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The postulate of gauge invariance in nature does not lend itself directly to implementations of lattice gauge
theories in modern setups of quantum synthetic matter. Unavoidable gauge-breaking errors in such devices
require gauge invariance to be enforced for faithful quantum simulation of gauge-theory physics. This poses
major experimental challenges, in large part due to the complexity of the gauge-symmetry generators. Here, we
show that gauge invariance can be reliably stabilized by employing simplified local pseudogenerators designed
such that within the physical sector they act identically to the actual local generator. Dynamically, they give rise to
emergent exact gauge theories up to time scales polynomial and even exponential in the protection strength. This
obviates the need for implementing often complex multibody full gauge symmetries, thereby further reducing
experimental overhead in physical realizations. We showcase our method in the Z2 lattice gauge theory, and
discuss experimental considerations for its realization in modern ultracold-atom setups.
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I. INTRODUCTION

Gauge theories are a cornerstone of modern physics [1],
describing the interactions between elementary particles as
mediated by gauge bosons. They implement physical laws
of nature through local constraints in space and time [2].
A paradigmatic example is Gauss’s law in quantum electro-
dynamics, which enforces an intrinsic relation between the
distribution of charged matter and the associated electromag-
netic field.

With the advent of high precision and fine control in quan-
tum synthetic matter (QSM) devices, quantum simulation of
lattice gauge theories (LGTs) has become an exciting and
promising prospect which may help to overcome the sig-
nificant challenges in studying LGTs theoretically [3–10].
Indeed, recent years have witnessed a surge in experimen-
tal efforts to realize gauge theories in such setups [11–21].
Though a postulate in nature, gauge symmetry must be
engineered in QSM devices with both matter and gauge
fields. This poses a major challenge given the plethora of
local constraints that need to be controlled. Various methods
have been proposed to stabilize gauge invariance in QSM
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implementations, with the most popular being those based
on energy-penalty schemes [22–38]. Despite recent progress
[20], such schemes still require significant experimental over-
head, since they involve terms quadratic or, at best, linear in
complex often multibody gauge-symmetry generators [36].

We introduce the concept of the local pseudogenerator
(LPG), which is designed to behave identically to the full
generator within, but not necessarily outside, the target sector;
see Fig. 1. This relieves significant engineering requirements,
rendering the LPG with fewer-body terms than its full coun-
terpart. As we demonstrate numerically and analytically, this
approach is powerful—suppressing even nonlocal errors up to
all accessible times—and the LPG is readily implementable in
modern quantum-simulation platforms, e.g., ultracold atoms
and superconducting qubits.

The rest of our paper is structured as follows: In Sec. II,
we outline the concept and theory of local pseudogenera-
tors. We demonstrate the efficacy of LPG gauge protection
in the (1 + 1) − D and (2 + 1) − D Z2 lattice gauge theory in
Secs. III and IV, respectively. We summarize our results and
provide an outlook in Sec. V. Appendix A contains support-
ing numerical results and Appendix B includes our detailed
analytic derivations.

II. LOCAL-PSEUDOGENERATOR GAUGE PROTECTION

In an LGT, couplings between matter and gauge fields have
to follow a certain set of rules dictated by the generators of
gauge symmetry Ĝ j in order to fulfill Gauss’s law. Here, j
denotes the sites of the lattice, where the matter fields are
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located, the gauge fields live on links in between sites, and
we consider Abelian gauge symmetries. Gauge invariance is
embodied in the conservation of all Ĝ j by the system Hamil-
tonian Ĥ0: [Ĥ0, Ĝ j] = 0, ∀ j. This leads to physical sectors
which are characterized by conserved quantum numbers given
by the eigenvalues g j of Ĝ j . These in turn specify the allowed
distributions of matter and the corresponding configurations
of electric flux. We denote the desired target sector as the set
of all states {|ψtar〉} satisfying Ĝ j |ψtar〉 = gtar

j |ψtar〉, ∀ j.
The implementation of Ĥ0 in a realistic QSM setup will

lead to gauge-breaking errors λĤerr at strength λ, which
couple sectors with different gj . These can be reliably sup-
pressed using the energy-penalty term V Ĥpen

G = V
∑

j (Ĝ j −
gtar

j )2 at sufficiently large positive protection strength V [39].
Effectively then, V Ĥpen

G brings the target sector within the
ground-state manifold, and any processes driving the system
away from it are rendered energetically unfavorable.

Generically, V Ĥpen
G is experimentally very challenging to

realize. Recently, however, protection terms linear in Ĝ j

have been proposed in the form of V Ĥ lin
G = V

∑
j c j (Ĝ j −

gtar
j ) [36]. If the coefficients c j are real numbers such that∑

j c j (g j − gtar
j ) = 0 if and only if g j = gtar

j , ∀ j, then gauge
invariance can be reliably stabilized up to all accessible times
[36]. Such a sequence c j has been referred to as compliant.
Using such linear gauge protection may mean the difference
between implementing quartic or quadratic terms, such as in
the case of U(1) LGTs [36]. However, in the case of other
models, such as Z2 LGTs, (Ĝ j − gtar

j )2 ∝ Ĝ j − gtar
j , with Ĝ j

composed of complex multibody multispecies terms [40].
In this case, linear protection offers no advantage over its
quadratic energy-penalty counterpart.

The major contribution of this work is to introduce the
concept of local pseudogenerators Ŵj (gtar

j ), see Fig. 1, which
must satisfy the relation

Ĝ j |ψ〉 = gtar
j |ψ〉 ⇐⇒ Ŵj (g

tar
j )|ψ〉 = gtar

j |ψ〉. (1)

Note that Ŵj (gtar
j ) is dependent on gtar

j and is required to act
identically to Ĝ j only within the local target sector, but not
necessarily outside it. Indeed, Ŵj (gtar

j ) and Ĝ j do not need
to commute. This naturally relaxes the engineering overhead
on Ŵj (gtar

j ), reducing its number of interacting particles per
term relative to Ĝ j . This technical advantage is the main
motivation behind the concept of LPGs. One can now employ
the principle of linear gauge protection [36] using the LPG,
rather than the full generator Ĝ j , through the term

V ĤW = V
∑

j

c j
[
Ŵj (g

tar
j ) − gtar

j

]
, (2)

which ensures reliably suppression of violations due to any
coherent local gauge-breaking errors when the condition∑

j c j[w j (gtar
j ) − gtar

j ] = 0 ⇐⇒ w j (gtar
j ) = gtar

j , ∀ j, is satis-
fied (i.e., c j is compliant), where w j (gtar

j ) is the eigenvalue of
Ŵj (gtar

j ). Nevertheless, as we will demonstrate in the follow-
ing, a noncompliant sequence can still reliably stabilize gauge
invariance in the case of local gauge-breaking errors up to all
accessible times.

FIG. 1. Schematic of gauge protection based on the local pseu-
dogenerator (LPG) Ŵj with eigenvalues w j (yellow boxes), defining
a local constraint j. (a) When the full generator Ĝ j (blue boxes) has
an eigenvalue gj = gtar

j in the target sector, then w j = gtar
j and vice

versa (yellow/blue box in the middle). When gj �= gtar
j , w j can have

one or more values, one of which may be equal to gj (yellow/blue
box on the left), but never gtar

j (forbidden red-dotted regions), or w j

can have no values in the most general case [Ĝ j,Ŵj] �= 0. (b) In
the presence of gauge-breaking errors at strength λ, the target sector
(gtar

1 , gtar
2 , . . .) is energetically isolated by the LPG protection V ĤW ,

where c j ∈ R;
∑

j c j[w j (gtar
j ) − gtar

j ] = 0 ⇐⇒ w j (gtar
j ) = gtar

j , ∀ j.
At sufficient strength V , LPG protection induces an emergent global
symmetry that coincides with the local gauge symmetry within the
target sector.

III. (1 + 1) − D Z2 LATTICE GAUGE THEORY

Inspired by a recent ultracold-atom implementation
[17,41], we consider the Z2 LGT in (1 + 1) − D described
by the Hamiltonian [40,42–44]

Ĥ0 = J
L−1∑
j=1

(
â†

j τ̂
z
j, j+1â j+1 + H.c.

) − h
L∑

j=1

τ̂ x
j, j+1, (3)

where the local generator of gauge invariance is

Ĝ j = (−1)n̂ j τ̂ x
j−1, j τ̂

x
j, j+1, (4)

with eigenvalues g j = ±1. The Pauli matrices τ̂ x,z
j, j+1 denote

the electric and gauge fields, respectively, on the link be-
tween matter sites j and j + 1, and â j, â†

j are hard-core

bosonic ladder operators on matter site j, with n̂ j = â†
j â j the

bosonic number operator. As Ĥ0 is gauge-invariant, it satisfies
[Ĥ0, Ĝ j] = 0, ∀ j.

Following the prescription of the LPG given in Eq. (1), a
suitable LPG for Ĝ j of Eq. (4) is

Ŵj (g
tar
j ) = τ̂ x

j−1, j τ̂
x
j, j+1 + 2gtar

j n̂ j, (5)

We find that Ŵj (gtar
j )|ψ〉 = gtar

j |ψ〉, ∀ j, if and only if |ψ〉 is
in the target sector; see Table I. We emphasize that Ŵj is not
an actual local generator of the Z2 gauge symmetry. In fact,
[Ĥ0,Ŵj] �= 0, ∀ j.

In the following, we will numerically test gauge protection
based on the LPG. Without loss of generality, we will hence-
forth select the target gauge sector to be gtar

j = +1, ∀ j.
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TABLE I. Eigenvalues gj and w j of the local full generator Ĝ j

and the local pseudogenerator Ŵj , respectively, for the different pos-
sible configurations of the fields on the local constraint specified by
matter site j and its neighboring links. Whenever either generator has
an eigenvalue gtar

j , the other does too, i.e., gj = gtar
j ⇐⇒ w j = gtar

j .
Contrapositively, whenever either is not gtar

j , neither is the other:
gj �= gtar

j ⇐⇒ w j �= gtar
j , though w j and gj need not be equal in this

case. In our numerical simulations, we have chosen the target sector
to be gtar

j = +1 (green entries), but the conclusions are unaltered for
gtar

j = −1 (red entries), as our method is general and independent of
the particular choice of the local target sector.

n̂ j τ̂ x
j−1, j τ̂ x

j, j+1 Ĝ j Ŵj (gtar
j = −1) Ŵj (gtar

j = +1)

0 −1 −1 +1 +1 +1
0 −1 +1 −1 −1 −1
0 +1 −1 −1 −1 −1
0 +1 +1 +1 +1 +1
1 −1 −1 −1 −1 +3
1 −1 +1 +1 −3 +1
1 +1 −1 +1 −3 +1
1 +1 +1 −1 −1 +3

A. Local and nonlocal gauge errors

We prepare our system in the staggered-matter initial state
|ψ0〉 in the target sector (see Appendix A for details), and
quench it with the faulty gauge theory Ĥ = Ĥ0 + λ(Ĥ1 +
Ĥnloc

1 ) + V ĤW , where

Ĥ1 =
L−1∑
j=1

[
(α1â†

j τ̂
+
j, j+1â j+1 + α2â†

j τ̂
−
j, j+1â j+1 + H.c.)

+ (α3n̂ j − α4n̂ j+1)τ̂ z
j, j+1

]
, (6)

is an experimentally relevant local error term inspired from
the setup of Ref. [17]. The coefficients α1,...,4 are real numbers
whose relative values depend on the driving parameter in the
Floquet setup used to implement Ĥ0; cf. Appendix A 4 for
exact expressions. Here, we normalize them such that their
sum is unity in order to encapsulate the error strength in λ.
We additionally include the nonlocal error term

Ĥnloc
1 =

∑
ξ=±1

L∏
j=1

(
1 + ξ τ̂ z

j, j+1

)
, (7)

which though very unlikely to occur in typical experimental
setups, is ideal to scrutinize the efficacy of the LPG protection.
Note that Ĥ0, Ĥ1, and Ĥnloc

1 all conserve boson number, which
allows us to work within a given sector of the corresponding
global U(1) symmetry. This permits in exact diagonalization
(ED) system sizes of L = 6 matter sites and L = 6 gauge
links (equivalent to 12 spin-1/2 degrees of freedom) in the
bosonic half-filling sector. However, our method also works
for errors violating both the global U(1) symmetry and the
local Z2 gauge symmetry, and also for different initial states
and model-parameter values (see Appendix A for supporting
results). We employ open boundary conditions for experimen-
tal relevance.

Suppression of gauge violations due to gauge-breaking
terms such as those of Eqs. (6) and (7) has been shown
to be effective using the “full” protection term V Ĥpen

G =

V
∑

j (Ĝ j − gtar
j )2 = 2V

∑
j gtar

j (gtar
j − Ĝ j ) in the (1 + 1) −

D Z2 LGT [39]. This term is complicated to implement experi-
mentally owing to Ĝ j containing three-body terms; cf. Eq. (4).
This is the main reason why the LPG protection (2) is ideal
here, given that Ŵj includes single and two-body terms only;
see Eq. (5). Indeed, the level of difficulty for implementing Ŵj

is lower than that of the ideal gauge theory Ĥ0 itself.
We are interested in the dynamics of local observables in

the wake of the quench. In particular, we analyze the tempo-
rally averaged gauge violation and staggered boson number

ε(t ) = 1 − 1

Lt

∫ t

0
ds

L∑
j=1

〈ψ (s)|Ĝ j |ψ (s)〉, (8a)

n̂stag(t ) = 1

Lt

∫ t

0
ds

∣∣∣∣∣
L∑

j=1

(−1) j〈ψ (s)|n̂ j |ψ (s)〉
∣∣∣∣∣, (8b)

respectively, where |ψ (t )〉 = e−iĤt |ψ0〉.
Figure 2(a) shows the dynamics of the gauge violation

for a fixed gauge-breaking strength λ at various values of
the protection strength V , as calculated through ED. At early
times, the gauge violation grows ∝ λ2t2 as predicted by time-
dependent perturbation theory [39]. After this initial growth,
we see two distinct behaviors. At small V , the gauge violation
is not suppressed, but rather grows to a maximal value at late
times. However, at sufficiently large V , we see that the gauge
violation plateaus at a time scale ∝ 1/V to a value ∝ λ2/V 2,
in accordance with degenerate perturbation theory [39], up to
indefinite evolution times. Indeed, adapting results on slow
heating in periodically driven systems [45], LPG protection
with a rational compliant sequence can be shown to stabilize
gauge invariance up to times exponential in V , as we derive
analytically in Appendix B 1.

The long-time gauge violation as a function of J/V is
shown in Fig. 2(b). There, the two-regime behavior is clear
in the case of a compliant sequence. The long-time gauge
violation goes from an uncontrolled-error regime at small V
to a controlled-error regime at sufficiently large V , at which it
scales ∝ λ2/V 2. When it comes to the noncompliant sequence
c j = [6(−1) j + 5]/11, however, the violation does not enter a
controlled-error regime, instead remaining above a minimum
value no matter how large V is. This is directly related to
the nonlocal error term Ĥnloc

1 , which creates transitions be-
tween the few gauge-invariant sectors from which the LPG
protection cannot isolate the target sector in the case of a
noncompliant sequence. However, as we will show later, the
noncompliant sequence is very powerful against local errors.

As derived analytically in Appendix B 2 through the
quantum Zeno effect, we prove that the dynamics of local
observables under the faulty theory Ĥ is faithfully reproduced
by an adjusted gauge theory Ĥadj = Ĥ0 + λP̂0(Ĥ1 + Ĥnloc

1 )P̂0,
where P̂0 is the projector onto the target sector. This occurs
up to an error upper bound ∝ tV 2

0 L2/V , yielding a time scale
τadj ∝ V/(V0L)2, where V0 is an energy constant depending on
the microscopic parameters λ/J and h/J . We find numerically
that this is indeed the case for the staggered boson number
under LPG protection with a compliant sequence as shown
in Fig. 2(c). In the inset, the error in the dynamics under the
faulty theory Ĥ with respect to Ĥadj grows linearly in time
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FIG. 2. Quench dynamics of an initial state in the target sector
under the faulty gauge theory Ĥ = Ĥ0 + λ(Ĥ1 + Ĥ nloc

1 ) + V ĤW with
experimentally relevant local coherent gauge-breaking errors (6) in
addition to the nonlocal error term (7). Protection term (2) is based
on the local pseudogenerator Ŵj given in Eq. (5) with a compliant
sequence. Results are obtained from ED. (a) Gauge violation (8a)
for various values of protection strength V at an error strength of
λ/J = 0.01 with h/J = 0.54. At sufficiently large V , the gauge vi-
olation settles at a timescale ∝ 1/V into a steady state of value ∝
λ2/V 2. (b) The “infinite-time” gauge violation (t = 105/J or larger
in ED) shows two distinct behaviors for the compliant sequence.
At sufficiently large (small) V , it enters a controlled (uncontrolled)
error regime where it scales ∝ λ2/V 2 (displays chaotic behavior).
Noncompliant sequences fail to control nonlocal errors. (c) Stag-
gered magnetization shown for the ideal theory (green), under the
faulty gauge theory at zero protection strength (red) and several
finite values of V (shades of blue), and under the adjusted gauge
theory Ĥadj = Ĥ0 + λP̂0(Ĥ1 + Ĥ nloc

1 )P̂0. At sufficiently large V , the
dynamics under Ĥ is reproduced by Ĥadj within an error ∝ tV 2

0 L2/V ,
i.e., up to a time scale τadj ∝ V/(V0L)2, with V0 an energy scale
dependent on the model parameters (but not V ), as we analytically
predict (see Appendix B).

and is suppressed ∝ 1/V . It is to be noted here that although
Ĥadj is generally different from the ideal gauge theory Ĥ0, it
nevertheless has an exact local gauge symmetry.

B. Experimentally relevant local gauge errors

We now demonstrate the efficacy of LPG protec-
tion with an experimentally feasible periodic noncompliant

FIG. 3. Same as Fig. 2 but with only local error terms given
in Eq. (6) and employing only the noncompliant sequence c j =
[6(−1) j + 5]/11 in the LPG protection of Eq. (2). The qualitative
picture is identical to that of Fig. 2 for the case of nonlocal errors and
LPG protection with a compliant sequence, meaning that simplified
sequences can reliably protect against experimentally relevant local
error terms.

sequence c j , in the case of the local gauge-breaking terms
of Eq. (6). The faulty theory is now described by Ĥ = Ĥ0 +
λĤ1 + V

∑
j Ŵj[6(−1) j + 5]/11, and we quench again the

staggered-matter initial state |ψ0〉.
The dynamics of the gauge violation in Fig. 3(a) demon-

strates reliable stabilization of gauge invariance with a plateau
∝ λ2/V 2 beginning at t ∝ 1/V and persisting over indefinite
times at large enough V . Indeed, the transition from an un-
controlled to a controlled-error regime displayed in Fig. 3(b)
occurs already at small values of V ∼ 5J , which is readily
accessible in quantum-simulation setups [17,20,26]. The dy-
namics of n̂stag in Fig. 3(c) is faithfully reproduced by the
adjusted gauge theory Ĥ0 + λP̂0Ĥ1P̂0 up to the time scale
τadj ∝ V/(V0L)2, with an error growing linearly in time and
exhibiting a suppression ∝ 1/V , as predicted analytically in
Appendix B 2.

Within state-of-the-art quantum-simulation setups, it is
possible to set λ ∼ 0.1J and V/λ ∼ O(3 − 28) [17,20,26].
Restricting our dynamics within experimentally feasible
evolution times t � 100/J , we find in Fig. 4 that the staggered
boson occupation is reliably reproduced by the adjusted gauge
theory for V/J = 2 with λ/J = 0.1, i.e., well within the range
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FIG. 4. Dynamics of the staggered boson number n̂raw
stag(t ) =∑

j (−1) j〈ψ (t )|n̂ j |ψ (t )〉/L under the faulty gauge theory Ĥ = Ĥ0 +
λĤ1 + V

∑
j Ŵj[6(−1) j + 5]/11 demonstrates that LPG protection

gives rise to an adjusted gauge theory Ĥ0 + λP̂0Ĥ1P̂0 during all
experimentally relevant evolution times already at V = 2J and λ =
0.1J , well within the accessible parameter range of state-of-the-art
QSM devices.

of experimentally accessible parameters. This bodes well for
ongoing efforts to stabilize local symmetries in quantum sim-
ulations of LGTs.

It is worth mentioning that in the (1 + 1) − D Z2 LGT,
the LPG term given in Eq. (5) is comprised of a single-body
term, which is straightforward to realize in QSM setups, and
of a two-body term, which can be reliably engineered us-
ing density-density interactions that, for e.g., naturally arise
in ultracold-atom setups, where they are readily tuned us-
ing Feshbach resonances [46], or in Rydberg arrays through
dipole-dipole interactions [47].

IV. (2 + 1) − D Z2 LATTICE GAUGE THEORY

We now show that the LPG protection scheme is not
limited to strictly one-dimensional settings. To this end we
consider a minimal Z2 LGT on a small triangular lattice
shown in Fig. 5, and described by the Hamiltonian [48]

Ĥ0 =
∑

P,〈l, j〉P

(
Jâ†

l τ̂
z
l, j â j − h

2
τ̂ x

l, j

)
, (9)

with the constraint that there is only a single link at the com-
mon edge of the plaquettes P, i.e., τ̂

{x,y,z}
2,3 = τ̂

{x,y,z}
4,5 . Gauge

invariance is encoded by two types of generators. The first
is Ĝ j at a local constraint residing in only one plaquette and
denoted by the matter site j and its neighboring links, which is
identical to its counterpart in (1 + 1) − D. The second is Ĝl, j

at a local constraint shared by two plaquettes with eigenvalues
gl, j = ±1, defined at a local constraint denoted by the matter
site l and its neighboring link on one plaquette and the matter
site j and its neighboring link on the second, along with the
neighboring link common to both plaquettes. For clarity, we
list them here explicitly:

Ĝ1 = (−1)n̂1 τ̂ x
1,2τ̂

x
1,3, (10a)

Ĝ6 = (−1)n̂6 τ̂ x
4,6τ̂

x
5,6, (10b)

Ĝ2,4 = (−1)n̂2+n̂4 τ̂ x
1,2τ̂

x
4,5τ̂

x
4,6, (10c)

Ĝ3,5 = (−1)n̂3+n̂5 τ̂ x
1,3τ̂

x
4,5τ̂

x
5,6. (10d)

FIG. 5. (2 + 1) − D Z2 gauge theory on a triangular lattice with
L = 6 matter sites and L� = 5 gauge links. Circles indicate mat-
ter sites, with red circles denoting single occupation of hard-core
bosons, while white circles are empty matter sites. The electric
fields on the links between matter sites are initialized at one of their
eigenvalues ±1 (yellow). Note how the link between matter sites
2 and 3 is the same link as that between matter sites 4 and 5, i.e.,
τ̂

{x,y,z}
2,3 = τ̂

{x,y,z}
4,5 .

To construct LPG terms with only up to two-body interac-
tions for this system, we make a general ansatz for Ŵj . This
ansatz only contains couplings between τ̂ x and n̂ associated
with a given vertex and treats all Z2 electric field terms on
equal footing. Allowing for arbitrary interaction strengths and
requiring the eigenenergies of the constructed interaction term
to collapse in a given target gauge sector yields possible solu-
tions for the form of Ŵj .

The LPGs we find for the full generators in Eq. (10a) are

Ŵ1
(
gtar

1

) = τ̂ x
1,2τ̂

x
1,3 + 2gtar

1 n̂1, (11a)

Ŵ6
(
gtar

6

) = τ̂ x
4,6τ̂

x
5,6 + 2gtar

6 n̂6, (11b)

Ŵ2,4
(
gtar

2,4

) = τ̂ x
1,2τ̂

x
4,5τ̂

x
4,6 + 2gtar

2,4(n̂2 + n̂4 − 2n̂2n̂4), (11c)

Ŵ3,5
(
gtar

3,5

) = τ̂ x
1,3τ̂

x
4,5τ̂

x
5,6 + 2gtar

3,5(n̂3 + n̂5 − 2n̂3n̂5), (11d)

respectively, which act identically to their full counterparts in
the target sector, as shown in Tables I and II. Indeed, when-
ever the eigenvalue wl, j (gtar

l, j ) of Ŵl, j (gtar
l, j ) equals gtar

l, j , then so

does the eigenvalue gl, j of Ĝl, j , and vice versa: wl, j (gtar
l, j ) =

gtar
l, j ⇐⇒ gl, j = gtar

l, j .
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TABLE II. Eigenvalues w2,4(gtar
2,4) and g2,4 of the interplaquette

local pseudogenerator Ŵ2,4(gtar
2,4) and the corresponding full generator

Ĝ2,4, respectively, are identical in the target sector gtar
2,4, such that

w2,4(gtar
2,4) = gtar

2,4 ⇐⇒ g2,4 = gtar
2,4.

n̂2 n̂3 τ̂ x
1,2 τ̂ x

4,5 τ̂ x
4,6 Ĝ2,4 Ŵ2,4(gtar

2,4 = −1) Ŵ2,4(gtar
2,4 = +1)

0 0 −1 −1 −1 −1 −1 −1
0 0 −1 −1 +1 +1 +1 +1
0 0 −1 +1 −1 +1 +1 +1
0 0 −1 +1 +1 −1 −1 −1
0 0 +1 −1 −1 +1 +1 +1
0 0 +1 −1 +1 −1 −1 −1
0 0 +1 +1 −1 −1 −1 −1
0 0 +1 +1 +1 +1 +1 +1
0 1 −1 −1 −1 +1 −3 +1
0 1 −1 −1 +1 −1 −1 +3
0 1 −1 +1 −1 −1 −1 +3
0 1 −1 +1 +1 +1 −3 +1
0 1 +1 −1 −1 −1 −1 +3
0 1 +1 −1 +1 +1 −3 +1
0 1 +1 +1 −1 +1 −3 +1
0 1 +1 +1 +1 −1 −1 +3
1 0 −1 −1 −1 +1 −3 +1
1 0 −1 −1 +1 −1 −1 +3
1 0 −1 +1 −1 −1 −1 +3
1 0 −1 +1 +1 +1 −3 +1
1 0 +1 −1 −1 −1 −1 +3
1 0 +1 −1 +1 +1 −3 +1
1 0 +1 +1 −1 +1 −3 +1
1 0 +1 +1 +1 −1 −1 +3
1 1 −1 −1 −1 −1 −1 −1
1 1 −1 −1 +1 +1 +1 +1
1 1 −1 +1 −1 +1 +1 +1
1 1 −1 +1 +1 −1 −1 −1
1 1 +1 −1 −1 +1 +1 +1
1 1 +1 −1 +1 −1 −1 −1
1 1 +1 +1 −1 −1 −1 −1
1 1 +1 +1 +1 +1 +1 +1

Experimentally relevant local gauge-breaking errors for
this model have been determined to be of the form

λĤ1 =
∑

P,〈l, j〉P

[
β1â†

l â j + β2τ̂
z
l, j + β3(n̂l + n̂ j )τ̂

z
l, j

+ β4n̂l n̂ j τ̂
z
l, j

]
, (12)

with β1 = 0.06 and β2 = β3 = β4 = 0.01 [48], although we
have checked that our qualitative picture remains the same
for other values of β1...4. Furthermore, in order to further
scrutinize the LPG protection in (2 + 1) − D, we have also
included the experimentally very unlikely nonlocal error

λĤnloc
1 = λ

∑
ξ=±1

∏
P,〈l, j〉P

(
1 + ξ τ̂ z

l, j

)
. (13)

The LPG protection term used to suppress gauge violations
due to these errors is described by

V ĤW = V
{
c1

[
Ŵ1

(
gtar

1

) − gtar
1

] + c2
[
Ŵ2

(
gtar

2

) − gtar
2

]
+ c3

[
Ŵ2,4

(
gtar

2,4

) − gtar
2,4

] + c4
[
Ŵ3,5

(
gtar

3,5

) − gtar
3,5

]}
,

(14)

FIG. 6. (2 + 1) − D Z2 LGT on a triangular lattice with gauge-
breaking terms Ĥerr = Ĥ1 + Ĥ nloc

1 given in Eqs. (12) and (13). LPG
protection with a noncompliant sequence, see Eq. (14), is used to
stabilize gauge invariance. (a) Gauge-violation dynamics at suf-
ficiently large V settles into a plateau ∝ λ2/V 2 that begins at a
time scale ∝ 1/V and lasts up to all accessible times in ED. It
is remarkable that this occurs despite the LPG-protection sequence
being noncompliant, which seems unable to protect against such
extremely nonlocal errors in (1 + 1) − D, see Fig. 2(b). (b) A two-
regime picture emerges, with an uncontrolled long-time violation
at small enough values of V , while at sufficiently large values of
V the long-time violation enters a regime of controlled error ∝
λ2/V 2. (c) LPG protection gives rise to the adjusted gauge theory
Ĥadj = Ĥ0 + λP̂0ĤerrP̂0, which faithfully reproduces the dynamics
of the electric field under the faulty theory up to a time scale τadj ∝
V/(V0L)2. As predicted analytically, the corresponding error grows
linear in time and is suppressed as ∝ 1/V .

with the noncompliant sequence c j ∈ {−1, 2,−3, 5}/5. As
we will see, for this 2D geometry, even a noncompliant se-
quence renders LPG protection powerful enough to suppress
such extreme nonlocal gauge-breaking errors.

We prepare our initial state |ψ0〉 in the target sector gtar
1 =

gtar
6 = −1 and gtar

2,4 = gtar
3,5 = +1 (see Fig. 5), and quench with

the faulty gauge theory Ĥ = Ĥ0 + λ(Ĥ1 + Ĥnloc
1 ) + V ĤW for

λ/J = 0.01 and h/J = 0.54, although we have checked that
our qualitative conclusions hold for other values of these pa-
rameters. We show the dynamics of the temporally averaged
gauge violation, Eq. (8a), for several values of V (see legend)
in Fig. 6(a). Remarkably, we see at sufficiently large V a
suppression of the gauge violation, which enters a plateau at
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the time scale ∝ 1/V with a value ∝ λ2/V 2 even when the se-
quence is noncompliant and the gauge-breaking error includes
strongly nonlocal terms. We have not been able to find a
noncompliant sequence that achieves this for the (1 + 1) − D
model; we speculate that in higher dimensions the higher
connectivity may further restrict how gauge violations spread
[49,50]. A scan of the long-time gauge violation as a function
of J/V also shows two distinct regimes. For small enough V ,
the violation cannot be directly related to the value of V , and
falls into an uncontrolled-error regime. At sufficiently large
V , we find that the gauge violation enters a controlled-error
regime and behaves as ∝ λ2/V 2.

Finally, we look in Fig. 6(c) at the temporally averaged
absolute electric field

E = 1

2L�t

∫ t

0
ds

∣∣∣∣∣∣
∑

P,〈l, j〉P
〈ψ (s)|τ̂ x

l, j |ψ (s)〉
∣∣∣∣∣∣, (15)

where L� = 5 is the number of links on the triangular lat-
tice of Fig. 5. The qualitative picture is the same as for our
other results, with LPG protection giving rise to an adjusted
gauge theory Ĥadj = Ĥ0 + λP̂0(Ĥ1 + Ĥnloc

1 )P̂0 that faithfully
reproduces the dynamics of E under the faulty gauge theory
within an error upper bound ∝ tV 2

0 L2/V , i.e., up to a timescale
τadj = V/(V0L)2. The inset shows how the deviation of the
dynamics under the faulty theory relative to that under the
adjusted gauge theory scales ∝ 1/V and grows linearly in
time, which is within our analytic predictions (see Sec. B 2).

V. SUMMARY AND OUTLOOK

We have introduced the concept of simplified local pseu-
dogenerators (LPGs) that behave within the target sector
identically to the actual generators of the gauge symmetry.
This greatly simplifies experimental requirements compared
to the implementation of the full generator to stabilize gauge
invariance, as by construction the pseudogenerator has fewer
particles per term than its full counterpart. We have demon-
strated the efficacy of LPG protection in one and two spatial
dimensions even under the severe case of nonlocal errors with
support over the entire lattice, where it stabilized gauge invari-
ance up to all accessible times in ED. We have also provided
analytic predictions supporting these findings, and predicting
the emergence of an adjusted gauge theory up to time scales
polynomial in the LPG protection strength. Furthermore, we
have shown that LPG protection provides robust stability of
gauge invariance within experimentally accessible parameter
regimes in current quantum simulators, which means LPGs
should be a viable tool that can already be employed in such
devices.

Even though we have focused in the main results on the Z2

LGT, which has a discrete spectrum, we emphasize that LPG
protection is general and can be employed for other Abelian
gauge theories in any dimension. An immediate future di-
rection arising from our work is extending LPG protection
to non-Abelian LGTs, where the concept of linear protec-
tion does not work in general [38] specifically because the
local generators do not commute. It would be interesting to
investigate whether commuting LPGs can be contrived that

act within the target sector as the actual generators of the
non-Abelian gauge symmetry.
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APPENDIX A: SUPPORTING RESULTS
FOR THE (1 + 1) − D Z2 LATTICE GAUGE THEORY

In this Appendix, we provide numerical results supporting
the conclusions of the main text for the (1 + 1) − D Z2 LGT,
by showcasing the efficacy of LPG protection compared to
“full” energy-penalty protection, and by demonstrating its
robustness to various initial conditions, model parameters,
nonperturbative errors, and also to nonlocal gauge-breaking
terms that simultaneously violate the global U(1) symmetry
of boson-number conservation.

1. Comparison with full gauge protection

It is interesting to compare the performance of the LPG
protection of Eq. (2) with a noncompliant sequence to that
of the full protection V Ĥpen

G = V
∑

j (1 − Ĝ j ), where here the
target sector is chosen to be gtar

j = +1 as in the main text.
For this purpose, we scan the “infinite”-time gauge violation
ε∞ = 1 − limt→∞

∑L
j=1〈ψ (t )|Ĝ j |ψ (t )〉/L as a function of

J/V under LPG protection with a noncompliant sequence and
under full protection, in the presence of the experimentally
relevant local errors given in Eq. (6). In our ED calculations,
“infinite” time is chosen to be numerically anywhere between
t/J = 105 − 1012, as the result is qualitatively independent
of the value of t � 105/J . The results are shown in Fig. 7,
where the LPG protection exhibits qualitatively similar effi-
cacy to the full protection. Indeed, in both cases we see a clear
transition from an uncontrolled-error to a controlled-error
regime where the steady-state value of the gauge violation
scales ∝ λ2/V 2. We have chosen here the experimentally
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FIG. 7. Comparing LPG protection to full protection in the case
of experimentally relevant local errors. The LPG protection se-
quence here is noncompliant, with c j = [6(−1) j + 5]/11, but as
shown in the main text, this is sufficient to protect against local
gauge errors. Here we have chosen λ/J = 0.01 and h/J = 0.54,
but we have checked that our results hold for other values of these
parameters. Even though the full protection shows slightly better
protection quantitatively, the LPG protection exhibits similar qual-
itative performance, with the transition from an uncontrolled-error to
a controlled-error ∝ λ2/V 2 regime occurring at V � 5J compared to
V � 3J for the full protection. In the case of LPG protection, cer-
tain resonances between the target sector and other gauge-invariant
sectors are not fully controlled at certain values of V within the
controlled-error regime (see small “spike” at J/V ≈ 3.7 × 10−3), but
nevertheless they are still reliably suppressed.

feasible noncompliant sequence c j = [6(−1) j + 5]/11 for the
LPG protection. Unlike the case of a compliant sequence, this
does not isolate the target sector from all other gauge-invariant
sectors. This leads to imperfections at a few values of V in the
behavior of the infinite-time violation within the controlled-
error regime, albeit the suppression of the violation is still
remarkably reliable at these values as well. As such, this is
quite encouraging news for ongoing experiments that the LPG
protection with the experimentally feasible noncompliant pe-
riodic sequence can perform qualitatively as well as the full
protection.

2. Results for different initial states, model parameters,
and error strengths

In the main text, we have focused on the staggered-matter
initial state |ψ0〉 shown in Fig. 8. However, LPG protection
works for generic initial states within a gauge-invariant sector.
In keeping with experimental relevance, we quench different
initial product states |ψ ′

0〉 and |ψ ′′
0 〉, shown in Fig. 8, with

the faulty Hamiltonian Ĥ = Ĥ0 + λĤ1 + V
∑

j Ŵj[6(−1) j +
5]/11. We look at the long-time gauge violation as a function
of J/V , which is displayed in Fig. 9(a). The conclusion is
qualitatively and, more or less, quantitatively the same be-
tween the three considered initial states, with a clear transition
from an uncontrolled-error regime at small enough V , to a
controlled-error ∝ λ2/V 2 regime at sufficiently large V .

This robustness to initial conditions is also present when
it comes to different values of the model parameters.
Fixing λ/J = 0.01, and quenching |ψ0〉 with Ĥ = Ĥ0 +
λĤ1 + V

∑
j Ŵj[6(−1) j + 5]/11, we find that the long-time

violation exhibits the same qualitative transition between un-
controlled and controlled error ∝ λ2/V 2 as a function of J/V
regardless of the value of h/J , as shown in Fig. 9(b). Note

FIG. 8. Initial states used in our ED calculations. Circles repre-
sent matter sites, where red circles denote single hard-core boson
occupation and white circles are empty matter sites. The yellow
arrows on the links between matter sites denote the eigenvalue of
the electric field τ̂ x

j, j+1 as ±1 when pointing right (left). All three
initial states are in the target sector gtar

j = +1, ∀ j. In the main text,
we have focused on |ψ0〉, although LPG protection offers reliable
stabilization of gauge invariance independently of the initial state, as
shown in Fig. 9(a).

that the (1 + 1) − D Z2 LGT has a phase transition from a
deconfined phase at h/J = 0 to a confined phase at h/J > 0
[40], but LPG protection works efficiently in either phase, at
least for the system sizes considered.

FIG. 9. Same as Fig. 3(b) but for (a) different initial states,
(b) different model-parameter values, and (c) different error
strengths. In all cases, the qualitative picture of two regimes persists,
where at values of V that are too small the long-time violation cannot
be directly determined from the value of V , but whereas at suffi-
ciently large V the long-time violation enters a regime of controlled
error ∝ λ2/V 2.
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In the main text, we have focused on perturbative errors
(λ/J < 1), but LPG protection works also for nonperturbative
errors, as demonstrated in Fig. 9(c). Here we again quench
|ψ0〉 with Ĥ = Ĥ0 + λĤ1 + V

∑
j Ŵj[6(−1) j + 5]/11, and

plot the infinite-time gauge violation as a function of J/V
for various values of λ/J , including the nonperturbative
regime λ = J . The qualitative behavior of a transition be-
tween an uncontrolled-error regime for small enough V to
one with a controlled violation ∝ λ2/V 2 at sufficiently large
V persists regardless of the value of λ. Naturally, the larger
λ is, the larger the value of the minimal V required to
be in the controlled-error regime. However, we note that
typical error strengths in modern QSM setups are usually
λ/J < 1 [17].

3. Results with gauge-breaking errors that do not conserve
boson number

In the main text, we have rigorously tested the LPG pro-
tection with a compliant sequence against local and nonlocal
errors, where both conserve boson number, as does the ideal
gauge theory Ĥ0. Even though Ĥ1 naturally hosts a global
U(1) symmetry as derived in Ref. [17], we have chosen
Ĥnloc

1 in Eq. (7) to also conserve boson number in order to
reduce numerical overhead and reach L = 6 matter sites in
our ED calculations within the bosonic half-filling sector for
the large evolution times we access. However, our conclusions
are independent of whether or not the global U(1) symmetry
associated with boson-number conservation is preserved. We
test this assertion by modifying the nonlocal gauge-breaking
error into the form

Ĥnloc
1 =

∑
ξ=±1

∏
j

[
1 + ξ τ̂ z

j, j+1

]
[1 + ξ (â j + â†

j )], (A1)

which restricts us numerically to L = 4 matter sites.
We quench the corresponding staggered-matter initial
state |ψ0〉 by the faulty theory Ĥ = Ĥ0 + λ(Ĥ1 +
Ĥnloc

1 ) + V
∑

j c jŴj with the compliant sequence
c j ∈ {−115, 116,−118, 122}/122. Even though we set
λ/J = 0.01 and h/J = 0.54, we have checked that our
results hold for other values of these parameters. In
Fig. 10(a), we show the ensuing dynamics of the gauge
violation. The qualitative behavior is identical to the case
of boson-number-conserving nonlocal errors discussed in
the main text. The gauge violation grows initially ∝ λ2t2,
in agreement with time-dependent perturbation theory [39],
before settling into a plateau. The latter shows no direct
relation to the protection strength when V is too small.
However, at sufficiently large V , the violation plateau begins
at a time scale ∝ 1/V and takes on a value ∝ λ2/V 2. This
behavior is further confirmed in Fig. 10(b), which shows
the long-time violation as a function of J/V . At values of
V that are too small, the violation is uncontrolled, whereas
at sufficiently large V , the long-time violation is controlled
and scales ∝ λ2/V 2. Note once again how the noncompliant
sequence c j = [6(−1) j + 5]/11 is not sufficient to achieve
reliable gauge invariance in the case of nonlocal errors here,
regardless of how large V is. Instead, it seems to always
remain above a certain minimal value.

FIG. 10. Same as Fig. 2 but the nonlocal gauge-breaking error
now reads Ĥ nloc

1 = ∑
ξ=±1

∏
j [1 + ξ τ̂ z

j, j+1][1 + ξ (â j + â†
j )], which

also violates boson-number conservation. Here we restrict to a sys-
tem of only L = 4 matter sites to reduce numerical overhead in
light of the large evolution times we access. The initial state is the
staggered-matter product state |ψ0〉 of Fig. 8 but with only L = 4
matter sites and L = 4 gauge links. The qualitative picture is identical
to that of Fig. 2.

The dynamics of the staggered boson number, Eq. (8b), is
shown in Fig. 10(c), and the qualitative picture is the same
as that of a nonlocal error that conserves boson number, see
Fig. 2(c). Indeed, we find that an adjusted gauge theory Ĥadj =
Ĥ0 + λP̂0(Ĥ1 + Ĥnloc

1 )P̂0 faithfully reproduces the dynamics
of the local observable up to a time scale τadj ∝ V/(V0L)2,
with an error that is suppressed ∝ 1/V and grows linearly
in time [see inset of Fig. 10(c)], as predicted analytically
(see Sec. B 2).

4. Local-error coefficients αm

The coefficients α1...4 of the local error term, Eq. (6), in the
one-dimensional (1D Z2) LGT are inspired from an extended
version of building-block errors arising in the construction
of the effective Floquet-Hamiltonian in the experiment of
Ref. [17]. Explicitly, they read

α1 =
∑
k>0

K(χ )

k
[J−k−1(χ )J−k−2(χ ) + Jk (χ )Jk+1(χ )

−Jk−1(χ )Jk−2(χ ) − J−k (χ )J−k+1(χ )], (A2a)
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α2 =
∑
k>0

K(χ )

k
[J−k+1(χ )Jk−2(χ ) + J−k (χ )Jk−1(χ )

−Jk+1(χ )J−k−2(χ ) − Jk (χ )J−k−1(χ )], (A2b)

α3 =
∑
k>0

K(χ )

k

[
J 2

k−1(χ ) + J 2
k−2(χ )

−J 2
−k−1(χ ) − J 2

−k−2(χ )
]
, (A2c)

α4 =
∑
k>0

K(χ )

k

[
J 2

−k+1(χ ) + J 2
−k (χ )

−J 2
k+1(χ ) − J 2

k (χ )
]
, (A2d)

where Jq(χ ) is the Bessel function of the first kind and order
q, and the variable χ is a dimensionless driving parameter that
is set to the experimentally relevant [17] value χ = 1.84 for
the related results of this work, although we have checked
that our qualitative picture is independent of the choice of
χ . We have also used K(χ ) as a nonzero factor enforcing∑4

m=1 αm = 1, in order to encapsulate the overall strength of
the error terms solely in λ.

APPENDIX B: EMERGENT GAUGE THEORIES

In this Appendix, we detail the analytic derivations for the
emergent gauge theories arising under LPG protection, along
with the associated time scales appearing in our numerical
results.

1. Renormalized gauge theory

One can adapt techniques employed by Abanin, De Roeck,
Ho, and Huveneers (ARHH) [45] for slow heating in period-
ically driven systems to show how the LPG protection with
a compliant sequence can stabilize gauge invariance up to a
time scale exponential in V , thereby explaining the remark-
able stability of gauge invariance present up to all accessible
evolution times in our numerical results. This adaptation has
already been done for the quadratic energy-penalty protection
in the case of Abelian [51] and also non-Abelian [38] LGTs,
and also for the protection linear in the full generator Ĝ j

with a compliant sequence in the case of the Abelian U(1)
LGT [36].

Let us define � as a finite subset of a d-dimensional cubic
lattice, and B� the algebra of bounded operators acting within
the corresponding total Hilbert space H�. We consider the
operators ÔS ⊗ 1̂�\S acting within the subset S ⊂ � with
a subalgebra BS ∈ B� equipped with the standard operator
norm. An operator Ô can now be nonuniquely decomposed
as

Ô =
∑

S∈�c (�)

ÔS, (B1)

with the interaction potential ÔS ∈ BS , and where �c(�) is
the set of finite subsets of � that are connected by adja-
cency (i.e., adjacent sites). Let us define a family of norms
on potentials parametrized by a rate κ > 0 that allows for
different weights to be assigned to operators with different

spatial support:

||X̂ ||κ := sup
x∈�

∑
S∈�c (�), x∈S

eκ|S|||X̂S||. (B2)

Here, the supremum is found on the lattice site x where the
operators X̂S with finite support on x yield the largest sum in
their weighted norms.

Let us call P̂m the projector onto the eigenstates with eigen-
value m of the LPG protection Hamiltonian Ĥpro, where

Ṽ Ĥpro = V ĤW = V
∑

j

c j
[
Ŵj

(
gtar

j

) − gtar
j

]
, (B3)

c j is a rational compliant sequence, i.e., it satisfies∑
j c j[w j (gtar

j ) − gtar
j ] = 0 ⇐⇒ w j (gtar

j ) = gtar
j , ∀ j, and Ṽ is

such that the spectrum of Ĥpro is composed of integers (m ∈
Z). The latter is not possible to have if c j are not rational.
Note that P̂0 is the projector onto the target gauge sector g j =
gtar

j , ∀ j. The faulty gauge theory Ĥ = Ĥ0 + λĤ1 + V ĤW can
then be split into two parts: Ĥd + V ĤW , with

Ĥd =
∑

m

P̂m(Ĥ0 + λĤ1)P̂m, (B4)

which is invariant with respect to Ĥpro, and the remaining term
is

Ĥnd = Ĥ − Ĥd − V ĤW . (B5)

As such, [Ĥd, ĤW ] = 0, although Ĥd does not necessarily
commute with either Ĝ j or Ŵj , and we also know that by
construction [Ĥ , ĤW ] �= 0. Indeed, Ĥd and ĤW share the same
global symmetry generated by the latter, but not the local
pseudogauge symmetry whose generator is Ŵj or the local full
gauge symmetry whose generator is Ĝ j .

In following with the ARHH framework [45], let us assume
that there exists a rate κ0 leading to the relevant energy scale

V0 := 54π

κ2
0

(||Ĥd||κ0 + 2||Ĥnd||κ0 ), (B6)

and that, in addition to the compliance condition, we fulfill the
following two conditions:

Ṽ � 9π

κ0
||Ĥnd||κ0 , (B7a)

⌊
V −1

0 (1 − ln V0 + ln Ṽ )−3Ṽ
⌋ − 3 � 0. (B7b)

Once these conditions are satisfied, then starting in any ini-
tial state |ψ0〉 within the target gauge sector g j = gtar

j , ∀ j,
will give rise to dynamics where the gauge violation remains
bounded from above as

|〈ψ0|eiĤt Ĝe−iĤt |ψ0〉| <
K (Ĝ)

Ṽ
, (B8)

up to a time scale τren ∝ V −1
0 eṼ /V0 , where Ĝ = ∑

j (Ĝ j −
gtar

j )2/L is the gauge-violation operator, and K is a
model-parameter-dependent term, but which is independent of
Ṽ and system size.

Details of this proof in the context of gauge protection have
been outlined in Ref. [36]. The latter work deals specifically
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with a protection term linear in the full generator Ĝ j with a ra-
tional compliant sequence. However, since the LPG protection
Ṽ Ĥpro = V ĤW satisfies the condition of compliance, and as
Eqs. (B7) are also satisfied, the derivation of Ref. [36] applies
in full also here, and, as such, we refer the interested reader
there for its details.

Nevertheless, a few comments are in order. Even though
the time scale τren ∝ V −1

0 eṼ /V0 may not appear directly
volume-dependent, a larger V is required with larger system
size L in order to achieve a given level of reliability. This be-
comes clear when looking at Eq. (B3). As mentioned, c j form
a compliant sequence of rational numbers normalized such
that max j{|c j |} = 1. Let us call f j the set of smallest integers
such that f j/ maxm{| fm|} = c j . As such, we can rewrite

Ṽ Ĥpro = V

max
j

{| f j |}
∑

j

f j
[
Ŵj

(
gtar

j

) − gtar
j

]
, (B9)

meaning that Ṽ = V/ max j{| f j |} is sufficient to make the
spectrum of Ĥpro integer. Assuming that a given value of
Ṽ brings about a certain level of gauge-error suppression, a
larger system size will lead to a larger max j{| f j |}, meaning
that V has to become larger in order to retain the same value of
Ṽ . Naturally, this becomes intractable in the thermodynamic
limit. However, we also see in our ED calculations that even
the noncompliant sequence, which does not grow with system
size, achieves reliable protection for local errors up to indef-
inite times, even though we cannot analytically predict this.
The nonlocal errors we have considered in this work are very
drastic, and only such errors require the compliant sequence.

Another point worth mentioning is that our analytic ar-
guments for the compliant sequence strictly only apply for
local errors, and extreme nonlocal errors with support over
the whole lattice in the thermodynamic limit are not within the
operator algebras we have defined. However, as we see in our
numerical results, LPG protection with a compliant sequence
still suppresses gauge violations up to indefinite times even
in the presence of such extreme errors on a finite system, and
this is within the ARHH framework but cannot be guaranteed
in the thermodynamic limit. Furthermore, LPG protection
with a noncompliant sequence, which does not fulfill all the
conditions of the ARHH formalism, still offers stable gauge
invariance up to indefinite times when gauge-breaking errors
are local. This cannot be guaranteed by the ARHH framework,
but it is not ruled out either. Indeed, this formalism gives
a guaranteed minimal (worst-case scenario) time-scale expo-
nential in V up to which gauge invariance is stabilized in the
presence of errors with a finite spatial support (that does not
grow with system size) given that the compliance condition
and Eqs. (B7) are satisfied, but it does not forbid stable gauge
invariance when any of these conditions are not strictly met.

Finally, it is to be noted that obtaining a closed form of the
renormalized gauge theory is generically difficult. Moreover,
we cannot numerically test how faithfully such a renormalized
gauge theory reproduces the LPG-protected dynamics under
the faulty theory, as this would require reaching exponentially
long times within systems in the thermodynamic limit, for
which no general techniques exist.

2. Adjusted gauge theory

It is useful for ongoing experiments to be able to have an
exact form of an emergent gauge theory in the wake of a
quench with the faulty gauge theory Ĥ = Ĥ0 + λĤerr + V ĤW ,
where Ĥerr = Ĥ1 + ηĤnloc

1 with η = 0 or 1. One can show
through the quantum Zeno effect (QZE) [52–55] in the case
of LPG protection with a compliant or suitably chosen non-
compliant sequence at sufficiently large protection strength
V , that an adjusted gauge theory Ĥadj = Ĥ0 + λP̂0ĤerrP̂0 rises
up to a time scale τadj ∝ V/(V0L)2 [36]. Specifically, at suf-
ficiently large V the dynamics under Ĥ is restricted to the
“decoherence-free” subspace of ĤW . In the large-V limit, the
time-evolution operator reads [52–55]

lim
V →∞

e−iĤt = e−i[V ĤW +∑
m P̂m (Ĥ0+λĤerr )P̂m]t , (B10)

up to a residual additive term ∝ V 2
0 L2t/V . We now consider

the conditions for which the QZE can promise reliable stabi-
lization of gauge invariance in the dynamics up to the resulting
time scale τadj ∝ V/(V0L)2.

a. ĤW is nondegenerate

In this case, gauge invariance is stable for a generic Ĥerr

so long as the coefficients c j are sufficiently incommensurate.
In other words, given any two pseudo superselection sectors
w = (w1,w2, . . .) and w′ = (w′

1,w
′
2, . . .) of Ŵj, ∀ j, then the

sequence must satisfy
∑

j c j (w j − w′
j ) �= 0. This condition is

readily satisfied when c j is a sequence of random or irrational
numbers, for example.

We note here that a pseudo superselection sector w of ĤW is
not necessarily gauge-invariant except when it coincides with
the target sector, i.e., when w = gtar = (gtar

1 , gtar
2 , . . .).

b. ĤW is degenerate

In the case the term Ĥ0 + λĤerr does not lift the degeneracy
of ĤW in first-order perturbation theory, then we can utilize
that

P̂m(Ĥ0 + λĤerr )P̂m =
∑

w,w′∈Dm

P̂w(Ĥ0 + λĤerr )P̂w′

=
∑

w∈Dm

P̂w(Ĥ0 + λĤerr )P̂w, (B11)

where Dm is the set of all pseudo superselection sectors w of
Ŵj such that ĤW |ψ〉 = m|ψ〉, ∀|ψ〉 ∈ w, and P̂w is the pro-
jector onto the pseudo superselection sector w. Consequently,
Eq. (B10) becomes

lim
V →∞

e−iĤt = e−i
∑

m

∑
w∈Dm [mV P̂w+P̂w (Ĥ0+λĤerr )P̂w]t . (B12)

Since we prepare our initial state in the target sector w =
(gtar

1 , gtar
2 , . . .), gauge-noninvariant processes driving the dy-

namics out of this sector will be suppressed in the time
evolution for large V , because different sectors do not couple
in the QZE regime as evidenced in Eq. (B12), and this is
precisely because second-order perturbation theory is beyond
the timescale of QZE protection.

As mentioned, LPG protection can be shown to stabilize
gauge invariance for an adequately chosen, yet not necessarily
compliant, sequence c j through an effective QZE behavior
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up to a residual additive term ∝ t (V0L)2/V . In particular, the
latter can be formulated as

||e−iĤt − e−i[V ĤW +∑
m P̂m (Ĥ0+λĤerr )P̂m]t ||

� Q ∝ tV 2
0 L2

V
. (B13)

Projecting onto the target sector, this becomes

||P̂0[e−iĤt − e−i(Ĥ0+λP̂0ĤerrP̂0 )t ]P̂0||

� Q ∝ tV 2
0 L2

V
, (B14)

where here we have utilized the fact that in the target sec-
tor, where we initialize our system, Ĥ0 and P̂0Ĥ0P̂0 drive
identical dynamics, and so the adjusted gauge theory Ĥadj =
Ĥ0 + λP̂0ĤerrP̂0 has naturally appeared in our formalism. It
is to be noted, however, that the adjusted gauge theory can
also be derived through the formalism of constrained quantum
dynamics in the case of full protection [56,57].

As we will show in the following, the inequality (B14)
translates to the dynamics of a local observable Ô under the
faulty theory being gauge-invariant up to an error upper bound
∝ t (V0L)2/V . The dynamics of a local observable Ô under the
faulty theory Ĥ deviates from that under the adjusted gauge

theory as

|〈ψ (t )|eiĤt Ôe−iĤt − eiĤadjt Ôe−iĤadjt |ψ (t )〉|
� ||P̂0(eiĤt Ôe−iĤt − eiĤadjt Ôe−iĤadjt )P̂0||

= 1

2
||P̂0{(eiĤt − eiĤadjt )Ôe−iĤt

+ eiĤt Ô(e−iĤt − e−iĤadjt )

+ (eiĤt − eiĤadjt )Ôe−iĤadjt

+ eiĤadjt Ô(e−iĤt − e−iĤadjt )}P̂0||

� Q̃ ∝ 2
tV 2

0 L2

V
. (B15)

As such, we have proven that the adjusted gauge theory Ĥadj

faithfully reproduces the dynamics of a local observable Ô
under the faulty theory Ĥ with large V up to a timescale
τadj ∝ V/(V0L)2. This is very promising for ongoing QSM
setups implementing LGTs, since it means that an emergent
exact gauge theory can still be derived in closed form and
realized experimentally, allowing for a controlled assessment
of the fidelity of the realization.
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