exponential in the protection strength. This obviates the need for implementing often complex multi-body full gauge symmetries, thereby further reducing experimental overhead in physical realizations. We showcase our method in the Z2 lattice gauge theory, and discuss experimental considerations for its realization in modern ultracold-atom setups.
online
https://arxiv.org/
Stabilizing Lattice Gauge Theories Through Simplified Local Pseudo Generators / Halimeh, Jad C.; Homeier, Lukas; Schweizer, Christian; Aidelsburger, Monika; Hauke, Philipp Hans Juergen; Grusdt, Fabian. - ELETTRONICO. - (2021), pp. 1-14.
Halimeh, Jad C.; Homeier, Lukas; Schweizer, Christian; Aidelsburger, Monika; Hauke, Philipp Hans Juergen; Grusdt, Fabian
File in questo prodotto:
File Dimensione Formato  
2108.02203 (1).pdf

accesso aperto

Tipologia: Pre-print non referato (Non-refereed preprint)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 3.49 MB
Formato Adobe PDF
3.49 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11572/314613
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact