For all integers n,d,gsuch that n≥4, d≥n+ 1, and (n+ 2)(d−n−1) ≥n(g−1), we define a good (i.e. generically smooth of dimension (n+ 1)d+ (3 −n)(g−1) and with the expected number of moduli) irreducible component A(d,g; n) of the Hilbert scheme of smooth and nondegenerate curves in Pnwith degree dand genus g. For most of these (d,g), we prove that a general X∈A(d,g; n) has maximal rank. We cover, in this way, a range of (d,g,n) outside the Brill–Noether range.
Good components of curves in projective spaces outside the Brill-Noether range / Ballico, Edoardo. - In: TURKISH JOURNAL OF MATHEMATICS. - ISSN 1303-6149. - ELETTRONICO. - 2021, 45:1(2021), pp. 423-444. [10.3906/mat-1911-106]
Good components of curves in projective spaces outside the Brill-Noether range
Ballico, Edoardo
2021-01-01
Abstract
For all integers n,d,gsuch that n≥4, d≥n+ 1, and (n+ 2)(d−n−1) ≥n(g−1), we define a good (i.e. generically smooth of dimension (n+ 1)d+ (3 −n)(g−1) and with the expected number of moduli) irreducible component A(d,g; n) of the Hilbert scheme of smooth and nondegenerate curves in Pnwith degree dand genus g. For most of these (d,g), we prove that a general X∈A(d,g; n) has maximal rank. We cover, in this way, a range of (d,g,n) outside the Brill–Noether range.File | Dimensione | Formato | |
---|---|---|---|
mat-45-1-27-1911-106.pdf
accesso aperto
Descrizione: articolo principale
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Creative commons
Dimensione
250.34 kB
Formato
Adobe PDF
|
250.34 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione